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Abstract

This paper addresses the problem of cross-dataset gen-
eralization of 3D human pose estimation models. Testing a
pre-trained 3D pose estimator on a new dataset results in a
major performance drop. Previous methods have mainly
addressed this problem by improving the diversity of the
training data. We argue that diversity alone is not sufficient
and that the characteristics of the training data need to be
adapted to those of the new dataset such as camera view-
point, position, human actions, and body size. To this end,
we propose AdaptPose, an end-to-end framework that gen-
erates synthetic 3D human motions from a source dataset
and uses them to fine-tune a 3D pose estimator. AdaptPose
follows an adversarial training scheme. From a source 3D
pose the generator generates a sequence of 3D poses and
a camera orientation that is used to project the generated
poses to a novel view. Without any 3D labels or camera
information AdaptPose successfully learns to create syn-
thetic 3D poses from the target dataset while only being
trained on 2D poses. In experiments on the Human3.6M,
MPI-INF-3DHP, 3DPW, and Ski-Pose datasets our method
outperforms previous work in cross-dataset evaluations by
14% and previous semi-supervised learning methods that
use partial 3D annotations by 16%.

1. Introduction

Monocular 3D human pose estimation aims to recon-
struct the 3D skeleton of the human body from 2D images.
Due to pose and depth ambiguities, it is well known to be an
inherently ill-posed problem. However, deep learning mod-
els are able to learn 2D to 3D correspondences and achieve
impressively accurate results when trained and tested on
similar datasets [2, 4, 6, 15, 28, 32, 33].

An often disregarded aspect is that the distribution of fea-
tures in a dataset e.g. camera orientation and body poses
differ from one dataset to another. Therefore, a pre-trained
network underperforms when applied to images captured
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Figure 1. AdaptPose generates synthetic motions to improve the
cross-dataset generalization. The source dataset has 3D labels
and camera information, while the target dataset has only sam-
ple videos. The synthetic motions are generated to belong to the
target dataset. Therefore fine-tuning the 3D pose estimator with
synthetic motions improves the generalization of the model.

from a different viewpoint or when they contain an activity
that is not present in the training dataset [43, 47]. As an ex-
ample, Figure 1 shows images from the Human3.6M [16]
dataset on the left and images from the Ski-Pose [34, 36]
dataset on the right which we define as source domain and
target domain, respectively. Camera viewpoint, position,
human action, speed of motion, and body size significantly
differ between the source and target domain. This large do-
main gap causes 3D pose estimation models trained on the
source domain to make unreliable predictions for the target
domain [43,47,48]. We address this problem by generating
synthetic 3D data that lies within the distribution of the tar-
get domain and fine-tuning the pose estimation network by
the generated synthetic data. Our method does not require
3D labels or camera information from the target domain and
is only trained on sample videos from the target domain.

To the best of our knowledge, there are only two ap-
proaches that generate synthetic 2D-3D human poses for
cross-dataset generalization of 3D human pose estimators
[14, 24]. Li et al. [24] randomly generate new 2D-3D
pairs of the source dataset by substituting parts of the hu-
man body in 3D space and projecting the new 3D pose to
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2D. PoseAug [12] proposes a differential data augmenta-
tion framework that is trained along with a pose estima-
tor. Both, [24] and [12], merely improve the diversity of
the source domain without considering the distribution of
the target domain. Moreover, these methods are based on
single images and do not consider temporal information.

We formulate the data augmentation process as a domain
adaptation problem. Figure 2 shows our training pipeline.
Our goal is to generate plausible synthetic 2D-3D pairs that
lie within the distribution of the target domain. Our frame-
work, AdaptPose, introduces a human motion generator net-
work that takes 3D samples from the source dataset and
modifies them by a learned deformation to generate a se-
quence of new 3D samples. We project the generated 3D
samples to 2D and feed them to a domain discriminator
network. The domain discriminator is trained with real 2D
samples from the target dataset and fake samples from the
generator. We use the generated samples to fine-tune a pose
estimation network. Therefore, our network adapts to any
target using only images from the target dataset. 3D annota-
tion from the target domain is not required. Unlike [14,24],
this enables our network to generate plausible 3D poses
from the target domain. Another contribution is the exten-
sion of the camera viewpoint generation from a determin-
istic approach to a probabilistic approach. We assume that
the camera viewpoint of the target domain comes from a
specific well-defined, but unknown distribution. Therefore,
we propose to learn a distribution of camera viewpoints in-
stead of learning to generate a deterministic rotation matrix.
Our network rotates the generated 3D poses into a random
camera coordinate system within the learned distribution.
The generated sample is a sequence of 2D-3D pose pairs
that entails plausibility in the temporal domain. We believe
that the application of the proposed motion generator is not
limited to improving only cross-dataset performance of 3D
pose estimation, but it could also be used in other tasks such
as human action recognition.

