
Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural
Networks with Theoretical Guarantees

Binghui Wang*, Youqi Li†, and Pan Zhou‡

*Department of Computer Science, Illinois Institute of Technology
†

School of Cyberspace Science and Technology, and School of Computer Science, Beijing Institute of Technology
‡

Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology

Email: *bwang70@iit.edu, †liyouqi@bit.edu.cn, ‡panzhou@hust.edu.cn

Abstract

Graph neural networks (GNNs) have achieved state-of-
the-art performance in many graph-based tasks such as
node classification and graph classification. However, many
recent works have demonstrated that an attacker can mis-
lead GNN models by slightly perturbing the graph structure.
Existing attacks to GNNs are either under the less practi-
cal threat model where the attacker is assumed to access
the GNN model parameters, or under the practical black-
box threat model but consider perturbing node features that
are shown to be not enough effective. In this paper, we
aim to bridge this gap and consider black-box attacks to
GNNs with structure perturbation as well as with theoretical
guarantees. We propose to address this challenge through
bandit techniques. Specifically, we formulate our attack as
an online optimization with bandit feedback. This original
problem is essentially NP-hard due to the fact that perturb-
ing the graph structure is a binary optimization problem.
We then propose an online attack based on bandit optimiza-
tion which is proven to be sublinear to the query number
T , i.e., O(

√
NT 3/4) where N is the number of nodes in

the graph. Finally, we evaluate our proposed attack by
conducting experiments over multiple datasets and GNN
models. The experimental results on various citation graphs
and image graphs show that our attack is both effective and
efficient. Source code is available at https://github.
com/Metaoblivion/Bandit_GNN_Attack

1. Introduction
Graph neural networks (GNNs) have been emerging as

the most prominent methodology for learning with graphs,
such as social networks, chemical networks, superpixel
graphs, etc. GNNs have also advanced many graph-related
applications including but not limited to drug discovery [24],
fake news detection on social media [20], traffic forecast-

‡Corresponding author.

ing [35], and superpixel graph classification [10]. However,
recent works have shown that GNNs are vulnerable to ad-
versarial attacks [9, 38, 32, 39, 27, 33, 26, 19]. That is, an
attacker can easily fool a GNN model by slightly perturb-
ing the graph structure (e.g., injecting new fake edges into
the graph or deleting the existing edges from the graph) or
perturbing the node features. Most of the existing attacks
to GNNs essentially rely on white-box or gray-box threat
model [9, 38, 32, 39, 27, 33, 26]. An attacker can not only
obtain the predictions generated by the targeted GNN model,
but also know the whole (i.e., in white-box) or partial (i.e.,
in gray-box) GNNs’ inner parameters and network struc-
ture. These threat models enable the attacker to derive the
true gradients that can be used to construct an (almost) op-
timal edge/feature perturbation via first-order optimization
approaches, e.g., projected gradient descent (PDG).

In practice, however, an attacker often has limited knowl-
edge about the GNN model. For instance, many models are
deployed as an API due to the commercial value. In these
practical scenarios, an attacker can only obtain the model pre-
dictions by querying the API, while not knowing the model’s
other information. An attack based on such a realistic threat
model is called a black-box attack, which significantly raises
the bar for the attacker as he cannot obtain the gradient in-
formation. A recent work [19] performs black-box attacks
against GNNs. However, this work has two key drawbacks.
First, it assumes that the attacker can only perturb the (con-
tinuous) node features. Existing works (e.g., [38]) have
shown that feature perturbation-based attacks to GNNs are
significantly less effective than structure perturbation-based
attacks. Second, the attack is implemented via a heuristic
greedy algorithm, which has no theoretically guaranteed at-
tack performance. Note that black-box attacks are classified
as soft-label black-box attacks [13, 17] and hard-label [7]
black-box attacks. The former means an attacker knows the
confidence scores when querying a target model, while the
latter means an attacker only knows the predicted label.

In this paper, we consider soft-label black-box attacks to
GNNs with structure perturbation. However, such a new

ar
X

iv
:2

20
5.

