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Abstract

We illustrate the detrimental effect, such as overconfident
decisions, that exponential behavior can have in methods
like classical LDA and logistic regression. We then show
how polynomiality can remedy the situation. This, among
others, leads purposefully to random-level performance in
the tails, away from the bulk of the training data. A directly
related, simple, yet important technical novelty we subse-
quently present is softRmax: a reasoned alternative to the
standard softmax function employed in contemporary (deep)
neural networks. It is derived through linking the standard
softmax to Gaussian class-conditional models, as employed
in LDA, and replacing those by a polynomial alternative. We
show that two aspects of softRmax, conservativeness and
inherent gradient regularization, lead to robustness against
adversarial attacks without gradient obfuscation.

1. Introduction
Models that show some form of exponential behavior

are ubiquitous in machine learning: from the Gaussian

class conditional distribution in linear discriminant anal-

ysis (LDA) [11, 15] to sigmoid activation for logistic regres-

sion [19, 27], and the softmax activation function in deep

neural networks [23, 37]. Models with such use of exponen-

tiality can, however, have unwanted behavior. We describe

and illustrate such behavior, examine its reason, and propose

a partial remedy by switching to models that behave poly-

nomially. Like [6,17], we consider the distribution tail and

show that samples in the tails receive overconfident posterior

predictions [21]. This renders the model sensitive to outliers

and causes overfitting, especially in the case of distribution

shift. Moreover, we link overconfident predictions to the

lack of robustness against gradient based adversarial attacks.

A model should not be certain about a sample that de-

viates too much from the training data. Overconfident pre-

dictions on samples in the distribution tails should often be

avoided, e.g. an atypical patient may otherwise be classi-

fied to be healthy or diseased with strong confidence. We

want what we call conservativeness, which expresses the
fact that we are uncertain. Specifically, we define it to be

random guess-level prediction for samples in the tail of the

distribution and show that this can be achieved by moving

from exponential to polynomial behavior both in LDA and

logistic regression. In addition, for logistic regression and

deep learning, studies into the standard softmax activation

have shown that it is not necessarily the best choice in many

settings [8, 18, 40]. We propose a polynomial form of soft-

max posterior estimation that we coin softRmax. For this, we
exploit the connection between the standard softmax func-

tion and LDA [4] and adopt a modified Cauchy distribution

as the substitute for the (super)exponential Gaussian term.

Besides overconfident predictions, the use of exponen-

tiality is also linked to vulnerability to adversarial attacks.

Such attacks aim to cause malicious prediction changes by

adding an unnoticeable perturbation to the original input.

Robustness is the ability to maintain performance under ad-
versarial attacks [5]. We demonstrate that a higher robustness

of neural networks can be obtained by simply substituting

the standard softmax with our softRmax. We show that the

robustness can be linked back to the conservativeness of soft-

Rmax and inherent gradient regularization. The first factor,

conservativeness, mainly brings robustness against gradient

based attacks. The second leads to an enlarged margin be-

tween samples and the decision boundary, thereby boosting

robustness against attacks as well. The effectiveness of vari-

ous strategies countering adversarial attacks can be attributed

to gradient obfuscation [2, 10]. We show that our inherent

gradient regularization does not rely on such obfuscation.

We sketch the benefits of conservativeness under covari-

ate shift [14,38,39] and show it when a model is under attack.

We verify the robustness of our polynomial substitutes em-

pirically on toy and public datasets. We further propose a

semi-black-box attack, which we call an average-sample at-

tack, to confirm that the robustness of our softRmax indeed

comes from the above two factors. We also introduce a scale-

invariant metric, the magnitude-margin ratio, for comparing

the robustness of different models under the same level of

attack.

13317

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

978-1-6654-6946-3/22/$31.00 ©2022 IEEE
DOI 10.1109/CVPR52688.2022.01297

20
22

 IE
EE

/C
VF

 C
on

fe
re

nc
e 

on
 C

om
pu

te
r V

isi
on

 a
nd

 P
at

te
rn

 R
ec

og
ni

tio
n 

(C
VP

R)
 |

 9
78

-1
-6

65
4-

69
46

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
CV

PR
52

68
8.