Contributions. 1) we propose to close the domain gap
between the training and test datasets by a kinematics-aware
domain discriminator. The domain discriminator is trained
along with a human motion generator (HMG) that uses a
source training dataset to generate human motions close to
those in the target dataset. 2) We show that learning the
distribution of the camera viewpoint is more effective than
learning to generate a deterministic camera matrix. 3) To
the best of our knowledge, this is the first approach that
proposes generating human motions specifically for cross-
dataset generalization for 3D human pose estimation, unlike
previous work that focuses on single-frame data augmenta-
tion.

2. Related Work
In the following, we discuss the related work with a focus

on cross-dataset adaptation.
Weakly-supervised Learning. Weakly supervised

learning has been proposed to diminish the dependency
of networks on 3D annotations. These methods rely on
unpaired 3D annotation [22, 40, 45], multi-view images
[11, 17, 20, 34, 41], or cycle-consistency [5, 9]. Most re-
lated to our work is the adaptation of a network to the target
domain via weakly supervised learning. Zhang et al. [48]
propose an online adaptation to target test data based on
the weakly supervised learning method of [5]. Yang et
al. [45] use unpaired 3D annotation to further fine-tune a
network on in-the-wild images. Kundu et al. [23] use a self-
supervised learning method to improve the generalization of
a pre-trained network on images with occlusion.

Cross-dataset Generalization. Cross-dataset adaption
of 3D pose estimators has recently gained attention. Guan
et al. and Zhang et al. [14,48] propose an online adaptation
of the pose estimator during the inference stage over test
data. Guan et al. [14] use a temporal consistency loss and
a 2D projection loss on the streaming test data to adapt the
network to the target test dataset. Zhang et al. [48] use a cy-
cle consistency approach to optimize the network on every
single test frame. Although the online-adaptation approach
improves cross-dataset generalizability, it also increases the
inference time, especially if the networks exploit temporal
information. Wang et al. [43] argues that estimating the
camera viewpoint beside the 3D keypoints improves cross-
dataset generalization of the 3D pose estimator. However,
the camera viewpoint is not the only criterion that differs
between datasets. Split-and-Recombine [47] proposes to
split the human skeleton into different body parts so that
different body parts of a rare pose from the target dataset
could have been seen in the source dataset.

Data Augmentation is another way to diminish cross-
dataset errors. Previous methods perform data augmenta-
tion on images [35], 3D mesh models [37,44,49], or 2D-3D
pairs [7, 14, 24]. Most related to our work is augmenting
2D-3D pairs. Li et al. [24] generate synthetic 3D human
samples by substituting body parts from a source training
set. The evolutionary process of [24] is successful in gen-
erating new poses, however, the generation of natural cam-
era viewpoints is overlooked. Instead, it randomly perturbs
source camera poses. PoseAug [12] proposes an end-to-end
data augmentation framework that trains along with a pose
estimator network. Although it improves the diversity of
the training data, there is no guarantee that the generated
samples are in the distribution of the target dataset. More-
over, according to the ablation studies of PoseAug, the main
improvement comes from generating camera viewpoints in-
stead of generating new poses. This means that PoseAug
has limited abilities to effectively improve pose diversities
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Figure 2. Overview of the proposed network. The input is a vector of 3D keypoints from the source dataset concatenated with Gaussian
noise. The motion generator learns to generate a sequence of 3D keypoints Xb

3D and the mean and standard deviation of a normal
distribution N . A random rotation matrix is sampled from the learned normal distribution and Xb

3D is transformed to Xr
3D and projected

to 2D. The domain discriminator is trained with Xr
2D and 2D keypoints from the target domain. The lifting network is a pretrained pose

estimator that estimates 3D from 2D. It is used to evaluate Xr
2D, X

r
3D , provide feedback to the motion generator, and to select a subset of

samples for fine-tuning the lifting network. The pipeline is trained end-to-end.

in the training set. In contrast, we enforce the generated
synthetic data to be in the distribution of the target data.
Unlike PoseAug, we show that our motion generation net-
work significantly improves cross-dataset results even with-
out augmenting the camera-viewpoints.

