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Abstract

Motion capture from sparse inertial sensors has shown
great potential compared to image-based approaches since
occlusions do not lead to a reduced tracking quality and the
recording space is not restricted to be within the viewing
frustum of the camera. However, capturing the motion and
global position only from a sparse set of inertial sensors is
inherently ambiguous and challenging. In consequence, re-
cent state-of-the-art methods can barely handle very long
period motions, and unrealistic artifacts are common due
to the unawareness of physical constraints. To this end, we
present the first method which combines a neural kinemat-
ics estimator and a physics-aware motion optimizer to track
body motions with only 6 inertial sensors. The kinemat-
ics module first regresses the motion status as a reference,
and then the physics module refines the motion to satisfy
the physical constraints. Experiments demonstrate a clear
improvement over the state of the art in terms of capture
accuracy, temporal stability, and physical correctness.

1. Introduction

Capturing the motion of real humans is a long-standing
and challenging problem with many applications in com-
puter vision and graphics, movie production, gaming, AR,
and VR. However, due to its articulated structure, captur-
ing the highly complex and potentially fast movements of
the human body is challenging and many works have been
proposed in the past [4, 69, 72, 73, 77, 92].

One category of approaches are image-based where the
actor motion is recovered by analyzing the image data,
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Figure 1. PIP captures physically correct human motion, joint
torques, and ground reaction forces solely from a sparse set
of six IMUs. Importantly, PIP runs at 60 frames per second with
only 16ms latency, which enables real-time applications.

which can be either multi-view imagery [4, 6, 61, 86], depth
images [75–77,88], or a single RGB stream [5,8,15,25,28,
39, 84, 92]. From the setting, it becomes clear that occlu-
sions (either object-actor or self occlusions) can lead to a
significantly reduced tracking quality. Besides, these meth-
ods are sensitive to the lighting and the appearance of the
actor as distinct features need to be extracted from images.
Moreover, many methods assume a static camera, resulting
in a limited space where the subject can be captured. These
drawbacks limit the usability of optical motion capture.

Recently, researchers start to explore alternative sens-
ing devices such as inertial measurement units (IMUs).
Production-ready solutions [34, 71] can track the body mo-
tion accurately solely from inertial sensors. However, they
rely on special suits with densely placed sensors (usually 17
IMUs), which are difficult to wear. Besides, the large num-
ber of IMUs can hinder the actor’s movement. Having a
sparser set of IMUs on the body is clearly advantageous and
more flexible. However, recent sparse methods [20, 66, 73]
struggle with physical correctness and cannot disambiguate
poses with similar sensor measurements such as sitting and
standing; they are non-causal, i.e., need future information,
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which introduces large delays; their accuracy is still limited
while temporal artifacts such as jitter become visible.

To this end, we propose Physical Inertial Poser (PIP), a
new real-time method for motion capture as well as joint
torque and ground reaction force estimation using only six
IMUs (see Fig. 1). In contrast to previous works [20, 73]
that require future information, our method only requires
the information already available at any given time, which
means no additional delay is introduced. Our algorithm
has two stages: 1) learning-based motion estimation and
2) physics-based motion optimization, which leverage both
human kinematics and dynamics in motion capture.

In the estimation stage, we regress human pose, joint ve-
locities, and foot-ground contact probabilities from the iner-
tia inputs using recurrent neural networks (RNNs). We esti-
mate leaf-to-full joint positions as intermediate tasks to im-
prove the tracking accuracy as proposed by TransPose [73].
To resolve the pose ambiguity arising from the sparse IMU
placement, we further propose a learning-based RNN state
initialization strategy, which helps the networks better learn
the change of body pose from input inertia measurements.
This results in a significant accuracy improvement espe-
cially for ambiguous motions such as sitting still.

In the optimization stage, we recover the physically cor-
rect motion, joint torques, and ground reaction forces from
the kinematic estimations, leveraging a torque-controlled
floating-base simulated character model. Different from
previous works that independently control the rotation of
each degree of freedom of the character using proportional-
derivative (PD) rules [21, 54, 55, 80], we propose a novel
dual PD controller to incorporate the global holistic con-
trol of the character’s pose. This is achieved by applying
PD rules on both joint positions and rotations. The pro-
posed technique significantly improves the translation ac-
curacy and physical plausibility of the motion.

In summary, our main contributions are:
• The first physics-aware real-time approach that esti-

mates human motion, joint torques, and ground reac-
tion forces with only six IMUs, which we call PIP.

• A learning-based RNN state initialization scheme,
which helps to better disambiguate human motion re-
gression from sparse IMU measurements (Sec. 3.1).

• A dual PD controller, which achieves the combined
control of local and global pose to improve the motion
tracking accuracy and physical plausibility (Sec. 3.2).

Our experiments demonstrate that PIP significantly out-
performs previous sparse IMU-based methods in terms of
tracking accuracy, physical plausibility, and disambiguation
of challenging poses.

2. Related Work
Human motion capture (mocap) has a long research his-

tory. Many works have been devoted to this topic, which

can be mainly categorized into optical, inertial, and hybrid
approaches. Since our method only requires IMU measure-
ments as input, we do not discuss purely image-based ap-
proaches [15, 16, 24, 27, 40, 48, 58]. Here, we focus on hy-
brid and inertial mocap solutions, and the previous efforts
on the physical plausibility of human motion.

Optical-inertial Hybrid Motion Capture. As image-
based mocap solutions suffer from occlusions, fusing im-
ages with IMUs, which aims at achieving more robust mo-
tion tracking, has recently attracted much attention. This
can be achieved by either energy-based optimization [22,
36–38,43,65] which optimizes human pose to fit both image
features and inertia measurements, or feature-based estima-
tion [13, 62] which regresses human pose from the com-
bined features derived from images and IMUs. Zhang et
al. [87] propose to exploit IMUs in the 2D pose estima-
tion by fusing the image features of each pair of joints
linked by the IMUs. Some works fuse IMUs with depth
images [18,23,90] or optical markers [1] to perform human
motion/performance capture. Nevertheless, these methods
are still substantially limited under low light conditions and
heavy occlusions, and require the actor to move within the
viewing frustum of the camera. Our method requires no
visual input, and thus is free from these limitations.