20
22

.0
12

97

Authorized licensed use limited to: TU Delft Library. Downloaded on December 12,2022 at 21:08:52 UTC from IEEE Xplore.  Restrictions apply. 



2. Background Material and Related Methods
Adversarial attacks are used for robustness evaluation in

our work. They are categorized into white-box and black-

box attacks, depending on whether the network is available

or not [33]. Black-box attacks do not need the network

architecture and usually involve the training of a substitute

network that mimics the decision boundary of the target

network [31]. A gradient-based adversarial attack is a typical

white box attack [12, 25]. It aims to find the perturbation

direction that can lead to the fastest change in the prediction.

FGSM [12] is a simple yet effective approach where a

small perturbation η is added to the input x to increase

the overall loss. The perturbation η is ε multiplied by the
sign of the loss gradient∇xJ(w,x, y). The perturbed input
becomes:

x′ = x+ ε sign(∇xJ(w,x, y)). (1)

Similarly, a gradient-based target attack [32] aims to perturb

the sample to a target class yt by decreasing the loss that
corresponds to the target class:

x′ = x− ε sign(∇xJ(w,x, yt)). (2)

BIM [25] performs the attack iteratively in T steps. With the

same attacking scale ε, BIM applies the attack at the scale of

α = ε/T in each step to form an attacked input x′t at step t:

x′t+1 = x′t + α sign(∇xJ(w,x, y)). (3)

We need the notion of a prediction margin Mz [41] to

measure the robustness to adversaries, which has an indi-

rect link to the classical (geometrical) margin in the input

space [36]. Our work uses it to evaluate the margin and

the robustness of our method. For this, we consider a map-

ping from the input x to the latent or representation space:
z = f(x,w), with z ∈ R

k and zi the output of the final
layer corresponding to class i ∈ {0, 1, . . . , k}. Assuming a
sample x is correctly classified to its class y, zy takes on the
maximum value in z. The prediction margin is defined as
the distance between zy and the second largest value in z:

Mz := zy −max
i�=y

{zi}. (4)

Adversarial defenses for deep learning have been

achieved by adversarial training [24], distillation [3,34], con-

structing a maximum margin in the latent space [16,29, 30,

42] and gradient regularization [9, 13, 16, 28, 35, 41]. Expla-

nations for gradient regularization approaches are heuristic

and their successes often hinge on gradient obfuscation [10].

The latter refers to an unnecessarily rough loss landscape

that hinders gradient-based adversarial attacks, which get

readily stuck in the local minima of the roughened loss. It

should be noted, however, that this approach does not solve

the problem of adversarial attacks inherently [2]. Increasing

the iteration number in BIM attacks [25] and using black-box

attacks are standard to detect gradient obfuscation. We use

both in our work to show that our approach does not rely on

gradient obfuscation.

Covariate shift is a specific problem within domain adap-

tation. Domain adaptation refers to the scenario where the

training data and the test data are not i.i.d. [7, 20]. The train-

ing and test data are referred to as the source domain and the

target domain, respectively. One standard solution of this

problem is to approximate the target domain by assigning

the source samples weights determined by the source and

target distribution. In the original work [38], these are es-

timated using Gaussian distributions. With this approach,

adding very few samples in the tail of the source distribution

can lead to considerable overfitting to the added outliers.

We illustrate that, if a polynomial t-distribution instead of
Gaussian distribution is adopted in the procedure of density

estimation, the influence of outliers is limited.

3. Exponentiality vs Polynomiality
We first demonstrate the presence of overconfident pre-

diction in the distribution tail and sensitivity to adversarial

attacks with classical LDA, logistic regression, and deep

learning. We then replace the exponential terms in each sce-

nario by polynomial ones and show that this substitution is a

simple yet effective approach to deliver conservativeness and

improved robustness. Notably, for the latter, no adversarial

training or extra regularization is required.