3. Problem Formulation
Let Xsrc = (Xsrc

2D, X
src
3D) be a pair of 2D and 3D poses

from the source dataset and Xtar = X tar
2D a 2D pose from

the target dataset. The input to our model are sequences of
frames with length n, Xsrc

2D : [x2D]nt=0, Xsrc
3D : [x3D]nt=0,

and X tar
2D : [y2D]nt=0 where x2D, y2D ∈ RJ×3. AdaptPose

consists of a generator function

G(Xsrc, z;θG)→ Xfake, (1)

with parameters θG, that maps source samples Xsrc and
a noise vector z ∼ pz to a fake 2D-3D pair Xfake =
(X fake

2D , X fake
3D ). The fake samples (X fake

2D , X fake
3D ) are a se-

quence of 2D-3D keypoints X fake
2D : [xfake

2D ]nt=0, X fake
3D :

[xfake
3D ]nt=0. The generator G generates an adapted dataset

Xfake = G(Xsrc, z) of any desired size. In order to adapt
the source to the target domain in the absence of 3D target
poses we introduce a domain discriminator DD and a 3D
discriminator D3D. The domain discriminator DD(x;θD)
gives the likelihood d that the 2D input x is sampled from
the target domain X tar

2D. The generator tries to generate fake
samples X fake

2D as close as possible to target samples X tar
2D,

while the discriminator tries to distinguish between them.
Unlike a standard GAN network [13] where generator is
conditioned only on a noise vector, our generator is condi-
tioned on both a noise vector and a sample from the source
dataset which was shown to be effective in generating syn-
thetic images [3]. Additionally, the model is conditioned

on a 3D discriminator D3D(x; θD) that outputs the likeli-
hood d

′
that the generated 3D, X fake

3D , is sampled from the
real 3D distribution. Ideally, we would like to condition on
the target 3D dataset. Since 3D data from the target domain
is not available we condition it on the source 3D dataset.
However, conditioning the 3D discriminator D3D directly
on the source 3D poses restrains the motion generator to the
source distribution. Instead, we condition the 3D discrimi-
nator D3D on a perturbed version of data Xpsrc

3D = y+Xsrc
3D

where y ∼ py is a small noise vector. The noise vector y
is selected such that Xpsrc

3D is a valid pose from the source
distribution. The goal of AdaptPose is to optimize the fol-
lowing objective function

L = min
θG

max
(θDD

,θD3D
)
αL(G,DD) + βL(G,D3D), (2)

where α and β are the weights of the losses.

4. Human Motion Generator
We name the generator of our GAN network Human Mo-

tion Generator (HMG). The HMG consists of two main
components. 1) A bone generator that rotates the bone
vectors and changes the bone length ratios. The bone gen-
eration operation produces new 3D keypoints Xb

3D. 2) A
camera generator that generates a new camera viewpoint
{R,T}, where R ∈ R3×3 is a rotation matrix and T is
a translation vector. Xb

3D is transformed to the generated
camera viewpoint by

X fake
3D = RXb

3D + T, (3)

with the corresponding 2D keypoints

X fake
2D = Π(X fake

3D ), (4)



where Π is the perspective projection that uses the intrinsic
parameters from the source dataset.

4.1. Bone Generation

In this section, we analyze different methods of bone
vector generation in the temporal domain. The main chal-
lenge is to keep the bone changes plausible for every single
frame and temporally consistent in the time domain. We
propose and analyze the three different methods BG1, BG2,
and BG3 shown in Figure 3.

BG1. The bone generation network accepts a sequence
of 3D keypoints from the source dataset. The sequence
of 3D keypoints is transformed into a bone vector repre-
sentation [ ~Bsrc

t ]t0+n
t=t0 where ~Bsrc

t ∈ R(J−1)×3 and J is the
number of keypoints. BG1 generates a displacement vector
∆ ~B ∈ R(J−1)×3 and a bone ratio λ ∈ R(J−1)×1. The new
bone vector is [ ~Bfake

t ]t0+n
t=t0 where

~Bfake
t =

~Bsrc
t + ∆ ~B

‖ ~Bsrc
t + ∆ ~B‖

‖ ~Bsrc
t ‖(1 + λ). (5)

∆ ~B may change the bone length instead of rotating to a new
configuration as shown in Figure 3. To avoid this, we divide
the generated bones by ‖ ~Bsrc

t + ∆ ~B‖ in Eq. 5.
BG2. The bone generation network accepts a single

sample of 3D keypoints from the source dataset and con-
verts it to a bone representation ~Bsrc

t0 . BG2 generates ∆ ~B

and λ. The new bone vector is [ ~Bfake
t ]t0+n

t=t0 where

~Bfake
t+j =

~Bsrc
t0 + j∆ ~B/n

‖ ~Bsrc
t0 + j∆ ~B/n‖

‖ ~Bsrc
t0 ‖(1 + λ). (6)

BG3. The bone generation network generates the vector
~r ∈ R(J−1)×3 and the angle θ ∈ R(J−1)×1. A sequence of
rotation matrices [Rt]

n
t=0 is calculated by

Rt+j = H(
~r

‖~r‖
jθ
n

), (7)

whereH transforms axis-angle rotation of (θ, ~r) to rotation
matrix representation via quaternions q = qr + qxi + qyj +
qzk by

q = cos(
θ

2
) +

~r

‖~r‖
sin(

θ

2
), (8)

R = v ⊗ v + q2rI + 2qr[v]× + [v]2×, (9)

where ⊗ is the outer product, I is the identity matrix, and

[v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 . (10)
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Figure 3. Bone generation methods. Blue vectors indicate bone
vectors before rotation and green vectors are bone vectors after
rotation. ∆ ~B is rotating bone direction produced by the network.
~r and θ are the axis and angle of the rotation, respectively.