Motion Capture from Inertial Sensors. Inertial mocap
approaches do not suffer from occlusions or restricted mov-
ing space. Commercial solutions [34, 71] and the extended
work [14] rely on 17 IMUs to perform motion capture. They
usually require the actor to wear a tight suit with densely
bounded IMUs, which is inconvenient, intrusive, and ob-
structive. It is clear that having a reduced set of IMUs on the
body is preferable. However, motion capture from sparse
inertial sensors is very ambiguous and challenging. Some
works [31,59,64] leverage ultrasonic sensors for additional
position information to resolve some ambiguities, but the
use of distance sensors limits the recording range. Early
purely-inertial works [47, 57, 60] use sparse accelerometers
to reconstruct human pose by database search. Schwarz
et al. [50] use sparse orientation measurements to perform
person-specific pose estimation. To improve the accuracy,
recent works [12, 20, 44, 66, 73] leverage both acceleration
and orientation measurements. Marcard et al. [66] present
an offline method for human motion capture from only
6 IMUs, which achieves promising accuracy. Huang et
al. [20] propose the first deep learning method, which uses
a bidirectional recurrent neural network (biRNN) to esti-
mate the human pose from 6 IMUs in real-time. However,
their method does not allow to locate the person in the 3D
space, i.e., the root translation is not estimated. The current
state-of-the-art method, TransPose [73], introduces the first
real-time pose and translation estimation framework, which
achieves an accurate capture quality while also only using
6 IMUs. However, all of these works have a non-negligible
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delay due to the inherent need of future information, can-
not stably capture ambiguous poses, and has many non-
physical artifacts such as jitter and foot-sliding. In contrast,
our method does not rely on any future information and is
free from the delay while even achieving higher accuracy.
In addition, we are the first to combine physics-based mo-
tion optimization with sparse inertial motion capture, and
we show that such a carefully orchestrated design signifi-
cantly improves the physical correctness of the motion.
Physical Plausibility of Motion. To ensure the physical
plausibility of motion, many works address the awareness
of physics in their approach. One category of works only
impose physical constraints (e.g., foot contacts [7, 53, 93],
temporal consistency [16, 40, 66], and collision [81]) with-
out considering human dynamics such as forces and masses.
Some works leverage an explicitly reconstructed scene to
constrain the motion [14,17,85]. However, due to the articu-
lated structure of humans, it is considerably difficult to track
the complicated body movements by imposing such naive
constraints. Another category of works leverage physics-
based human models and estimate forces to control the mo-
tion, targeting a more accurate modeling of real-world hu-
man movements. Some works [30, 46, 55, 67, 70, 83] use
optimization-based methods to solve the optimal forces and
human motion, which satisfy the physical constraints and
laws such as the equation of motion [9]. Zell et al. [82] pro-
pose a weakly-supervised learning framework for dynamics
estimation from human motion. Shimada et al. [54] present
a fully-differentiable framework for learning-based motion
and force estimation from videos. Reinforcement learning
is also used in physics-based character control [2,21,32,41,
42,74,78,80], which can utilize advanced non-differentiable
physics simulators. Among these works, our physics mod-
ule is most similar to the work of Shimada et al. [55]. The
major differences are the input to the respective method and
the control of the physical character. Our method assumes
sparse inertia measurements of the moving body as input
while theirs [55] leverages images of the actor. Moreover,
their approach [55] uses a proportional-derivative (PD) con-
troller to control the rotation of each joint of the character
independently. In contrast, our method uses a novel dual
PD controller to introduce the global control of the charac-
ter, aiming at better accuracy. In other words, our method is
the first that leverages explicit physics-based optimization
into spare IMU-based motion capture.

3. Method
Our task is to track human motion in real-time using

6 IMUs. The input of our method is the sequential mea-
surements of accelerations and orientations of the 6 IMUs
mounted on the left/right forearms, left/right lower legs,
head, and pelvis (Fig. 2). The output of our method is the
subject’s motion in terms of joint angles and global trans-

lation, together with physical properties including ground
reaction forces and joint torques. The method incorporates
two modules: 1) the kinematics module: a neural kine-
matics estimator, which infers the human motion from the
IMU measurements, followed by 2) the dynamics module:
a physics-aware motion optimizer, which refines the human
motion and outputs the physical properties.

3.1. Neural Kinematics Estimator

The task of the kinematics module is to estimate the cur-
rent motion status (specified later). We use the same kine-
matic tree as in SMPL [33], which contains J = 24 joints.
We refer to the wrists, ankles, and head as the leaf joints,
and the pelvis as the root joint. For all the J joints, their
3D positions are denoted as p ∈ R3J ; their linear velocities
are denoted as v ∈ R3J ; and their rotations are denoted as
φ ∈ R6J in the 6D representation [91]. Since the IMUs do
not provide any positional measurement, all these estima-
tions are in the local coordinate frame (relative to the root
joint). Similar to TransPose [73], we perform a T-Pose cali-
bration at the beginning, and then at each time step we stack
the IMU measurements, i.e., the aligned accelerations and
rotation matrices, into a single input vector x ∈ R72. In the
following, we first give an overview of our network struc-
ture (Sec. 3.1.1). Then, we dive into our novel learning-
based initialization for the RNN hidden states during train-
ing (Sec. 3.1.2). The new initialization method helps the
network learn to capture the state-change signals, which is
crucial to resolve the pose ambiguity in our task.