3.1. Conservativeness

Conservativeness is defined as estimating the posterior

class probabilities p(yi|x) at random-guess level for x in
the tail, away from the bulk of the data. To study such tail

behavior, we basically study x for which the norm grows

indefinitely, i.e., ‖x‖ → ∞. Assuming k classes and ig-
noring class priors, conservativeness comes down to the

requirement that we can informally state as:

lim
‖x‖→∞

p(yi|x) ≈ 1

k
. (5)

3.1.1 LDA

We consider k-class classification using LDA. We elaborate
upon the link between the overconfident prediction and ex-

ponentiality. Following Bayes’ rule, the posterior of class yi,
under equal priors, is

p(yi|x) =
p(yi)p(x|yi)∑
k p(yk)p(x|yk)

=
p(x|yi)∑
k p(x|yk)

. (6)

Consider x to be 1D for simplicity. The class condi-

tional distribution p(x|y) is estimated by fitting a Gaussian
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(a) Gaussian distribution. (b) Student’s t-distribution.

(c) Logistic regression.

Figure 1. LDA and logistic regression with exponential and polyno-

mial assumptions. Posteriors p(y0|x) are compared. Subfigure 1a
and 1b show the predicted posterior by LDA with class conditional

Gaussian or t-distributions. Subfigure 1c compares the posterior
of softmax and softRmax. LDA with Gaussian assumption and

softmax with exponential functions show overconfident predictions

in the distribution tails. Conservative prediction is achieved by

substituting polynomial for exponential behavior.

N(x|μk, σ2) with μk and σ2 being the mean and variance of
class k. When x goes to ±infinity, the posterior saturates to
one-hot encoding due to the (faster than) exponential rate of

decrease of the Gaussian distribution. Specifically, we have

p(yi|x) = (7)⎛
⎝1 +

∑
k �=i

exp

(
− 1

2σ2
(2x(μi − μk)− μ2i + μ2k)

)⎞⎠
−1

from which we see that limx→±∞ p(yi|x) = 0, unless yi is
the mean closest to x = ±∞, in which case the posterior

will be 1. This is also illustrated in Figure 1a.

Polynomial substitute. We propose to substitute the

Gaussian distribution with the (noncentral) Student’s t-
distribution in the density estimation. Other distributions

that fall of polynomially can be considered as long as the

power of the leading terms are the same for all k class condi-
tional distributions. In this way, conservative posteriors with

a behavior as in Equation (5) are obtained.

The reason for this is that the limit of x going to±infinity
for Equation (6) behaves rather different when the numerator

and denominator contain polynomial instead of exponential

terms. For the former, convergence is controlled by the

polynomial decay rate of the posteriors p(x|yk). When equal,

the limit posterior, assuming all priors equal, is 1
k .

Example. We consider a binary classification task in 1D

data. We assume a uniform distribution in the range [−2,−1]
for class y0 and [1, 2] for class y1. With Gaussian dis-

tributions for the class conditional distributions p(x|y0)
and p(x|y1)—fitted using maximum likelihood, we get the

change of posterior p(x|y0) w.r.t. input x as in Figure

1a. When x → −∞, p(y0|x) = 1 and when x → ∞
p(y1|x) = 1. Substituting the t-distribution for the Gaus-
sian, as shown in Figure 1b, for samples that are in the bulk

of the class conditional distribution, we still obtain a poste-

rior p(y0|x) close to 1. But for samples in the tail, we find
more conservative prediction where p(y0|x) and p(y1|x) are
approximately 1

2 .

3.1.2 Logistic Regression and Softmax

The softmax in neural network, as employed in the last

layer to come to posterior estimates, works in the same

way as multi-class logistic regression for classification tasks.

Here, we consider a basic linear transformation f(x,w) =
wTx+b = z, though our analysis can be readily generalized
to nonlinear neural networks.

With the standard softmax activation ςS , the embedding z
is mapped to a vector of posteriors with p(yi|x) = ςSi (z) =
ezi/

∑
k e

zk . Equivalent to Equation (7), we have

ςSi (z) =
exp(wT

i x+ bi)∑
k exp(w

T
k x+ bk)

=

⎛
⎝1 +

∑
k �=i

exp
(
(wk −wi)

Tx+ (bk − bi)
)⎞⎠

−1

.

(8)

When ‖x‖ → ∞, if (wk−wi)
Tx is negative for all k, k �= i,

then the posterior will be 1, otherwise it is 0.