4.2. Camera Generation

In this section, we introduce two different methods of
camera generation: 1) Deterministic, which generates a sin-
gle camera rotation matrix and translation and 2) probabilis-
tic. The network learns a distribution of rotation matrices.
A random rotation matrix is sampled from the learned dis-
tribution. Additionally, we explore three different rotation
representations: axis-angle, Euler-angles, and quaternions.
In the following, we will discuss each of the procedures for
each of the rotation representations.

Deterministic Axis-angle. The network generates an
axis ~r and a translation T where the angle of rotation is ‖~r‖.
The rotation matrix R ∈ R3×3 is produced by R = H(~r)
whereH is explained in the equation 8.

Probabilistic Axis-angle. The network learns three sep-
arate normal distributions N1(µ1, σ1), N2(µ2, σ2) , and
N3(µ3, σ3), an angle θ, and a translation T . The axis
r = {r1, r2, r3} is sampled from the learned normal dis-
tributions and converted to a rotation matrix by

R = H(
~r

‖~r‖
θ). (11)

Probabilistic Euler-angles. The network learns three
Gaussian distributionsN1,N2, andN3 to sample the Euler-
angles (α, β, γ) from the specified distributions. The rota-
tion matrix is obtained as follows:

R = Rz(α)Ry(β)Rx(λ), (12)

where Rz(α), Ry(β), and Rx(λ) are rotations of (α, β, and
γ) degrees around z, y, x axis, respectively.

Probabilistic Quaternion. A quaternion represents a ro-
tation around axis ~u = (ux, uy, uz) with angle θ as

q = cos(
θ

2
) + ~u sin(

θ

2
). (13)

Therefore, q can be represented by four elements. Our net-
work learns four distributions N1,...,4 and randomly sam-
ples elements of q from the distributions. The quaternion q



is then converted to a rotation matrix representation as ex-
plained in section 4.1.

4.3. Domain and 3D Discriminators

We adopt the kinematic chain space (KCS) [39, 40] in
2D space to generate a matrix of joint angles and limb
lengths in the image plane. The domain discriminator has
two branches that accept 2D keypoints and the KCS ma-
trix, respectively. The diagonal of the KCS matrix contains
the limb lengths in the image space. Other components of
the KCS matrix represent angular relationships of the 2D
pose. It is important to mention that we do not normalize
input 2D keypoints relative to the root joint as it causes
perspective ambiguities [46]. Therefore, diag(KCS) is
a function of position and body scale. On the contrary
KCS − diag(KCS) is a function of the camera viewpoint
and scale of the person. Thus, the KCS matrix disentangles
different parameters that the motion generator requires to
learn. For the 3D discriminator, in order not to condition
the 3D discriminator on the source domain, we first apply
a random perturbation of β degrees to the input bone vec-
tors β < 10◦ and then feed the perturbed 3D to a part-wise
KCS branch [12] and the original 3D to a KCS branch. Fur-
ther details about the 3D discriminator are provided in the
supplementary material.

4.4. Selection

In order to stabilize the training of the lifting network
we introduce a selection step by evaluating samples via the
lifting network N . In this step, the lifting network receives
(Xsrc

2D, X
src
3D) and (X fake

2D , X fake
3D ) which are source and gen-

erated samples, respectively. We exclude samples that are
either too simple or too hard using the following rule

selection=

yes if (
L(N(X fake

2D))
L(N(Xsrc

2D)) − a)2 < b2

no otherwise
, (14)

where L is an L2 loss.

5. Training
Motion Generator. Our adversarial framework is

trained using three losses for the motion generator and for
the discriminators which are defined as

LD3D =
1

2
E[(D(X src

3D)− 1)2] +
1

2
E[D(X fake

3D )2], (15)

LDD =
1

2
E[(D(X src

2D)− 1)2] +
1

2
E[D(X fake

2D )2], (16)

LGadv =
1

2
E[(D(X fake

2D )− 1)2], (17)

where (Xsrc
3D, X

fake
3D ) are 3D samples from the source

dataset and synthetic generated samples, respectively.
(X tar

2D, X
fake
2D ) are 2D keypoints from the target dataset and

the generated synthetic data, respectively. The generator
also receives a feedback loss from the lifting network. The
feedback loss has two components: 1) reprojection loss of
the estimated 3D keypoints of the target domain 2) fixed
hard ratio feedback loss adapted from [12]. The lifting net-
work N accepts X tar