03
54

6v
1

 [
cs

.L
G

]
 7

 M
ay

 2
02

2

https://github.com/Metaoblivion/Bandit_GNN_Attack
https://github.com/Metaoblivion/Bandit_GNN_Attack

attack setting is much more challenging, as finding the opti-
mal structure perturbation is essentially an NP-hard problem
(i.e., a binary optimization problem) and the attacker only
obtains the predictions via querying the model. We take the
first step to solve the structure perturbation-based black-box
attacks to GNNs with theoretical guarantees. Specifically,
we first reformulate our attack as a bandit optimization (i.e.,
online optimization with bandit feedback) problem, which
characterizes the attacker’s query process on the black-box
GNN model and captures the unknown gradients. Then, we
handle the binary constraint of the discrete structure pertur-
bation and integrate it into our bandit-based attack objective.
Next, we design an efficient and effective online attack to
GNNs. Finally, we theoretically analyze our attack. Our key
contributions are summarized as follows:
• We design the first theoretically guaranteed structure

perturbation-based black-box attacks to GNNs.
• We prove that our bandit-based attack algorithm theoreti-

cally yields a sublinear regret bound O(
√
NT 3/4) within

T queries for attacking a graph with N nodes.
• We conduct extensive experiments to evaluate our attack

over multiple graph datasets and GNN models and demon-
strate the effectiveness and efficiency of our attack.

2. Preliminaries and Problem Formulation

2.1. Graph neural networks

Let G = (V, E ,X) be a graph, where u ∈ V is a
node, (u, v) ∈ E is an edge between u and v, and X =
[x1;x2; · · · ;xN] ∈ RN×d is the node feature matrix. We
denote av = [av1; av2; · · · ; avN] ∈ {0, 1}N as the adja-
cency vector of node v. N = |V| and M = |E| are the
number of nodes and edges, respectively. We denote du and
N (u) as u’s node degree and the neighborhood set of u. We
consider GNNs for node classification in this paper1. In this
context, each node u ∈ V has a label yu from a label set
Y = {1, 2, · · · , LC}. Given a set of VL ⊂ V labeled nodes
{(xu, yu)}u∈VL as the training set, GNN for node classifi-
cation is to learn a node classifier that maps each unlabeled
node u ∈ V \ VL to a class y ∈ Y based on the graph G.

Generally speaking, GNN consists of two main steps:
neighborhood aggregation and node representation update.
Suppose a GNN has K layers. We denote v’s representation
in the k-th layer as h(k)

v , with h
(0)
v = xv. In the neighbor-

hood aggregation, GNN obtains the representation l
(k)
v by

aggregating representations of v’s neighbors in the (k−1)-th
layer as l(k)

v = AGG
({

h
(k−1)
u : u ∈ N (v)

})
. In the node

representation update, GNN updates v’s representation at the
k-th layer via combining v’s previous layer’s representation
h

(k−1)
v with the aggregated neighborhood’s representations

1Our attack can be naturally generalized to GNNs for graph classifica-
tion. We discuss this in Section 3.1.

l
(k)
v : h(k)

v = UPDATE
(
h

(k−1)
v , l

(k)
v

)
.

Different GNNs use different AGG and UPDATE
functions. For instance, in Graph Convolutional Net-
work (GCN) [15], AGG is the element-wise mean pool-
ing function and UPDATE is the ReLU activation func-
tion. More specifically, it has the following form:
h

(k)
v = ReLU

(
W (k)

(∑
u∈N (v) d

−1/2
u d

−1/2
v h

(k−1)
u

))
,

where W (k) is the parameters for the k-th layer. A node
v’s final representation h

(K)
v ∈ R|Y| can capture the struc-

tural information of all nodes within v’s K-hop neigh-
bors. Moreover, the final node representations of training
nodes are used to train the node classifier. Specifically, let
Θ = {W (1), · · · ,W (K)} be the model parameters and
v’s output be fΘ(av) = softmax(h

(K)
v) ∈ R|Y|, where

fΘ(av)y indicates the probability of node v being class y2.
Then, Θ are learnt by minimizing the cross-entropy loss on
the outputs of the training nodes VL, i.e.,

Θ∗ = arg min
Θ
−
∑
v∈VL

ln fΘ(av)y. (1)

With the learnt Θ∗, we can predict the label for each unla-
beled nodes u ∈ V \ VL as ŷu = arg maxy fΘ∗(au)y .