We make the connection of softmax with LDA here. Let

us position k normal distributions with identity covariance,
N(·|m, I), in Z. Their means are the k standard basis vector
ek. Based on these distributions—every single one of them

representing one of the k classes, we can map every z ∈ Z
to a vector of posteriors ςG(z), simply by setting

ςGi (z) :=
N(z|ei, I)∑
kN(z|ek, I) . (9)

This, in turn, can be directly related to the softmax ςS . First,
we realize that, for z fixed,

N(z|ei, I) ∝ exp(− 1
2‖z− ei‖2)

∝ exp

(
−1

2

∑
k

z2k

)
exp(zi) exp(− 1

2 ) ∝ ezi .
(10)

From this, we immediately see that

ςGi (z) =
N(z|ei, I)∑
kN(z|ek, I) =

ezi∑
k e

zk
= ςSi (z). (11)
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Polynomial substitute. Inspired by the standard Cauchy

distribution pC(x) = 1
π(1+x2)—a specific t-distribution, we

use a polynomial term with the power of−2 to substitute the
Gaussian class conditional distribution N(z|ei, I) in Equa-
tion (11), which gives our softRmax activation function ςC :

ςCi (z) :=

1
‖z−ei‖2∑
k

1
‖z−ek‖2

. (12)

By adopting the polynomial function, the posterior becomes

conservative, because

p(yi|x) = ςCi (z) =
‖wTx+ b− ei‖−2∑
k ‖wTx+ b− ek‖−2

=
1

1 +
∑

k �=i
∥∥∥wTx+b−ei
wTx+b−ek

∥∥∥2
(13)

and the terms
∥∥∥wTx+b−ei
wTx+b−ek

∥∥∥2 converge to 1 when ‖x‖ → ∞.

Example. We consider logistic regression for binary clas-

sification in 1D. Similar to the previous example, we assume

a uniform distributions in the ranges [−1, 0] and [1, 2] for
the two classes y0 and y1. The sigmoid/softmax function is
substituted with the softRmax activation function from Equa-

tion (12) to construct a conservative regressor. In Figure 1c,

we see that the posterior p(y0|x) goes to 1
2 on both ends.

3.2. Robustness

Next to softRmax being conservative, simply substituting

the standard softmax with it in any probabilistic deep net also

brings more adversarial robustness. We show that this comes

from conservativeness in the tail and an inherent weight reg-

ularization that leads to an enlarged margin between samples

and the decision boundary.

3.2.1 Robustness from Conservativeness

Most gradient-based adversarial attacks try to maximize

the overall loss [12] or minimize the loss of a target class

[32]. For a properly converged network that employs the

standard softmax, attacking a correctly classified sample

pushes it away from the tail, as the overall loss would not

increase moving towards it (and the target class loss would

not decrease). This is because the posterior of the correct

class does not decrease towards the direction of the tail (see

Figure 1c). The loss landscape using softRmax is different

due to the conservativeness in the tail, as also illustrated in

Figure 1c. For samples that are already positioned in the

direction of the tail, an attack would actually push them

even further into the tail. This increases the overall loss or

decrease the target class loss. A perturbation towards the

tail does, however, not change the accuracy so the attack

fails. This leads a neural network using our softRmax to

be more robust to gradient-based attacks. Note that this

defense is different from gradient obfuscation because our

loss landscape is not unnecessarily rough but simply has a

different structure. This will be further elaborated in the

corresponding experiment in Subsection 4.2.2.

3.2.2 Robustness from Enlarged Margin

The other factor that contributes to the robustness of softR-

max, is the enlarged margin. To illustrate, we again consider

a simple linear mapping of the input: z = wTx + b. The
theory can be generalized to nonlinear mappings by substi-

tuting the weight w with the gradient ∇xz in the following
derivation. With the output of the activation function being

the general ς , the posterior gradient equals:

∂ς(z)

∂x
=

∂ς(z)

∂z

∂z

∂x
= ∇zςw. (14)

The network weights are optimized by minimizing a pos-

terior based loss function, which means the posterior of

the labeled class should be maximized. For a separable

dataset, there are many possible decision boundaries that

can be learned by the network. When a decision boundary

is biased by some samples close to the decision boundary

(like in Figures 2c and 2p), the network generally has two

options to further decrease the loss. It can either move the

decision boundary to enlarge the classifier margin, or make

the transient of posterior steeper at the decision boundary

so posteriors of correctly classified samples saturate to 1

quicker. Both of the two approaches decrease the loss.