2D from the target dataset and predicts
X tar

3D. We define the reprojection loss as

Lproj =

∥∥∥∥∥ X fake
proj

‖X fake
proj‖

− X fake
2D

‖X fake
2D ‖

∥∥∥∥∥
1

, (18)

where‖‖1 is the L1 norm and

X fake
proj =

[
1 0 0
0 1 0

]
N(X tar

2D). (19)

The fixed hard ratio loss provides feedback depending on
the difficulty of generated sample relative to the source sam-
ples as follows:

f = (
L(N(X fake

2D ))

L(N(Xsrc
2D))

− c)2, (20)

Lhr =

{
f if f < d2

0 otherwise
, (21)

where L is L2 loss. The summation of the above mentioned
losses is our generator loss

LG = LadvG + Lproj + Lhr. (22)

Lifting Network. The lifting networkN is trained using
(Xsrc

2D, X
src
3D) and (X fake

2D , X fake
3D ) which gives the lifting loss

LN =
∥∥Xsrc

3D −N(Xsrc
2D)

∥∥
2

+
∥∥∥X fake

3D −N(X fake
2D )

∥∥∥
2
. (23)

6. Experiments
We perform extensive experiments to evaluate the perfor-

mance of AdaptPose for cross-dataset generalization. We
further conduct ablation studies on the different elements of
our network. In the following, we discuss different datasets
and subsequently baselines and metrics.

• Human3.6M (H3.6M) contains 3D and 2D data from
seven subjects captured in 50 fps. We use the training
set of H3.6M (S1, S5, S6, S7, S8) as our source dataset
for cross-dataset evaluations. While performing exper-
iments on the H3.6M dataset itself we will use S1 as
the source dataset and S5, S6, S7, and S8 as the target.

• MPI-INF-3DHP (3DHP) contains 3D and 2D data
from 8 subjects and covers 8 different activities. We
will use the 2D data from the training set of 3DHP [29]
as our target dataset when evaluating 3DHP. The test



set of 3DHP includes more than 24K frames. However,
some of the previous work use a subset of test data
which includes 2,929 frames for evaluation [12, 21].
The 2,929 version has temporal inconsistency which is
fine for the single-frame networks. We use the official
test set of 3DHP and compare our results against the
previous work’s results on the official test set of 3DHP
for a fair comparison.

• 3DPW contains 3D and 2D data captured in an outdoor
environment. The camera is moving in some of the
trials. 3DPW [38] is captured in 25fps and has more
variability than 3DHP and H3.6M in terms of camera
poses. We use the training set of 3DPW as our target
dataset when experimenting on this dataset.

• Ski-Pose PTZ-Camera (Ski) includes 3D and 2D la-
bels from 5 professional ski athletes in a ski resort. The
dataset is captured in 30 fps and frames are cropped in
256× 256. The cameras are moving and there is a ma-
jor domain gap between Ski and previous datasets in
terms of the camera pose/position.

Evaluation Metrics. We use mean per joint position er-
ror (MPJPE) and Procrustes aligned MPJPE (P-MPJPE) as
our main evaluation metrics. P-MPJPE measures MPJPE
after performing Procrustes alignment of the predicted pose
and the target pose. We also report the percentage of cor-
rect keypoint (PCK) with a threshold of 150 mm and area
under the curve (AUC) for evaluation on 3DHP following
previous arts.

Baseline. We use VideoPose3D [33] (VPose3D) as the
baseline pose estimator model. VPose3D is a lifting net-
work that regresses 3D keypoints from input 2D keypoints.
We use 27 frames as the input in our experiments. As
preprocessing for H3.6M, 3DHP, and 3DPW datasets we
normalize image coordinate such that [0, w] is mapped to
[−1, 1]. Note that the 3DPW dataset has some portrait
frames with a height greater than width. In these cases, we
pad the width so that height is equal to width to avoid the
2D keypoint coordinates being larger than the image frame
after normalization. Our experiments show that this prepro-
cessing has lower cross-dataset error compared with root
centering and Frobenius normalization of 2D keypoints.
While performing experiments on the Ski dataset we use
root centering and Frobenius normalization of 2D keypoints
since the image frames are already cropped to 256 × 256
with the person in the center of the image. Since there
is an fps difference and also motion speed difference be-
tween our source dataset and target datasets, we also per-
form random downsampling in our data loader for training
the baseline network. Specifically, our data loader sam-
ples {xr(t−n), ..., xr(t+n)} from the source dataset and r
is a random number sampled from a uniform distribution

Table 1. Cross-scenario learning on H3.6M. Source: S1. Target:
S5, S6, S7, S8

Method 3D PA-MPJPE MPJPE
Martinez et al. [28] Full – 45.5
Pavllo [33] Full 27.2 37.2
Lui et al [26] Full – 34.7
Wang [42] Full - 25.6
PoseAug [12] S1 – 56.7
Pavllo [33] S1 – 51.7
Li et al. [24] S1 – 50.5
Ours S1 34.0 42.5

of [2, 5] . Table 5 shows that the baseline model has a
cross-dataset MPJPE of 96.4 mm using 3DHP as the target
dataset.