2.2. Threat model

Attacker’s knowledge. The considered black-box attack
setting in this paper implies that an attacker does not know
the internal configurations (i.e., the learned parameters) of
the targeted GNN model. For a target node v ∈ V , the only
information the attacker knows about the GNN model is
the predictions fΘ∗(av) (i.e., output logits) via querying the
GNN model fΘ∗ . Moreover, we also reasonably assume that
the attacker knows her neighbors, i.e., the adjacency vector
av

3. In practice, the attacker naturally knows the neighbors
of his controlled node. Taking social network as an instance,
an attacker controls a malicious user, and this malicious user
definitely knows his (non)neighbors in the social network.
Note that the compared black-box RL-S2V attack [9] also
requires that an attacker’s target node knows his neighbors.
Attacker’s capability. We consider that the attacker can
modify the connection status (e.g., injecting new fake edges
or removing the existing edges) between the target node
v and other nodes in the graph. In practice, it also incurs
different costs for the attacker to manipulate different edges.
The attacker’s budget of manipulating edges is often limited,
and we denote by C the cost budget. We also constrain that
the number of edges to be manipulated is bounded by B.
Attacker’s goal. Based on the attacker’s knowledge and
capability, an attacker’s goal is to fool a targeted GNN, i.e.,
making her target node v’s predicted label different from the

2Note that the prediction also depends on v’s node feature xv and the
whole graph G. We omit xv and G for notation simplicity.

3For graph classification, we assume attackers know the input graph.

true label yv , by perturbing her adjacency vector av with the
cost budget C and allowed number of perturbed edges B.

Our threat model requires that an attacker knows the
confidence scores (as many existing attacks to DNN models).
Although it is stronger than the threat model that an attacker
only needs to know the hard label, we also highlight that
this is the first optimization-based attack that targets discrete
graph structure perturbation, where this problem itself is
rather challenging. We will leave addressing the attack with
hard labels as the query feedback in future work.

2.3. Problem formulation

Given the target node v, label yv, and adjacency vector
av , an attacker aims to modify the connection status related
to the target node v such that the targeted GNN misclassifies
v. Let sv ∈ {0, 1}N be the adversarial structure perturbation
on v, where svu = 1 means the connection status between
the nodes v and u is changed, and svu = 0, otherwise. Then,
we define the perturbed adjacency vector for v as av ⊕ sv,
where ⊕ is the XOR operator between two binary vectors.
Moreover, we denote cv ∈ RN as the cost vector associated
with v, i.e., cvu is the cost to modify the connection status
between v and u. In the focused black-box setting, we con-
sider the untargeted attack. Let L(av) be the loss function
for the targeted node v without attack. With the adversarial
perturbation sv, we have the attack loss as L(av ⊕ sv). In
this paper, we use the CW attack loss function [3] with κ
attack confidence. Specifically, it is defined as follows:

L(x) = max{fΘ∗(x)y −max
ŷ 6=y
{fΘ∗(x)ŷ},−κ}. (2)

Finally, our problem of the structure perturbation-based
black-box attack to GNN can be formulated as

min
sv

L(av ⊕ sv), s.t.,1T sv ≤ B, cT sv ≤ C, sv ∈ {0, 1}N , (3)

where the first constraint means the number of edges to be
perturbed is no more thanB and the second constraint means
the total costs of the perturbation are no more than C.
Lemma 1. Our problem in Eq. (3) is NP-hard.
Proof. Our problem in Eq. (3) is a combinatorial optimiza-
tion problem, actually a type of knapsack problem, which is
a classical NP-hard problem.