We observe that with softmax being the activation, the

network tends to increase the posterior by making the pos-

terior transient steep (as shown in Figures 2f and 2q). We

believe that this is because the magnitude m of w is not

regularized, so the network can simply increase m during

the optimization process to increase the posterior gradient in

Equation (14). This leads to the fast transient of the posterior

around the decision boundary. A problem in the optimization

is that the posteriors of samples will quickly saturate to 1 and

do not contribute to gradient updates anymore. If a decision

boundary is biased like in Figure 2c, it hardly changes in

subsequent epochs. Such decision boundary correctly sepa-

rates all data, but is more vulnerable to adversarial attacks

because the classifier margin is not maximized.

Different from softmax, softRmax optimizes the loss in

the other way: by enlarging the margin. It maps x to z around
the kth row of the identity matrix ek for class k, so ‖z‖ ≈ 1.
Correspondingly, the magnitude of weight w is inherently

regularized by ‖wTx+ b‖ ≈ 1. This avoids increasing the
weights to values that can lead to a sharp decision boundary

and leaves just one of the two above-mentioned optimization

options to decrease the loss, i.e., enlarging the margin (see

Figs. 2l and 2w), resulting in increased robustness.
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(a) Softmax 1 (b) Softmax 5 (c) Softmax 10 (d) Softmax 15 (e) Softmax 30 (f) Softmax 50

(g) Ours 1 (h) Ours 5 (i) Ours 10 (j) Ours 15 (k) Ours 30 (l) Ours 50

(m) Softmax 1 (n) Softmax 10 (o) Softmax 15 (p) Softmax 20 (q) Softmax 30 (r) Softmax 50

(s) Ours 1 (t) Ours 10 (u) Ours 15 (v) Ours 20 (w) Ours 30 (x) Ours 50

Figure 2. Margin change for linearly separable dataset and the moon dataset with softmax and our softRmax. Different colored points

represent the two classes. The color bands show the posterior develops in the input space. The number in the title of each subfigure is the

training epoch. With the standard softmax, the model makes the posterior change around the decision boundary sharp to minimize the

loss. Due to the regularization of weights w with softRmax, it is harder to minimize the loss by increasing the posterior fast at the decision

boundary, which enables the model to find a larger margin.

4. Experiments
We present experimental results on conservativeness and

robustness when using standard exponential terms and poly-

nomial substitutes respectively. First, we use covariate shift

adaptation by importance weighting with outliers as an ex-

ample to demonstrate that the conservativeness brought by

polynomiality is necessary in an LDA-like setting. A next

experiment shows that, even under attack, softRmax gives

conservative posteriors. We also perform standard adversar-

ial attacks on public datasets to compare the robustness of

softmax and softRmax. To better understand the behavior

of softRmax, we introduce a new, so-called, average-sample

attack and the magnitude-margin ratio.

4.1. Conservativeness

4.1.1 Covariate Shift

Under covariate shift between a source domain Ds and a

target domain Dt, a fixed labelling function is assumed.

We consider a standard weighting approach [38] to make

the source domain distribution pDs
approximate the target

domain distribution pDt
:

wcov =

(
pDt

(x)

pDs(x)

)λ
. (15)

Here, λ controls the strength of the weighting scheme. Simi-
lar to Section 3.1.1, Gaussian distributions N(x|μ;σ2) with

mean μ and variance σ2 are estimated for pDs
and pDt

.

When outliers occur in the tail of the source distribution,

extreme weights wcov are assigned to those outliers if the
target distribution pDt

has a larger variance σ2Dt
than σ2Ds

of the source domain. This will lead to overfitting to these

outliers only. With the use of a t-distribution, a weight of 1
is obtained, resulting in improved estimator behavior.