6.1. Quantitative Evaluation

H3.6M. We compare our results with previous semi-
supervised learning methods that only use 3D labels from
S1 and 2D annotations from the remaining subjects for
training [33] as well as data augmentation methods. Our
results improve upon the previous state-of-the-art by 16%.
We use ground truth 2D keypoints and therefore compare
with previous work with the same setting. Since the camera
pose does not change much between subjects, we hypothe-
size that the comparison in the current setting compares our
bone generation method against previous work.

3DHP. Table 2 gives MPJPE, AUC, and PCK on test
set of 3DHP. We report the results of PoseAug’s released
pre-trained model on the complete test set of 3DHP. Our
results have a 14% margin in terms of MPJPE compared
with previous methods that report cross-dataset evaluation
results [12, 14, 24, 43, 47]. This includes the comparison
to [48] that uses information from the target test data to per-
form test-time optimization.

3DPW. Table 3 provides MPJPE and PA-MPJPE on the
test set of 3DPW. Our method outperforms previous meth-
ods by 12 mm in PA-MPJPE. This includes previous meth-
ods that particularly were designed for cross-dataset gener-
alization [8, 12, 14] and those that use temporal informa-
tion [14, 20]. In comparison with test-time optimization
methods [14, 48], ours also has an advantage of fast infer-
ence.

SKI. Table 4 gives the cross-dataset results on the Ski
dataset. Skiing is fast and sequences of the Ski dataset are
as short as 5s. This provides little training data for temporal
models and, therefore, we use a single-frame input model.
We report the performance of VPose3D with single-frame
input in a cross-dataset scenario to compare as a baseline
model. Moreover, our results compared with Rhodin et al.
[34] and CanonPose [41] that use multi-view data from the
training set of Ski show 28mm improvement in MPJPE and
2mm in PA-MPJPE.



Table 2. Cross-dataset evaluation on 3DHP dataset. Source:
H3.6M-target:3DHP

Method CD PCK AUC MPJPE
Mehta et al. [29] 76.5 40.8 117.6
VNet [31] 76.6 40.4 124.7
MultiPerson [30] 75.2 37.8 122.2
OriNet [27] 81.8 45.2 89.4
BOA [14] X 90.3 - 117.6
Wang et al. [43] X 76.1 - 109.5
SRNET [47] X 77.6 43.8 -
Li et al. [24] X 81.2 46.1 99.7
PoseAug [12] X 82.9 46.5 92.6
Zhang et al. [48] X 83.6 48.2 92.2
Ours X 88.4 54.2 77.2

Table 3. Cross-dataset evaluation on 3DPW dataset. Source:
H3.6M-target:3DPW

Method CD PA-MPJPE MPJPE
EFT [18] 55.7 –
Vibe [19] 51.9 82.9
Lin et al. [25] 45.6 74.7
Sim2real [8] X 74.7 –
Zhang et al. [48] X 70.8 –
Wang et al. [43] X 68.3 109.5
SPIN [21] X 59.2 96.9
PoseAug [12] X 58.5 94.1
VIBE [19] X 56.5 93.5
BOA [14] X 49.5 77.2
Ours X 46.5 81.2

Table 4. Cross-dataset evaluation on Ski dataset. Source: H3.6M-
target:Ski

Method CD PA-MPJPE MPJPE
Rhodin et al. [34] 85 –
CanonPose [41] 89.6 128.1
Pavllo et al. [33] X 88.1 106.0
PoseAug [12] X 83.5 105.4
Ours X 83.0 99.4

6.2. Qualitative Evaluation

Figure 4 shows qualitative evaluation on Ski, 3DHP,
and 3DPW datasets. The predictions of the baseline and
AdaptPose are depicted vs. the ground truth. We observe
that AdaptPose successfully enhances the baseline predic-
tions. Figure 5 provides some examples of the generated
motion and the input 3D keypoints. Generated motions are
smooth and realistic. We provide further qualitative exam-
ples in the supplementary material.

6.3. Ablation Studies

Ablation on Components of AdaptPose. We ablate
components of our framework including bone generation,
camera generation, domain discriminator, and selection.
Table 5 provides the performance improvements by adding

any of the components starting from the baseline. All of the
components have a major contribution to the results. Com-
paring bone generation and camera generation, the latter has
larger effects on the performance. However, in contrast to
PoseAug [12], our bone generation method is significantly
contributing to the results (10 mm vs 1 mm). A3 shows that
a combination of bone and camera generation is as good as
camera generation alone. Therefore, A4 excludes bone gen-
eration from the pipeline that causes a 9 mm performance
drop in MPJPE. A3 and A5 give the role of domain adapta-
tion that is 10 mm improvements.