Lemma 1 implies that it is difficult to calculate the optimal
perturbation vector s∗v within polynomial time under large
graphs (i.e., sv has large dimension). To this end, we aim
to design an approximation algorithm to derive sub-optimal
solution. One algorithm is to relax the combinatorial binary
constraint sv ∈ {0, 1}N into convex hull sv ∈ [0, 1]N and
obtain a continuous optimization problem. Let ŝv be the
solution of the continuous optimization problem. We can
derive the sub-optimal solution for the original problem in
Eq. (3) by rounding ŝv into combinatorial space {0, 1}N
using randomization sampling like Bernoulli sampling [33].
Then, we have the following lemma to characterize the rela-
tion between sv and ŝv in expectation:

Lemma 2. When sampling sv element-wise in Bernoulli
distribution using the probability from the relaxed vector
ŝv ∈ [0, 1]N , then the expectation of sv is ŝv , i.e., the condi-
tion E[sv] = ŝv holds.

Proof. This lemma holds due to the fact that a random vari-
able X subject to Bernoulli distribution on support {0, 1}
takes its probability as expectation, i.e., E[X] = P[X]. Ap-
plying this fact elements in sv , we can prove this lemma.

Conventionally, to solve our relaxed continuous optimiza-
tion problem, we can apply the PGD approach by running
gradient updates projected onto the feasible domain within
several steps. However, PGD requires gradient information
to be available. In our black-box attack setting, only the
prediction result is available (by querying the GNN) instead
of the exact gradient. Thus, the attack problem becomes how
to estimate the gradient such that the PGD method can still
be applied. It is shown that zeroth-order optimization (short
for ZOO4) can be used to estimate the gradient [5, 14, 18].
However, ZOO suffers from a low convergence rate and high
query overhead due to necessarily exploring all edges to
estimate the gradient per round. We aim to estimate the un-
known gradient by controlling the exploration-exploitation
tradeoff via bandit methods. Reinforcement learning (RL)
can also control the exploration-exploitation tradeoff. How-
ever, RL-based attack, i.e., RL-S2V [9], is naturally heuris-
tic. Our attack can address both issues in ZOO-based and
RL-based attacks. Specifically, our attack has theoretical
guarantees and better attack performance than ZOO-based
and RL-based attacks (See Section 6). Next, we reformulate
our attack problem as a bandit optimization problem and
then propose a solution to it.

2.4. Reformulating our attack as a bandit problem

When the attacker selects a perturbation vector sv and
uses the perturbed adjacent vector av⊕sv to query the GNN,
the GNN returns the prediction fΘ∗(av ⊕ sv). Thus, the
objective L(av ⊕ sv) is revealed based on Eq. (2), which
can be seen as a bandit feedback (i.e., reward) for the se-
lected perturbation vector sv (i.e., an arm). Under the bandit
feedback, the attacker wants to maximize the cumulative
rewards. Note that since the attacker does not know the
optimal arm s∗v in each round, it will incur a regret, i.e.,
the difference of the maximum reward under the optimal
arm s∗v in hindsight and the reward of the attacker’s attack
algorithm. Then, the attacker’s goal is to minimize the cu-
mulative regrets. Let Reg(T) be the cumulative regrets in T
rounds, and stv be the perturbation vector selected at round
t, then the cumulative regrets Reg(T) can be calculated as

4Note that ZOO is a perfect benchmark in our setting. First, only ZOO
approximates the gradient directly through queries. Second, ZOO is the
only method that also has a regret bound. Hence, we can compare with
ZOO in terms of both theoretical results and empirical attack performance.

Reg(T) = E[
∑T
t=1 L(stv)] − TL(s∗v). In bandit optimiza-

tion, it is important to design an arm selection algorithm with
sublinear regret (i.e., Reg(T) = o(T)). This is because the
selected arm sv at round T is asymptotically optimal when
T is sufficiently large (i.e., limT→∞

Reg(T)
T = 0).

3. Structure Perturbation-based Black-Box At-
tacks to GNNs via Bandits

Here, we design an online attack to GNN based on bandits
optimization and show its sublinear regret in next section.