A domain adaptation regression setting is considered

similar to the original work [38]. The target function is

f(x) = sinc(x), shown in Figure 3b. The source and the tar-
get densities are pDs

(x) = N(x|1.1, (1/2)2) and pDt
(x) =

N(x|2.1, (10/17)2), respectively. We add noise εsi to the
target function to create the output values for the source do-

main ysi = f(xsi) + εsi with p(εs) = N(εs|0, (1/4)2).We
set the source sample size to ns = 150 and the target sample
size to nt = 100. To approximate the target domain, each
source sample is assigned a weight wcov according to Eq.
(15). We randomly sample 5 outliers in the range [−5,−4]
and add them to the source domain after density estimation.

All parameters are estimated by maximum likelihood.

The sensitivities to outliers with Gaussian density esti-

mation and using the t-distribution are compared in Figure
3. With Gaussian density estimation, noisy samples receive

large weights due to the larger variance of the target domain,

therefore the regressor overfits to the noisy samples when λ
is not 0. Student’s t-distribution leads to small weights for
the noisy samples because of its heavy tail.
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(a) Marginal distribution (b) Target function (c) Wihtout outliers (d) Gaussian (e) Student-t

Figure 3. (a) visualizes the marginal distribution of the source and target domain. The target function and the output value for the regression

task are shown in (b). Figure (c) visualizes the fitted lines in the original scenario with Gaussian density estimation without outliers added.

Figures (d) and (e) present the adaptation results of Gaussian density estimation and using Student’s t-distribution with outliers separately.
Lambda in the legend refers to the power λ in Equation (15). Gaussian density estimation overfits to the outliers.

4.1.2 Conservative Prediction

We show that conservativeness leads to further desirable be-

havior under adversarial attacks. For networks trained with

softmax, adversarial attacks make the network misclassify

samples with high confidence. But when a model with soft-

Rmax is attacked, the sample is misclassified but with low

confidence due to the conservativeness.

We show the confidence of misclassified sample is low

with softRmax by examining the posteriors of misclassified

samples from the public dataset MNIST [26] under different

levels of adversarial FGSM attacks. The network has four

convolutional layers and one fully connected layer. We set

a batchsize of 32 and optimize the network by Adam with

a learning rate of 1e− 3. We use the same architecture for
the softmax and softRmax setting, with the only difference

being the activation function after the final layer.

As shown in Figure 4, for the network trained with the

standard softmax, posteriors on the predicted class of mis-

classified samples are high on average. Specifically, using

softmax, under large scale attacks with ε = 100, all samples
are misclassified with a posterior of 1. Due to the con-

servativeness in the tail and the soft posterior change, our

softRmax leads to posteriors around random-guess level.

4.2. Robustness

4.2.1 Adversarial Defense

We perform experiments on public datasets MNIST [26], CI-

FAR10 [22], and CIFAR100 with standard softmax and our

softRmax. The setting of MNIST is the same as in Section

4.1.2. A randomly initialized VGG16 network is used for

CIFAR10 classification. We optimize VGG16 by SGD with

a learning rate of 5e − 3, batchsize 256 and weight decay
5e − 6. For CIFAR100, we adopt ResNet50 pretrained on
ImageNet and finetune it with Adam. We set the learning

rate to be 1e − 4, batchsize 512 and weight decay 5e − 6.
Note that no extra data augmentation is used in any experi-

ment. The only difference between the baseline with softmax

and our approach is the activation function after the final

fully connected layer. By simply substituting the softmax

(a) Softmax no attack (b) Ours no attack

(c) Softmax ε=0.3 (d) Ours ε=0.3

(e) Softmax ε=100 (f) Ours ε=100

Figure 4. Posteriors of predicted class for misclassified MNIST test

samples under different levels of FGSM attacks. The legends give

the number of misclassified samples. Misclassified samples in the

setting of softRmax receive less confident prediction. Even under

extreme attacks with ε = 100, our softRmax gives non-saturated
posteriors at random-guess level.

activation function with the polynomial softRmax activation

function, the network develops strong adversarial defense

ability (see Table 1). Without being combined with other

approaches, the naive softRmax model can outperform state

of the art adversarial defense approaches based on attention

mechanism on CIFAR datasets [1].