3.1.1 Motion Estimation Network

The structure of the network follows the one of Trans-
Pose [73], which first estimates leaf joint properties and
then full body status in a multi-stage style. Different from
their method [73], we choose to use RNN instead of biRNN
as the basic network structure (elaborated in Sec. 3.1.2), and
we estimate the velocity of all joints instead of only the root
joint, since we find that using full-joint velocities in combi-
nation with the physics part allows better character control.

Specifically, as shown in Fig. 2, we first use an RNN PL

to regress leaf joint positions pleaf ∈ R15 from the IMU
measurements x. Then, the concatenated vector [pleaf x]
is fed into the second RNN PA, which estimates all joint
positions p ∈ R3J . Next, we feed the vector [p x] into
three RNNs RA, VA, and CF to estimate the joint rotations
φ ∈ R6J (the root orientation is directly measured by the
IMU placed on the pelvis), linear velocities v ∈ R3J , and
foot-ground contact probabilities c ∈ R2. Finally, φ, v, and
c, which we call motion status, are fed into the subsequent
dynamics module. During training, we use an L2 loss for
PL, PA, and RA, a binary cross-entropy loss for CF, and
the cumulative loss proposed in [73] for VA.
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Figure 2. Overview of our method. We first use a neural kinematics estimator to infer human motion status from sparse IMU measurements.
Then, we use a physics-aware motion optimizer to obtain physically correct human motion, joint torques, and ground reaction forces.

3.1.2 RNN with Learning-based Initialization

Full-body motion tracking from sparse inertial sensors is
severely under-constrained and ambiguous. For example,
due to the sparsity of the IMUs, it is impossible to distin-
guish standing still and sitting still since the IMU measure-
ments are identical: orientations are the same and accel-
erations are zero. To cope with this ambiguity, leveraging
the temporal information by capturing and memorizing the
state-change signals in historical frames is a must. Previous
state-of-the-art works [20, 73] leverage bidirectional recur-
rent neural networks (biRNN) [49] to learn such temporal
information. However, the design of biRNNs only allows a
fixed frame window in the real-time setting, which prevents
the access to state changes that happened outside this tem-
poral window, e.g., when the subject remains seated for a
longer time. In consequence, these methods fail to capture
such ambiguous poses correctly. To overcome this limita-
tion, we use RNNs to retain complete historical information
and capture the crucial state-change signals.

To capture the state-change signals, not only does the
architecture have to be updated, but also a new training
strategy is necessary. Traditionally, an RNN is trained in
a mini-batch manner and always starts with a zero initial-
ization for hidden states in each batch. However, in our
setting, a constant initial state is incorrect (the subject may
start from sitting, standing, lying, etc.); and when the ini-
tial state is wrong, the model can never learn how to change
its hidden state according to the signals afterward due to
the mismatch at the beginning. To address this problem,
we propose a learning-based RNN initialization strategy.
Specifically, we have a separate fully-connected neural net-
work (FCN), which regresses the initial state of the RNN
from body pose information. The FCN and RNN are trained
jointly: for each mini-batch, the ground-truth pose at the be-
ginning is fed into the FCN, then the output of the FCN is
assigned to the hidden state of the RNN, then the RNN is
trained as usual. As the RNN implementation is not mod-
ified, the proposed strategy is highly effective and compat-
ible with highly optimized black-box RNN libraries. Dur-

ing inference, we assume the initial pose of the subject is
known, which can be obtained from the calibration step.
Notice that the FCN only initializes the RNN for the first
frame. The FCNs we use for initialization during training
are shown in Fig. 2 as IPL and IVA, which take the begin-
ning leaf joint positions p

(0)
leaf and joint velocities v(0) as

input, respectively. This initialization is only applied to PL

and VA, which suffer most from the ambiguity.

3.2. Physics-aware Motion Optimizer

The output of the kinematics module may still contain
artifacts like jitter and ground penetration. We therefore in-
troduce the dynamics module to explicitly apply the phys-
ical constraints as similar to [55]. The input to this mod-
ule is the motion status φ, v, and c estimated by the kine-
matics module, which serve as the reference in the physics-
based optimization. The task of the dynamics module is
to obtain the motion, internal joint torques, and ground
reaction forces that align with the reference but also sat-
isfy physical constraints. Specifically, based on the physics
model (Sec. 3.2.1), we first use a novel dual PD controller
(Sec. 3.2.2) to compute the desired acceleration for the sim-
ulated character which can fully reproduce the reference
motion, and then use a motion optimizer (Sec. 3.2.3) to
solve for the acceleration and force that the character can
actually produce within the physical constraints. Finally,
we update the character status and compute the final output
motion (Sec. 3.2.4).

3.2.1 Physics Model

We use a torque-controlled floating-base simulated charac-
ter [89] as our physics model and follow the same mass dis-
tribution as in [55]. We initialize the subject’s global po-
sition at the origin. We refer to the joint positions in the
global coordinate frame as r ∈ R3J and the translation as
rroot ∈ R3. The time derivative ṙ and r̈ refer to the lin-
ear velocity and acceleration in the global frame. We re-
fer to the local joint rotations (i.e., pose) in Euler angles as
θ ∈ R3J , and its time derivative θ̇ and θ̈ are the angular ve-
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locity and acceleration. The configuration of the character
is described by its pose and translation, which we denote as
q = [rroot θ] ∈ RN where N = 3 + 3J is the degree of
freedom (DoF). The time derivative q̇ and q̈ are the gener-
alized velocity and acceleration. The character is controlled
by the vector of force τ ∈ RN where each dimension refers
to the force on the corresponding DoF. In the real world,
the character is actuated only by the torques at the non-root
joints, while no force is applied to the root joint. How-
ever, to compensate for the dynamics mismatch between
our physics model and real humans, we allow a small resid-
ual force at the root joint as prior works [29, 54, 55, 79, 80]
do. In our notation, the first six entries τ :6 correspond to
the residual force at the root joint, and τ 6: are the actuated
joint torques. The generalized acceleration q̈ and the force
τ follow the equation of motion [9]:

τ + Jc(q)
Tλ = M(q)q̈ + h(q, q̇), (1)

where M ∈ RN×N is the inertia matrix; h ∈ RN is
the non-linear effect term that accounts for gravity, Cori-
olis, and centripetal forces; λ ∈ R3nc is the external con-
tact forces applied at nc character-ground contact points;
Jc ∈ R3nc×N is the contact point Jacobian, which maps
the generalized velocity q̇ to the contact point velocities:

ṙc = Jcq̇. (2)

Readers are referred to [9] for more details. In our model,
we assume all external forces (except for gravity) are the
support and frictional forces exerted at the contact points
by the ground, which we call ground reaction force (GRF).