First, we relax the binary perturbation vector sv ∈
{0, 1}N into a continuous convex hull ŝv ∈ [0, 1]N . In
this case, we can define the arm set W as: W = {ŝv ∈
[0, 1]N |1T ŝv ≤ B, cT ŝv ≤ C}, whereW is convex. Note
that our bandit for the black-box setting is different from
the traditional multi-armed bandits (MAB), as arm set W
contains infinite perturbation vectors. Thus, the approaches
like upper confidence bound (UCB) [2] and Thompson Sam-
pling [22] in MAB fail to solve our problem. Moreover, it is
impossible to use the combinatorial bandits [6, 30] to derive
the optimal perturbation because they have to collect enough
historical samples to calculate the mean of each perturbed
edge. In particular, in the exploitation phase, they behave as
ZOO [5] and estimate a gradient with N + 1 queries. In the
exploration phase, they require an approximation algorithm
to derive the suboptimal perturbation with the UCB values.
However, to the best of knowledge, there is no such an ef-
ficient approximation algorithm in the context of structural
perturbation attacks with theoretical guarantees.

Next, we need to address how to efficiently decide the
next arm (i.e., ŝt+1

v) at the end of round t such that the
regret is minimized. We leverage online convex optimization
(OCO) technique to derive the next arm ŝt+1

v at round t+ 1.
We note that the loss function L(·) is often non-convex.
However, we emphasize that the gradient descent used in
OCO is still useful as it is challenging to derive the closed-
form solution for non-convex functions. OCO approach
requires gradient information at the selected arm to conduct
gradient descent. In our black-box attack setting, the attacker
only receives the bandit feedback for the selected arm ŝtv . To
estimate the gradient for the black-box attack at the selected
arm ŝtv , the attacker can only query the GNN to compute the
gradient. We use one point gradient estimation (OPGE) [12]
technique to estimate the gradient due to its simplicity and
effectiveness. The idea of OPGE is to find a vector in unit
sphere S = {u ∈ RN | ||u||2 = 1} such that its direction has
small intersection angle with the gradient (i.e., u is a good
approximation of the gradient). To this end, we uniformly
sample a unit vector from S and derive an approximate
gradient in the following lemma.
Lemma 3. For a unit vector u uniformly sampled from the
unit sphere S and a sufficient small δ > 0, we can estimate
gradient as ∇L̂(ŝv) = Eu∈S [Nδ L(ŝv + δu)u].

Algorithm 1 Black-box attack to GNN for node classifica-
tion via OCO with bandit
Input: Target GNN model f∗Θ, target node v, maximal #perturbed edges

B, cost budget C, PGD step η, δ > 0, α ∈ [0, 1], query number T
Output: Perturbed vector sv
1: Initialize: v1 = 0 ∈ W = {ŝv ∈ [0, 1]N |1T ŝv ≤ B, cT ŝv ≤ C}

2: for t = 1 to T do
3: Attacker randomly chooses a unit vector ut from the unit sphere S.
4: Attacker determines a perturbation ŝtv = vt + δut.
5: Attacker converts ŝtv to be binary stv by setting top-B values in ŝtv

to be 1 and others to be 0.
6: Attacker queries the GNN model f∗Θ with stv to obtain the predic-

tions and CW loss L(stv) using Eq. (2).
7: Attacker conducts PGD and updates: vt+1 =

∏
(1−α)W (vt −

ηĝ), ĝ = N
δ
L(stv)ut.

8: end for
9: return sTv

The details of our attack algorithm are shown in Algo-
rithm 1. The inputs of our algorithm include the targeted
GNN model f∗Θ, target node v, maximal number of perturbed
edges B, cost budget C, PGD step η, a small δ > 0, projec-
tion scale α ∈ [0, 1], and query number T . The output is
a perturbed vector sv for the target node v after T rounds.
In line 1, we set 0 as the initial prior vector v1. In line
2–8, we calculate a sub-optimal perturbed vector to attack
the targeted GNN based on OCO with bandit feedback. At
round t, we randomly select a unit vector ut from the unit
sphere S as a stochastic gradient in line 3. In line 4, we
derive a relaxed perturbed vector ŝtv by updating the prior
vector vt according to the selected stochastic gradient ut.
In line 5, we convert ŝtv to binary stv by setting its top-B
nonzero values (which corresponds to the entries in ŝtv with
the B largest nonzero probabilities) to be 1 (thus perturbing
at most B edges) and the remaining values to be 0. In line 6,
we query the GNN model f∗Θ with stv and obtain a loss feed-
back L(stv). In line 7, we conduct PGD on the arm setW to
update the vt+1 for round t+ 1. Finally, after T queries, we
obtain the perturbed vector sTv for the target node v.