4.2.2 Gradient Obfuscation

As we noted in Section 3.2.1, different from gradient ob-

fuscation, our loss landscape is not rough but simply has a
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Table 1. Adversarial defense results. We compare networks with

softmax and our softRmax activation under FGSM and BIM attacks

(T=10). ‘Clean’ refers to the classification accuracy on the testset
without any attack. We consider binary classification for class

3 and 7 from MNIST, MNIST, CIFAR10, and CIFAR100 under

different attack levels ε. The results show a clear improvement of

the robustness to adversarial attacks with softRmax.

Dataset Method Clean
FGSM BIM

ε=0.1 ε=0.3 ε=0.1 ε=0.3

MNIST 3&7
softmax 99.75 77.18 18.69 71.64 0.24

ours 99.95 95.88 88.71 94.90 66.24

MNIST
softmax 96.8 48.3 0.41 53.49 0.02

ours 97.78 75.55 49.30 69.73 33.94

CIFAR10
softmax 80.31 17.62 13.95 10.39 4.83

ours 80.28 49.93 41.03 44.25 18.11

CIFAR100
softmax 61.43 11.23 6.78 1.94 0.05

ours 61.04 19.31 11.04 9.06 2.16

different structure in the tail of the distribution. Leading a

sample to the tail is different from blocking the attack by

local minimum due to a rough loss landscape. The tail is

the right direction to perturb the sample from the point of

view of the gradient based attacks because the overall loss

monotonically increases towards the tail.

Nevertheless, we also rule out the possibility of gradient

obfuscation by performing the iterative BIM attack at very

large iteration numbers. In fact, softRmax shows stronger

robustness after the accuracy stabilises with increased iter-

ations, as shown in Figure 5. The experiment in the next

section shows that the black-box attack is a weaker attack

than the white-box attack, which further diminishes the pos-

sibility that the softRmax robustness can be explained by

gradient obfuscation.

(a) ε=0.1 (b) ε=0.3

Figure 5. BIM attack on CIFAR10 with different iteration numbers.

For both attack levels ε = 0.1 and ε = 0.3, the stabilized accuracy
of softRmax is significantly higher than that of softmax.

4.2.3 Robustness from Conservativeness

Existing gradient-based attacks can only examine the ro-

bustness of a model as a whole but cannot show whether

the robustness comes from the enlarged margin or from the

conservativeness or both. To check the effect of the enlarged

margin and the conservative tail on robustness, we propose a

semi-black-box attack, coined the average-sample attack. It

does not rely on the gradient but simply perturbs a sample

to the direction of a selected target class based on a pre-

computed average, so the sample is guaranteed to not be

pushed towards the tail. We precompute the average sample

Avgy = 1
n

∑n
xny for each class y. With t the target class,

the adversarial input x′ then becomes

x′y = xy + εsign(Avgt −Avgy). (16)

In general, our average-sample attack should not be

stronger than the gradient-based ones because the attack-

ing direction found by the former attack is not optimized.

It prevents the sample from going to the tail, so if it be-

comes a stronger attack for the softRmax, it indicates that

the conservativeness in the tail indeed gives added robust-

ness. Otherwise the gradient based white-box attack should

be the worst attack for our softRmax model as well.

Table 2. Results of targeted attack on MNIST dataset. White refers

to the targeted attack with the network available for generating

adversarial samples. Black is the black-box version of the targeted

attack, where a substitute network is first learned to approximate

the decision boundary of the original model. Avg is our average-

sample attack. The column Clean is the original per class accuracy

of different models without any adversarial attack. The rest results

are the accuracy of all the 10 classes under adversarial attacks. We

highlight the worst performance of each model among all attacks.

Classes
Clean White Black Avg

softmax Ours softmax Ours softmax Ours softmax Ours

0 98.88 99.18 11.14 53.2 33.55 74.3 30.69 58.13

1 98.50 99.21 15.05 46.73 53.41 60.73 48.77 63.44

2 98.26 98.16 10.50 54.00 25.93 50.42 16.53 42.26

3 96.34 98.12 10.31 51.73 27.16 58.99 15.54 37.77

4 96.84 97.35 13.28 51.84 37.21 63.03 26.97 47.94

5 97.87 98.09 9.33 52.24 32.84 64.52 16.68 46.76

6 97.91 98.64 12.00 51.52 35.46 52.14 24.43 44.56

7 96.60 96.69 12.11 52.88 32.46 60.10 22.03 45.50

8 92.61 96.61 9.36 54.38 24.96 73.04 18.90 41.93

9 94.05 95.64 6.33 51.72 30.65 68.58 29.31 49.67

To check whether the average-sample attack is a stronger

attack on the softRmax model, we also perform a gradient

based targeted attack in both the white-box setting and the

black-box setting. The latter one checks whether gradient

obfuscation happens. In the black-box attack [31], a sub-

stitute model that is used to generate adversarial samples is

first learned to mimic the decision boundary of the original
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model. We show that the white-box attack is the strongest