3.2.2 Dual Proportional-differential Controller

To control the character, previous methods [21, 54, 55, 80]
use a single PD controller to compute either angular accel-
erations or joint torques to reproduce the reference motion.
However, since the configuration of the character is param-
eterized in local Euler angles, such methods only focus on
the independent control of local joint rotations, which may
result in an undesirable global pose. Simply applying PD
control on global joint rotations will make the optimiza-
tion problem non-quadratic, introducing a large computa-
tion cost. We find that imposing a PD controller on joint
positions will constrain the global pose, while still keeping
the problem quadratic. To this end, we propose a dual PD
controller, which contains 1) a rotation controller control-
ling the local pose in joint rotational space and 2) an addi-
tional position controller controlling the global pose in joint
positional space. Below, we elaborate the two controllers.
Joint Rotation Controller. This controller computes the
desired joint angular acceleration θ̈des from the estimated
reference joint rotations φ using:

θ̈des = kpθ
(E(φ)− θ)− kdθ

θ̇, (3)

where θ and θ̇ are the current joint angles and angular ve-
locities; E(·) transforms the reference pose to local Euler
angles; kpθ

= 2400 and kdθ
= 60 are the gain parameters.

Joint Position Controller. This controller computes the de-
sired linear joint acceleration r̈des. Different from the ro-
tation controller, we do not have reference joint positions
since we have no direct distance measurements. Thus, we
compute them from the current joint positions r and the es-
timated joint velocity v as:

rref = r +T(v)∆t, (4)

where T(·) maps the joint velocity from local frame to
global frame and ∆t is the simulation time step. Then, the
joint position controller is defined as:

r̈des = kpr
(rref − r)− kdr

ṙ, (5)

where kpr
= 3600 and kdr

= 60 are the gain parameters; ṙ
is the current joint velocity, which can be computed by:

ṙ = Jq̇, (6)

where J ∈ R3J×N is the joint Jacobian.

3.2.3 Motion Tracking Optimizer

The motion tracking optimizer solves a quadratic program-
ming problem and estimates acceleration q̈, joint torques τ ,
and GRF λ. The optimization problem can be written as:

argmin
q̈,λ,τ

EPD + Ereg

s.t. τ + JT
c λ = Mq̈ + h (equation of motion)

λ ∈ F (friction cone)
ṙj(q̈) ∈ C (no sliding).

(7)
M is computed from q using the composite rigid body al-
gorithm [9]. h is computed from q and q̇ using the recur-
sive Newton-Euler algorithm [9]. The energy function and
the three constraints will be elaborated in the following.
Contact Point Determination. To apply the three con-
straints in Eq. 7, we first need to acquire all the contact
points between the body and the ground. We determine
whether joint j contacts the ground by its vertical distance
to the ground dj , and for the foot joint we additionally lever-
age the predicted contact probability c for better accuracy
since feet touch the ground more often. Specifically, a foot
joint f is considered in contact if 1) df < 0.5cm or 2) df <
3cm and the ground contact probability cf > 0.5; a non-
foot joint n is considered in contact only if dn < 0.5cm.
We then draw an L×L square centered at each contact joint
and take its 4 vertices as the contact points. This is based
on our finding that assuming facet-contacts instead of point-
contacts produces more stable results. We take L = 20cm
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which is roughly the size of a foot. The number of the con-
tact joints is denoted as nj, then the number of the contact
points is nc = 4nj.
Dual PD Controller Term EPD. To reproduce the kine-
matic estimation, the character should generate the angu-
lar and linear joint accelerations given by the dual PD con-
troller. Thus, in Eq. 7, EPD consists of two components Eθ
and Er, which control the angular and linear accelerations:

EPD = kθEθ + krEr,
Eθ = ∥q̈3: − θ̈des∥2, Er = ∥Jq̈ + J̇ q̇ − r̈des∥2,

(8)

where kθ and kr are the weight terms both set to 1.
Regularization Term Ereg. Our regularization term Ereg
in Eq. 7 contains three energy terms: 1) Eλ penalizes viola-
tions of the Signorini’s conditions of contacts [56]; 2) Eres
constrains the magnitude of the root residual force; and 3)
Eτ confines the norms of the joint torques:

Ereg = kλEλ + kresEres + kτEτ ,

Eλ =

nc∑
c=1

dc∥λc∥2, Eres = ∥τ :6∥2, Eτ = ∥τ 6:∥2,
(9)

where dc is the vertical height of the contact point c; λc is
the GRF at point c; kλ, kres, and kτ are the corresponding
weights, which are set to 10, 0.1, and 0.01, respectively.
Friction Cone and Sliding Constraints. These two con-
straints in Eq. 7 are only applied to the contacts. We assume
the GRF at the contact points should be inside the friction
cone1 and the contact joints do not slide. Specifically, we
denote the force/velocity along the y (vertical) axis of the
global frame as ·y and the same for the x, z (horizontal)
axis. The friction cone constraint can be linearized as:

Fc = {λc ∈ R3|λy
c ≥ 0, |λx

c | ≤ µλy
c , |λ

z
c | ≤ µλy

c},
F = {[λ1 · · ·λnc ] ∈ R3nc |λc ∈ Fc, c = 1, 2, · · · , nc},

(10)
which means the vertical force from the ground must be up-
ward, and the horizontal forces should not be larger than the
maximum frictional force. We empirically set the friction
coefficient µ = 0.6. For the sliding constraint, we have:

Cj = {ṙj ∈ R3|ṙyj ≥ 0, |ṙxj | ≤ σ, |ṙzj | ≤ σ},
C = {[ṙ1 · · · ṙnj

] ∈ R3nj |ṙj ∈ Cj , j = 1, 2, · · · , nj},
(11)

which confines the sliding velocity of every contact joint
smaller than σ = 0.01 while preventing ground penetration.
The contact joint velocity ṙj(q̈) in Eq. 7 is computed by:

ṙj(q̈) = J j(q̇ + q̈∆t), (12)

where J j ∈ R3nj×N is the contact joint Jacobian.

1Friction cone: the set of all forces that can be transmitted through a
Coulomb friction contact. See [3].

3.2.4 Dynamic States Updater

We use a finite difference method for dynamic state updates:

q(t+1) = q(t) + q̇(t)∆t,

q̇(t+1) = q̇(t) + q̈(t)∆t,
(13)

where q̈(t) is the estimated acceleration from the optimizer
and q(t+1) is the updated pose and translation. Since our
system runs at 60 fps, ∆t is set to 1/60 second.

4. Experiments
In this section, we first compare our approach with pre-

vious works (Sec. 4.1). Then, we perform an ablative study
of the key components (Sec. 4.2). Finally, we show the po-
tential applications of our methods (Sec. 4.3).
Datasets. The training and evaluation involve the AMASS
dataset [35], the DIP-IMU dataset [20], and the TotalCap-
ture dataset [62]. Following [73], we first train the model on
AMASS using synthesized IMUs and then fine-tune it on
the train split of DIP-IMU. The evaluations are performed
on TotalCapture and the test split of DIP-IMU. The acceler-
ation measurement in TotalCapture is constantly biased and
we re-calibrated it (detailed in the supplemental document).
All the reported numbers are online results.
Metrics. We use the following metrics to evaluate our
method. 1) SIP Error measures the mean orientation error
of the upper arms and legs in the global space in degrees. 2)
Mesh Error measures the mean vertex distance between the
reconstructed and ground-truth meshes with both root po-
sition and orientation aligned in cm. 3) Jitter measures the
mean jerk (time derivative of acceleration) of all body joints
in the global space in km/s3, which reflects the smoothness
of the motion [11]. 4) Zero-Moment Point (ZMP) distance
measures the mean distance from the fictitious ZMP [68]
position to the Base of Support2 of the character in m. It
represents the intensity of the perturbation moment which
lets the character fall, and should be zero for a real human in
dynamic equilibrium [68]. Previous works [45, 51] lever-
age Center of Pressure (CoP) to quantify the equilibrium,
which is related to the ZMP distance. A discussion about
ZMP and CoP can be found in the supplemental document.
Among these metrics, 1) and 2) measure pose accuracy, 3)
and 4) measure physical plausibility. We further evaluate
cumulative translation error which means the global posi-
tion error w.r.t the real travelled distance; and latency which
measures the time from receiving the inertia measurements
to outputting the pose and translation for the correspond-
ing frame in ms, using a laptop with an Intel(R) Core(TM)
i7-10750H CPU and an NVIDIA RTX2080 Super graphics
card. For all these metrics, the lower, the better.

2Base of Support (BoS): the area around the outside edge of the body
sections in contact with the ground. Also called the support polygon.
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Method DIP-IMU
SIP Err Mesh Err Jitter ZMP Dist Latency

DIP [20] 17.10 8.96 - - 117
TransPose [73] 16.68 7.09 1.46 1.67 94

PIP 15.02 5.95 0.24 0.12 16

Method TotalCapture
SIP Err Mesh Err Jitter ZMP Dist Latency

DIP [20] 18.62 11.22 - - 117
TransPose [73] 16.58 7.42 1.87 1.40 94

PIP 12.93 6.51 0.20 0.23 16
Table 1. Comparison with the state-of-the-art methods on DIP-
IMU [20] and TotalCapture [62]. Metrics and units are detailed
at the beginning of Sec. 4. PIP achieves a reduction of 15% of
the pose error, 87% of the jitter, and 89% of the motion imbalance
with 83% lower latency compared with the SOTA TransPose [73].
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Figure 3. Comparison of the translation estimation on TotalCap-
ture [62]. Our method has the lowest cumulative error because of
the learning-based RNN initialization and the dual PD controller.

4.1. Comparisons

Quantitative. We compare our method to state-of-the-art
methods DIP [20] and TransPose [73] which also target
motion capture from sparse IMUs. Note that DIP does
not estimate global translation. The results are shown in
Tab. 1 and Fig. 3. Our method not only significantly out-
performs previous works on capture accuracy and physical
plausibility, but also largely reduces the delay. The pose ac-
curacy improvement is attributed to the RNN-based kine-
matics estimator which makes use of complete historical
information and better captures state-change signals. The
improvement of the motion smoothness, equilibrium, and
translation accuracy is attributed to the physics-aware mo-
tion optimizer with the novel dual PD controller. Thus,
the proposed combination of learning-based kinematics and
optimization-based physics leads to the overall best result.

Qualitative. In Fig. 4, we show the mesh error distribu-
tion of DIP [20], TransPose [73], and our method on To-
talCapture. We take 4 examples at 1) 10%, 2) mode, 3)
median, and 4) 95%. In the first two cases, our method
estimates arm and leg orientations better than the previous

2

3

1

4

Figure 4. Qualitative results on TotalCapture [62] dataset. We
show the mesh error distribution and the Area Under Curve (AUC)
value of different methods, and select 4 examples for visualization.
Colors of different methods are shown in the legend. Our approach
is visually the most accurate over all the methods.