Table 5. Ablation study on supervision elements of the proposed
model. Source: H3.6M-target:3DHP

Index BG Cam DD Select PMPJPE MPJPE
Baseline 66.5 96.4

A1 X 61.7 90.1
A2 X 62.0 88.2
A3 X X 61.8 88.1
A4 X X X 59.3 86.5
A5 X X X 54.0 78.6

AdaptPose X X X X 53.6 77.2

Ablation on bone generation methods. In this section we
compare the performance of three different bone genera-
tion methods that were explained in Section 4.1. Table 6
gives performance of BG1, BG2, and BG3 while perform-
ing cross-dataset evaluation on 3DHP. We observe that us-
ing an axis-angle representation for rotating bone vectors is
superior to generating bone directions. We hypothesize that
learning ∆ ~B is a harder task since there are infinitely many
∆ ~B that can generate [ ~B

′
]Nt=0 from ~Bt. On the contrary,

there are only two axis-angles that map ~Bt to [ ~B
′
]Nt=0.

Table 6. Ablation study on bone generation strategies
Method PMPJPE MPJPE
BG1 59.3 85.1
BG2 56.2 80.0
BG3 53.6 77.2

Ablation on camera generation methods In this section
we perform analysis on three different camera generation
methods that were introduced in Section 4.2. In terms of
rotation representation, axis-angle outperforms quaternions
and Euler-angles. Euler-angles are sensitive to the order of
rotations and can lead to degenerate solutions. Comparing
probabilistic and deterministic methods, the former obtains
5 mm more accurate results.
Ablation on temporal information. Table 8 shows the per-
formance of the network while excluding temporal infor-
mation from the input and generating single 2D-3D pairs.
Our cross-dataset MPJPE is 86.4 mm which still improves
over previous methods (86.4 mm vs. 92.2). Therefore, al-
though using temporal information is highly contributing



Table 7. Ablation study on camera generation strategies
Method Representation PMPJPE MPJPE
Deterministic Axis-Angle 58.0 82.8
Probabilistic Axis-Angle 53.6 77.2
Probabilistic Quaternion 58.7 83.5
Probabilistic Euler-Angle 60.9 85.3

Table 8. Ablation study on temporal information
Input PCK AUC MPJPE
1 frame 84.6 50.3 86.4
27 frames 88.4 54.2 77.2

Figure 4. 3D human pose predictions (red) vs. ground truth (blue)
for samples of Ski and 3DPW.
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Figure 5. Samples of generated motions and the corresponding
input 3D keypoints. Motions are smooth and realistic.

to our framework, our network still excels in non-temporal
settings.

6.4. Are we really adapting to new datasets?

To evaluate our claim that we are adapting poses and
camera views to the target dataset we visualize some sam-
ples of generated motions for 3DHP and 3DPW datasets
in Figure 6. The ceiling viewpoint in the first row is from
3DHP that is out of the distribution of our source dataset.
While the 2D input is from a chest view camera the gener-
ated sample is from a ceiling view, similar to the target sam-
ples. We observe that our approach generates qualitatively
similar camera poses. The second and third rows also pro-
vide examples of new poses that are out of the distribution
of source poses and similar to samples in the target dataset.

input generated sample from target

Figure 6. Sample of input images from the source dataset and the
generated 3D keypoints. For visualization purposes, we only plot
the middle frame from the sequence of generated frames. We man-
ually select the images on the right from the target that matched the
generated.

We provide further qualitative examples in the supplemen-
tary material. Table 5 also provides numbers regarding the
importance of domain discriminators in our framework (A5
vs A3). It is important to mention that we substitute the do-
main discriminator with a 2D discriminator from the source
dataset when excluding the domain discriminator in Table
5. Thus, the performance drop while excluding the domain
discriminator is essentially attributed to the lack of adapta-
tion to the target space and not because of excluding the 2D
discriminator. The supplementary material provides further
experiments on the domain adaption.

7. Conclusions
We proposed an end-to-end framework that adapts a

pre-trained 3D human pose estimation model to any target
dataset by generating synthetic motions by only looking at
2D target poses. AdaptPose outperforms previous work on
four public datasets by a large margin (> 10%). Our pro-
posed solution can be applied to applications where lim-
ited motion data is available. Moreover, our method is able
to generate synthetic human motion for other tasks such
as human action recognition. The major limitation of our
work is that it underperforms when there is a large body
scale difference between source and train set. Although we
have defined a parameter that learns to adjust the body bone
lengths we observe a 10mm difference between normalized
MPJPE and actual MPJPE when there is a large scale differ-
ence between source and target body scales (cross-dataset
on 3DPW). Future work should address the scale ambiguity
between source and target domains.