3.1. Extending our attack for graph classification
Our proposed attack against node classification can be

naturally extended to attack GNN models for graph clas-
sification with a small effort of modifications. In a graph
classification model, its input is an adjacent matrix of a graph
and its output is the label of the graph. In node classifica-
tion, we aim to perturb the adjacent vector of a target node,
while in graph classification, we perturb the adjacent matrix.
Let A ∈ {0, 1}N×N be the adjacent matrix of a graph with
N nodes. Moreover, let S ∈ {0, 1}N×N be a perturbation
matrix, where Sij = 1 if the connection status between the
edge (i, j) is modified, and Sij = 0, otherwise. To perform
our attack against graph classification models, we only need
to flatten the matrix S into a vector s and feed it as an input
to our attack algorithm. After obtaining the perturbed s, we
can reshape it to a perturbed adjacent matrix.

4. Main Results
In this section, we analyze the regret bound of our attack

algorithm where we assume the loss function is convex. We
note that it is an interesting future work to generalize our
analysis to non-convex loss functions. We first present the
following assumptions and lemmas.

Assumption 1. There exists a Lipschitz constant CL such
that the following inequality holds for any u and v,

|L(u)− L(v)| ≤ CL||u− v||2. (4)

Lemma 4. For continuous ŝtv and the rounded binary sv,
the instant regret is bounded as:

E[|L(sv)− L(ŝtv)|] ≤ CLN3/4

√
1 +

η

δ
. (5)

Line 7 in Algorithm 1 can be seen as the stochastic gra-
dient decent on L(ŝv + δu). Thus, we have the following
lemma to characterize its regret bound.
Lemma 5 ([11]). Suppose that the arm setW satisfiesW ⊆
RB for given radius R > 0, where B is unit ball, i.e., B =
{u ∈ RN : ||u||2 ≤ 1}. When loss function L(·) is convex,
the cumulative regret for relaxed continuous variables are
bounded as follows:

E[
T∑
t=1

L(ŝtv)]− TL(ŝ∗v) ≤ CLR
√
T , (6)

where ŝtv is continuous variable at round t and ŝ∗v is optimal
continuous solution of our relaxed optimization problem.

Note that Lemma 5 just captures the regret on the whole
arm setW . However, line 7 in Algorithm 1 updates the arm
ŝtv by projecting onto set (1 − α)W for 0 < α < 1. The
incurred regret by conducting (1−α)-projection is captured
by the following lemma.
Lemma 6. For time horizon T , the incurred regret due to
(1− α)-projection is bounded as follows:

min
w∈(1−α)W

T∑
t=1

L(w)− TL(ŝ∗v) ≤ 2αT. (7)

Based on the above assumption and the lemmas, we have
the following theorem on the regret bound of our attack:

Theorem 1. Under T rounds attack span, our proposed at-
tack algorithm incurs regret Reg(T), which is upper bounded
by O(

√
NT 3/4) with T queries to the GNN.

Remark. Theorem 1 not only demonstrates the sublinear
regret our attack achieves, but also presents that our attack is
dimension-efficient, i.e., O(

√
N). It implies that our attack

can be scalable to large graphs. Note that gradient-free ZOO
[5] has query complexity O(N). From the regret bound,
we can see that our attack enjoys a better convergence rate
O(1/T 3/4) than ZOO [18], which has a O(1/T 1/2) con-
vergence rate. Note also that Ilyas et al. [14] proposed a

bandit-based black-box attack to image classifiers, which can
be adapted to solve our problem. However, their approach 1)
does not provide theoretical results in terms of regret bound;
and 2) is less efficient than ours due to requiring multiple
gradient estimation in each iteration.
Computational complexity. Our attack requires 1 query
per round and each query has time complexity O(N). ZOO
requires 2N queries per round and each query has time
complexityO(N)—Its time complexity per round isO(N2).
RL-S2V needs to trains an extra Q-network, which is used
to perform the attack. During the attack, it has the same
time complexity as our attack: 1 query per round and each
round has a time complexity O(N). These analyses show
our attack is more efficient than RL-S2V and ZOO.