Method DIP-IMU TotalCapture
SIP Error Jitter SIP Error Jitter

w/o learning-init 15.12 0.27 13.70 0.23
w/o dual-PD 15.04 0.28 12.93 0.32

w/o physics module 15.04 0.48 12.84 0.51
Ours 15.02 0.24 12.93 0.20

Table 2. Ablation study on the learning-based RNN initialization,
the dual PD controller, and the physics-based optimizer. It demon-
strates the help of our key components on pose accuracy (shown
in SIP Error) and physical plausibility (shown in Jitter).

works. In the third case, we reconstruct the full-body pose
faithfully while others nearly fail. In the last challenging
example, although the estimated upper legs slightly defer
from the ground truth, our result still looks similar and out-
performs others. Again, we attribute this superiority to the
RNN-based estimator and the physics-based optimizer. The
ambiguity in these cases comes from the fact that the sub-
ject can perform very different poses while keeping the fore-
arm/lower leg orientation unchanged, and the key to resolv-
ing the ambiguity is the temporal information of the state-
change signals. Compared with previous works, we make
better use of such information due to our learning-based
RNN initialization. In consequence, our networks regress
more accurate pose and velocities, which, in combination
with the dual PD controller, further improve the results.

4.2. Evaluations

Physical Properties. In Fig. 5, we demonstrate the esti-
mated physical properties. The left figure shows the GRF
of two feet when the subject is walking. We can see that
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Figure 5. Left: evaluation on the estimated contact forces over
time in a walking motion. Right: visualization of the arm joint
torques for a waving-hand motion (red for large torques).

the two feet support the body in turns and the GRF ap-
proximately equals gravity, which is reasonable according
to [52, 82]. The right figure is a series of frames where the
subject waves his hand and we visualize the internal torques
of the arm (red for large torques). When the arm starts and
stops moving, the torque is larger due to the acceleration.
Learning-based RNN Initialization. To examine the ef-
fect of the learning-based initialization, we train the same
networks (PL and VA) without learning-based initialization
and perform the evaluation. As shown in Tab. 2 and Fig. 3,
this variant becomes less accurate and stable, which is re-
flected in the larger errors across all metrics. The learned
initialization is most effective when the motion is highly
ambiguous (e.g., sitting), but this advantage is numerically
averaged out by the common (non-ambiguous) motion in
the test dataset. To this end, we pick a long-sitting sequence
in the DIP-IMU test dataset and plot the upper leg orienta-
tion error over time in Fig. 6. During the sequence, the sub-
ject started from standing, then sat down immediately, and
kept sitting to the end. The curves show that the method
without learning-based initialization starts to fail as time
goes by while our model stably tracks the sequence. By
examining a few selected frames from the sequence, we can
see that the zero-initialized version (in blue) is correct at
the beginning but goes wrong after a long period because it
loses the historical state-change information from standing
to sitting. As a result, its prediction stands up again. In con-
trast, ours (in orange) always gives the correct estimation
due to the good memorizing of such information.
Physics and Dual PD Controller. We evaluate 1) remov-
ing the physics-based optimizer, i.e., only using the kine-
matics module and integrating root velocities to obtain the
translation; and 2) removing the joint position controller,
i.e., replacing the dual PD controller with a single PD con-
troller that only watches q as in [55]. As shown in Fig. 3,

Figure 6. Ablation study on the learning-based RNN initialization
skill using a long-sitting sequence. We plot the upper leg orienta-
tion error over time and pick three frames for visualization.

without the physics-based optimizer or the dual PD con-
troller, the translation accuracy deteriorates significantly.
Besides, the method without physics-based optimization
will always estimate a character floating in the air or sinking
into the ground due to the accumulated error of velocities,
and the foot-sliding artifacts are also severe. These facts
demonstrate the necessity of physics awareness and our dual
PD controller in mitigating translation error accumulation.
Quantitative results in Tab. 2 also show a significant reduc-
tion of the motion jitter in our full method. However, with
the physics-based optimization, the SIP error for TotalCap-
ture is slightly larger (0.1◦). This is because the physics
module is mainly helpful for estimating translation and im-
proving the physical correctness of the motion.

4.3. Applications

Our method enables several applications such as real-
time animation of a virtual character and motion re-
targeting. Also note that reducing the latency from 94ms
to 16ms is critical to enable applications such as gaming.
Please see our supplementary materials for more results.

5. Conclusion and Limitations
In this work, we present the first real-time physics-aware

approach that estimates human motion, joint torques, and
ground reaction forces from solely 6 IMUs. Combining the
kinematics and the physics modules leads to higher accu-
racy and realism, as shown in our experiments. We also
demonstrate exciting applications like live motion capture.

However, we simplify the real world too much, e.g., as-
suming a flat ground, which makes our method incapable of
capturing humans walking upstairs. Besides, the current ap-
proach is based on the assumption of a known body shape.
For different body shapes, we only need to adjust the bone
lengths and the mass distribution of the physics model.
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A. Implementation Details

Network Structure. We schematically visualize the net-
work structures in our kinematics module in Fig. 7. The
recurrent neural network (RNN) PL, PA, RA, VA, and CF

share the same structure. Each network includes a linear
input layer with a ReLU activation, two Long Short-term
Memory (LSTM) [19] layers with the width of 256, and
a linear output layer. A 40% dropout is applied to pre-
vent over-fitting. The RNN CF is finally activated by a
Sigmoid function to obtain probability values. The ini-
tial states of PL and VA are regressed from the starting
leaf joint positions p(0)

leaf and joint velocities v(0) using the
fully-connected network (FCN) IPL and IVA, respectively.
Each FCN consists of 3 fully-connected (FC) layers with
the width of 256, 512, and 1024 using the ReLU activation.