Appendix
This Appendix provides ablations on the domain dis-

criminator, 2D detections, and 3D discriminator. We also
provide further qualitative results that compare AdaptPose
against previous methods. Moreover, some failure cases of
AdaptPose are visualized.

Ablation: Domain Discriminator

In this section, we provide further visualization of the
performance of the domain discriminator. Figure 7 shows
the distribution of camera viewpoints of the source, tar-
get, and generated datasets. Human3.6M and 3DHP are
the source and target datasets, respectively. Human3.6M
includes four chest-view cameras, while 3DHP includes 14
cameras that cover chest-view, top-view, and bottom-view.
Figure 7 shows that the camera viewpoints of the target
dataset are more diverse than those of the source dataset.
We define the viewpoint by the relative rotation matrix be-
tween the subject and the camera. Figure 7 shows that
AdaptPose successfully generates camera viewpoints that
follow the distribution of the target camera viewpoints.

𝛼
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Source domain Generated data Target domain

Figure 7. Camera viewpoints of the source (Human3.6M), target
(3DHP), and generated data. The generated data follows the diver-
sity and pattern of viewpoints of the target dataset. α, β, and γ are
Euler-angles in radiant. The viewpoint is defined by the relative
rotation matrix between the person and the camera.

Ablation: 2D Detections

In this section, we perform experiments on the influence
of 2D detection. Using ground truth 2D for cross-dataset
evaluation is the fairest comparison since most of the previ-
ous studies use the same data [12, 14]. Therefore, we used
ground truth 2D in our evaluations and compared our re-
sults with previous work using the same setting. However,
ground truth 2D is not always available. In this section,
we employ AlphaPose [10] to obtain 2D poses of the target
dataset. The model is pre-trained on MPII [1] and is not
fine-tuned on the target dataset. To obtain directly compa-
rable numbers we use the same 2D detection to evaluate 3D
pose estimators of Pavllo et al. [32] and Gong et al. [12].
Table 9 provides the cross-dataset evaluation results while
using ground truth 2D and detected 2D. In this experiment,
the source and target datasets are Human3.6M and 3DHP,
respectively. AdaptPose outperforms other methods using

both ground truth 2D and detected 2D.

Table 9. Experiment on 2D detection. Source: Human3.6M, tar-
get: 3DHP. P2 is mean per joint position error (MPJPA) and P1
is MPJPA after Procrustes alignment of the estimated and ground
truth 3D.

AlphaPose 2D GT 2D
Method P2 P1 P2 P1
Pavllo et al. [33] 86.9 127.1 66.5 96.4
PoseAug [12] 87.2 125.7 59.0 92.6
Ours 83.4 120.5 53.6 77.2

Ablation: 3D Discriminator

In this section we first perform an ablation on the influ-
ence of 3D discriminator. Excluding the 3D discriminator
results in Figure 8 shows the structure of the 3D discrim-
inator. A small perturbation (< 10 deg) is applied to the
bone vectors of input 3D and then the perturbed version
is fed to the part-wise KCS matrices of right/left arm and
right/left leg. The original 3D pose is also fed to a KCS
matrix. The perturbation branch enables the model to ex-
plore plausible 3D poses out of the source domain. Figure 9
shows the convergence curve of AdaptPose with and with-
out perturbation of the source dataset. Without perturbation,
the cross-dataset error of the model decreases to 77.2 in the
first 9 epochs and then slightly increases in the following
epochs. After applying the perturbation, the error decreases
slower and convergence of the model is more stable.
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Figure 8. The 3D discriminator of AdaptPose.

Figure 9. The evaluation error of AdaptPose while training with
and without adding perturbation to the 3D discriminator.



Figure 10. Further qualitative examples from 3DPW (right) and 3DHP (left) datasets. Yellow is Pavllo et al. [33], green is PoseAug [12],
red is AdaptPose, and blue is the ground truth.

Figure 11. Scale error while performing cross-dataset evaluation
on 3DPW dataset. Source: Human3.6M, target: 3DPW.

Further Qualitative Results

Figure 10 provides further qualitative comparisons be-
tween AdaptPose, VideoPose3D [33], PoseAug [12], and

ground truth 3D. AdaptPose significantly outperforms the
previous methods. Figure 10 shows that in the case of body
occlusions, AdaptPose is more accurate than other meth-
ods. One of the main limitations of our method is scale er-
ror. AdaptPose under-performs if there is a large difference
between source and target body scales. Such scale ambi-
guity is inevitable when using only monocular views and
no 3D supervision of the target domain is available. Figure
11 provides some examples of scale error for cross-dataset
evaluation on 3DPW dataset. Code will be publicly avail-
able upon publication.
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