5. Related Work
Recent attacks to GNNs mainly focus on white-box/gray

box settings [38, 9, 39, 33, 28, 26, 4, 37, 19]. For instance,
Zugner [38] proposed the first attack, called Nettack, against
GCN for node classification by perturbing graph structure
or/and node features. Specifically, Nettack learns a surro-
gate linear model of GCN by defining a graph structure-
preserving perturbation that constrains the difference be-
tween the node degree distributions of the graph before and
after an attack. Xu et al. [33] utilized the model gradient
to generate perturbation on the topology of the graph. We
study the black-box setting where gradient information is
unknown to the attacker. A recent work [19] performed
black-box attacks to GNNs. However, This work focus on
perturbing the continuous node features, which does not fit
our problem well and is less effective than discrete struc-
ture perturbation. In addition, the attack is implemented
via a heuristic greedy algorithm, which has no theoretically
guaranteed performance. Also, [38] has shown that feature
perturbation-based attacks to GNNs is significantly less ef-
fective than structure perturbation-based attacks (e.g., an
attacker needs to perturb an average of 100 node features, in
order to have a comparable performance by the attack that
perturbs only 5 edges). Thus, we focus on the graph structure
perturbation in this paper. Zang et al. [36] studied the graph
universal adversarial attacks where a set of anchor nodes is
identified and their connection to the target node is flipped.
However, how to select the optimal anchor nodes is not in-
vestigated. Some other works [29, 16] focus on attacking
community detection and they are heuristic and orthogonal
to our work. The work [21] most close to ours designed a
black-box attacks to GNNs for graph classification, which is
based on gradient-free ZOO [5]. However, it also does not
have theoretical guaranteed attack performance.

Several black-box attacks [13, 14, 8] for non-graph clas-
sification models have been proposed. However, these meth-
ods cannot solve our problem because their attack problems
are essentially continuous optimization problems. Note that

[14] also used the bandit to formulate the black-box attack
problem. However, their work does not have a theoretical re-
gret bound and is less efficient due to using multiple gradient
estimations in each iteration.

6. Experiments

6.1. Experimental Setup

Dataset description and GNN models. In node classifica-
tion experiments, we use three benchmark citation graphs,
i.e., Cora, Citeseer, and Pubmed [23]. In these graphs, each
node represents a document and each edge indicates a ci-
tation between two documents. Each document treats the
bag-of-words feature as the node feature vector, and has a la-
bel. We adopt the representative GCN [15] and SGC [31] for
node classification, and evaluate our attack against the two
models. In graph classification, we use two benchmark super-
pixel graphs, i.e., MNIST and CIFAR10 [10], in computer
vision. MNIST and CIFAR10 are classical image classifi-
cation datasets. In our experiments, they are converted into
graphs using the SLIC super-pixels [1]. Each node has the
super-pixel coordinates as the feature and each super-pixel
graph has a label. We adopt the representative GIN [34]
for graph classification, and evaluate our attack against GIN.
Table 1 summarizes the basic statistics of these datasets.
Training nodes/graphs and target nodes/graphs. We use
the training nodes/graphs to train GNN models and use the
target nodes/graphs to evaluate our attack against the trained
models. Following existing works [15, 38, 10], in citation
graphs, we randomly sample 20 nodes from each class as the
training nodes; sample 100 nodes that are correctly classified
by each GNN model as the target nodes. In image graphs, we
respectively use 55,000 graphs and 45,000 graphs in MNIST
and CIFAR10 for training, and randomly sample 100 graphs
correctly classified by the GIN model as the target graphs.
Baselines. We compare our attack with two state-of-the-arts:
RL-based attack [9] and ZOO attack [5]. Note that for the
RL-based attack, we adjust the reward using the same CW at-
tack loss like ours, and thus it has a fair comparison with our
attack. We also choose random attack for comparison, where
we generate structure perturbations by randomly changing
connection status between pairs of nodes.
Cost simulation. We specify the cost of modifying the con-
nection state for each pair of nodes. Note that the costs could
be application-dependent. W.l.o.g., we assume the costs for
different node pairs are uniformly distributed among a cer-
tain interval (e.g., [1,5] in our experiments). Note that the
equal cost can be seen as a special case of the uniform cost.
Parameter setting. We set the hyperparameters in our attack
algorithm as follows: η = 10−4, δ = 10−6, and α = 0.7
for attacking node classification methods, and η = 10−1,
δ = 10−3, and α = 0.6 for attacking graph classification
methods. Consider the different graph sizes, we set the de-