Figure 7. Detailed structures of the recurrent neural network
(RNN) and the fully-connected network (FCN) in our kinemat-
ics module. ”FC” represents a fully-connected layer. The output
dimension and other hyper-parameters are marked in each block.

The output of the FCN is used to initialize the hidden/cell
states of the two LSTM layers of the RNN at the beginning.
Rotation Representation. The inertia input vector x con-
sists of accelerations and rotation matrices, which are ob-
tained after the calibration. The output of RA is the non-root
joint rotations w.r.t the root parameterized in the 6D rep-
resentation [91]. Combining the estimated non-root joint
rotations with the root orientation measured by the IMU
placed on the pelvis, we obtain the vector φ. The charac-
ter pose in the physics module is described by local joint
rotations (i.e., each joint relative to its parent) in Euler
angles, which is denoted as θ. The configuration vector
q = [rroot θ] is then composed of the root translation and
the pose in Euler angles.
Datasets. Following [73], we use the AMASS [35] dataset
and the train split of the DIP-IMU [20] dataset for the net-
work training, and use the TotalCapture [62] dataset and
the test split of the DIP-IMU dataset for evaluation. For
AMASS, we synthesize the IMU measurements and foot-
ground contact labels as proposed by Yi et al. [73], and syn-
thesize the ground-truth joint velocities using:

vGT(t) = (RGT
root(t))

−1(rGT(t)− rGT(t− 1))/∆t, (14)

where RGT
root(t) ∈ R3×3 is the ground-truth root orientation

at frame t; rGT ∈ R3J is the ground-truth joint global po-
sitions; ∆t is the frame interval. We also re-calibrate the
acceleration measurements in TotalCapture, as we find that
they are constantly biased (see Fig. 8). Specifically, to re-
move the bias, we synthesize the accelerations for Total-
Capture using the method of Yi et al. [73] and align the
mean acceleration measurement for each sequence to the
mean synthetic values by adding or subtracting a constant.
Gain Parameters for PD Controllers. The gain parame-
ters kpθ

, kdθ
, kpr , and kdr of the dual PD controller intro-

duced in Sec. 3.2.2 are derived as follows. Take the joint
rotation controller (controlling θ) as an example. As we
use first-order approximations in the dynamic states updater
(Sec. 3.2.4), we apply first-order Taylor expansion on θ and
θ̇, and rearrange the equation, which writes:

θ̈(t) =
1

∆t2
(θ(t+ 2∆t)− θ(t+∆t))− 1

∆t
θ̇(t), (15)
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Method DIP-IMU
SIP Error Ang Error Pos Error Mesh Error Rel Jitter Abs Jitter ZMP Dist Latency

Offline DIP [20] 16.36 14.41 6.98 8.56 2.34 - - -
TransPose [73] 13.97 7.62 4.90 5.83 0.13 0.85 0.59 -

Online
DIP [20] 17.10 15.16 7.33 8.96 3.01 - - 117

TransPose [73] 16.68 8.85 5.95 7.09 0.61 1.46 1.67 94
PIP (Ours) 15.02 8.73 5.04 5.95 0.23 0.24 0.12 16

Method TotalCapture
SIP Error Ang Error Pos Error Mesh Error Rel Jitter Abs Jitter ZMP Dist Latency

Offline DIP [20] 18.47 17.54 9.47 11.19 2.91 - - -
TransPose [73] 14.71 12.19 5.44 6.22 0.16 0.91 0.76 -

Online
DIP [20] 18.62 17.22 9.42 11.22 3.62 - - 117

TransPose [73] 16.58 12.89 6.55 7.42 0.95 1.87 1.40 94
PIP (Ours) 12.93 12.04 5.61 6.51 0.20 0.20 0.23 16

Table 3. Comparison with the state-of-the-art methods on more metrics. PIP outperforms previous online methods on all metrics with
much less latency, while also achieves comparable capture accuracy but higher physical correctness when compared with previous offline
methods. This demonstrates the superiority of our system which runs in real-time with extremely small latency.

where ∆t = 1/60 is the time interval between frames. By
associating this equation with Eq. 3 and Eq. 5 in the main
paper, the proportional gain kpθ

and kpr should be 3600,
and the derivative gain kdθ

and kdr
should be 60. For the

joint rotation controller, setting the proportional gain kpθ
to

a lower value gives smoother angular accelerations. Thus,
we set kpθ

to 2400 in our experiments.
Other Details. We use a laptop with an Intel(R) Core(TM)
i7-10750H CPU and an NVIDIA RTX2080 Super graph-
ics card to run the experiments and the live demos. We
use PyTorch 1.8.1 with CUDA 11.1 to implement our kine-
matics estimator, and leverage the Rigid Body Dynam-
ics Library [10] to implement our physics-based optimizer.
The live demo is implemented using Unity3D. We use
Noitom Perception Neuron series [34] IMU sensors in our
demo. Both training and evaluation assume 60 fps sensor
input. The training data is additionally clipped into short
sequences in 200-frame lengths for more effective learning.
Specifically, we separately train each RNN in the kinemat-
ics module using the synthetic AMASS [35] dataset with a
batch size of 256 using the Adam [26] optimizer, and fine-
tune PL (together with IPL), PA, and RA on the train split
of the DIP-IMU dataset, following [73]. We do not train VA

and CF on DIP-IMU as it does not contain global move-
ments.