attack for softmax while our customized average-sample

attack is more effective on the softRmax (see Table 2). This

indicates that the conservative tail of softRmax indeed leads

to robustness. The fact that the black-box attack is weaker

than the white-box attack eliminates the possibility that the

weaker performance of average-sample attack is brought by

gradient obfuscation. Also, even when the average-sample

attack gives the lowest accuracy on softRmax, its perfor-

mance is still significantly better than that of softmax.

4.2.4 Robustness from Enlarged Margin

We further demonstrate that the robustness of softRmax also

comes from the enlarged margin. If all samples are pushed

to the decision boundary instead of the tail, then the model

with a larger margin is more robust. It is hard to measure the

margin in the input space so we use the prediction margin

Mz , as specified in Equation (4), as alternative. If the pertur-

bation in x can push the sample across the margin, then it
means the corresponding change inMz is also larger than

the original prediction marginMz . However,Mz cannot be

used to measure the margin directly due to different map-

pings from x to z of different models. A largerMz does not

imply a larger margin in the input space. So we introduce

a new metric, the magnitude-margin ratio, to measure the

change inMz caused by an attack with respect to the original

prediction margin. If the change is larger than the original

prediction margin for a sample, it indicates that this sample

can be successfully attacked.

To derive the ratio for an x, we assume the index for
maxi�=y{zi} is j. We denote the gradient of zy and zj of
the input x by wy and wj , respectively. After adding a

perturbation η in the input x, zy and zj change to z̃y and
z̃j , where z̃y = wT

y x +wT
y η. The new prediction margin

M̃z = z̃y−z̃j . According to [12],wT η can be approximated
by the magnitudem of gradients, the attacking level ε of η,
and the dimension n of input as εmn and so

r =
|M̃z −Mz|

Mz
=
|(wT

y −wT
j )η|

Mz
≈ εmn

Mz
. (17)

Given the same input dimension n and attacking level ε, the
simplified ratio R = m

Mz
can serve as the metric. A model

with a distribution of lower ratioRmeans that, with the same

level of attack, it is harder to change the prediction margin

Mz , which indicates a larger margin in the input space and

a higher robustness of this model. Figure 6 shows that the

model with softRmax has ratios R lower than softmax has

on MNIST, CIFAR10, and CIFAR100.

5. Discussion and Conclusion
We suggest an easy substitution of polynomiality for expo-

nentiality in several scenarios, showing it leads to conserva-

(a) MNIST (b) MNIST

(c) CIFAR10 (d) CIFAR10

(e) CIFAR100 (f) CIFAR100

Figure 6. Histogram of the magnitude-margin ratio R of softmax

and softRmax on all test data from MNIST, CIFAR10, and CI-

FAR100. The ratio of softRmax is significantly smaller, which

indicates a higher robustness against adversarial attacks.

tive behavior regarding samples in the tail of the distribution.

For our polynomial softRmax, this behavior also leads to

increased robustness against adversarial attacks. We show

that the robustness of softRmax also comes from an enlarged

margin and link this to the inherent gradient regularization of

softRmax, which demonstrates that its success does not stem

from gradient obfuscation. Our softRmax can be combined

readily with many other adversarial defense strategies and it

would be of interest to study their combined strength.

Given the type of conservative behavior polynomiality

induces, it seems worthwhile to study its usage in OOD

detection and other problems related to non-i.i.d. sampling,

domain adaptation, etc.

As for softmax, good DNN weight initialization is impor-

tant to avoid gradient vanishing for softRmax. Apart from

that, considering the current level of understanding and the

experimental evidence provided, we see no restrictions to its

usage. In conclusion: why not give softRmax a try?
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