B. Comparisons on More Metrics

In this section, we show the comparison results with the
previous state-of-the-art methods [20, 73] on more metrics.
In addition to the metrics used in the main paper, we also
evaluate 1) Angular Error: the mean rotation error of all
body joints in the global space in degrees; 2) Positional
Error: the mean position error of all body joints in the
global space with the root position and orientation aligned
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Figure 8. The acceleration measurements in the TotalCapture [62]
dataset is constantly biased. We visualize the accelerations (x-
axis component) measured by IMUs in blue and the one computed
from the subject motions based on Vicon [63] by a finite-difference
method in orange. We can see an obvious constant bias in the
IMU acceleration measurements (blue) based on the fact that real
accelerations should be approximately zero-centered.

in cm; 3) Relative Jitter: the jitter calculated in the local
(root-relative) frame in km/s3, where the root translation is
not considered. Notice that due to the length limit of the
main paper, we only showed the mesh error as it incorpo-
rates both angular and positional error, and the SIP error
as it is directly related to motion ambiguities in the main
text. Here, we report the results on more metrics for a fair
comparison. We also evaluate previous offline methods for
references, which need to pre-record the inertia measure-
ments during the whole motion and estimate the motion
with the help of the complete inertia sequence. The results
on TotalCapture [62] and the test split of DIP-IMU [20]
dataset are shown in Tab. 3. We outperform previous on-
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line methods on all metrics with largely reduced latency,
which demonstrates the accuracy and effectiveness of our
approach. Moreover, compared with the offline methods,
PIP achieves comparable motion accuracy (reflected in the
first 5 metrics) but higher physical plausibility (reflected in
Absolute Jitter and ZMP Distance). We attribute this to the
physics-based motion optimizer proposed in the main pa-
per. Most importantly, our system runs in real-time, while
the offline approaches require the access to the complete in-
ertia sequence. Thus, our approach significantly closes the
gap between online and offline methods, and enables a wide
variety of real-time applications such as gaming.

C. Discussions and Future Works
Quantitative Evaluations of Physics. A direct quantita-
tive evaluation of physics (e.g., joint torques and ground
reaction forces) would be advantageous. However, to the
best of our knowledge, there is no public dataset contain-
ing both IMU measurements and ground-truth forces (either
joint torques or ground reaction forces). We believe that
creating such a dataset requires research on its own, and
would have great value for the community. For now, we
can only provide qualitative visualization of torques/GRFs
in our supplemental video and Fig. 5, which is intuitively
plausible and in line with the references [52, 82]. Besides,
as the output motion is entirely driven by the estimated
forces, the quantitative evaluation of the motion can also
implicitly demonstrate the quality of our force estimation.
Furthermore, we use jitter (jerk) and ZMP distance as in-
direct quantitative evaluations of the physics estimation,
which reflect the naturalness [11] and equilibrium [68] of
the motion, respectively. Since we do not adopt any explicit
penalty on these two metrics, nor do we use any temporal
filter or balancing technique on the motion, the better results
on these two metrics actually suggest the improved physical
correctness achieved by our motion optimizer.

Regarding the ground contact evaluation, previous
works [54, 55] use mean penetration error to evaluate the
non-physical foot penetration. As we explicitly model the
contacts as hard constraints, both sliding and ground pen-
etration are strictly avoided with any contacting part of the
body. Thus, these errors would be zero.
Zero Moment Point vs. Center of Pressure. Previous
works [45, 51] use Center of Pressure (CoP) accuracy to
quantify the force estimation, which is related to our Zero
Moment Point (ZMP) distance. Here we point out the dif-
ference between these two notations and the reason why we
choose to use ZMP distance. The pressure between the hu-
man body and the ground can be represented by a force ex-
erted at the CoP. If such a force can balance all active forces
acting on the human body during the motion, the human
body is in dynamic equilibrium, and ZMP coincides with
CoP (i.e., within the support polygon). However, when the

1.7s 2.8min 4.6h

Figure 9. Pose drifts in a perfectly-still sitting pose. We evalu-
ate PIP on 4.6-hour artificial inertia measurements with zero ac-
celerations and fixed orientations of a sitting pose. We plot the
accumulated orientation error of all body joints over time and pick
four frames for visualization. Our system stably estimates a sitting
pose during the entire sequence with a total drift of 4.2 degrees.

force acting on the CoP cannot balance other forces, the hu-
man will fall down about the foot edge, and the ZMP (more
precisely, the fictitious ZMP) will be outside the support
polygon, whose distance to the polygon is proportional to
the intensity of the unbalanced force. In such cases, CoP
is on the border of the support polygon as the ground reac-
tion forces cannot escape the polygon. Thus, the reason to
use ZMP distance in our physics evaluation becomes clear:
since the estimated motion cannot be perfectly physically
correct and contains unbalanced movements, the ZMP dis-
tance can better reflect the disequilibrium in the captured
motion. On the other hand, evaluating CoP accuracy needs
a more sophisticated modeling of human feet (rather than
a simplified square facet contact) and ground-truth pressure
annotations, which we leave as a future work. For more
detailed introductions of ZMP, readers are referred to [68].
Drifts in Long-term Tracking. As a purely inertial sensor
based approach, PIP inevitably suffers from drifts in long-
term tracking. As measured in Fig. 3, the translation drift
of our system depends on how far the subject moves, and
is about 4.6% in our experiments. Regarding the subject’s
pose, we do not see an evident drift in our experiments.
This may be because the subject is always moving, and
the orientation and acceleration measurements effectively
confine the possible human pose. Therefore, it is interest-
ing to examine the pose drift in still poses, especially for
the ambiguous ones like sitting. However, as the IMUs al-
ways have small noises and humans cannot keep perfectly
still for a long time, it is difficult to quantify the pose drifts
in real settings. Thus, we conduct a toy experiment where
we artificially set all acceleration measurements to zero and
orientations unchanged at the point after the sit-down mo-
tion in Fig. 6, i.e., to simulate a perfectly-still sitting pose.
As shown in Fig. 9, our system can keep estimating sitting
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poses stably with a total drift of 4.2 degrees for all body
joints at 1 million (4.6 hours) frames. This demonstrates
the robustness of our system in long-term tracking, which is
ensured by the RNNs and the learning-based RNN initial-
ization scheme. We also conduct a live experiment where
our method can track long-period sitting for half an hour
stably and is not getting worse as time goes by. Please refer
to our supplementary video for more results.
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