Table 1. Dataset statistics
Datasets #Graphs #Ave. Nodes #Ave. Edges #Classes Task
Cora 1 2,708 5,429 7 (1)
Citeseer 1 3,327 4,732 6 (1)
Pubmed 1 19,717 44,338 3 (1)
MNIST 70K 70.57 564.53 10 (2)
CIFAR10 60K 117.63 941.07 10 (2)

(1) Node classification, (2) Graph classification

fault maximal number of perturbed edges B as 5 and 15
on the three citation graphs, and on the two image graphs,
respectively; and the default total costs C is bounded by 25
on the citation graphs and 75 on the image graphs, respec-
tively. In addition, the total number of queries T = 50 by
default. We also study the impact of these parameters in
our experiments. We implement our algorithm in Python
and conduct experiments using public source codes. All our
experiments are run in a computer with Intel(R) Core(TM)
i7-6700 CPU @3.4Hz processors with 4 cores, 32GB RAM,
1 TB disk space and 6G GPU. We run all experiments 30
times and report the average result.
Evaluation metric. We adopt the attack successful rate,
i.e., a fraction of the total (i.e., 100) targeted nodes/graphs
misclassified after our attack, as the metric to measure the ef-
fectiveness of our attack. We also use the number of queries
(T) to measure the efficiency of our attack. Specifically, we
count each PGD iteration in our Algorithm 1 as a query.

6.2. Experimental Results

In this section, we provide a comprehensive evaluation
of our black-box attack against GNNs for both node classifi-
cation and graph classification. We aim to study our attack
in terms of both effectiveness and efficiency. Our attack
algorithm has three key factors: the number of perturbed
edges B, total costs C, and the number of queries T . We
will study the impact of these parameters one by one.
Impact of the number of perturbed edges. In this exper-
iment, we separately fix the bounded total costs C to be 25
and 75, and set the number of queries T to be 50 on attack-
ing both node classification models and graph classification
models. The results of attacking these models are shown in
Figure 1, Figure 2, and Figure 3, respectively.

We have the following observations: First, all attack ap-
proaches achieve a larger attack successful rate when the
maximal number of perturbed edges B increases. This is
because a larger B allows an adversary to have a better capa-
bility to perform the attack. Second, our attack significantly
achieves a higher attack successful rate than the compared
attacks in all GNNs models and graph datasets. For instance,
when attacking GCN and SGC for node classification, our
attack achieves the attack successful rate larger than 80%
(and even 90%), while the second-best RL attack achieves
the attack successful rate at most 80% across the three cita-
tion graphs. When attacking GIN for graph classification,
our attack achieves 60% attack successful rates, while the

1 2 3 4 5
#Perturbed edges B

0.3

0.4

0.5

0.6

0.7

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

Random attack
Zoo attack
RL attack

(a) Cora.

1 2 3 4 5
#Perturbed edges B

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

Random attack
Zoo attack
RL attack

(b) Citeseer.

1 2 3 4 5
#Perturbed edges B

0.4

0.5

0.6

0.7

0.8

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(c) Pubmed.

Figure 1. Attack successful rate vs. #perturbed edges B on GCN for node classification.

1 2 3 4 5
#Perturbed edges B

0.4

0.5

0.6

0.7

0.8

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

Random attack
Zoo attack
RL attack

(a) Cora.

1 2 3 4 5
#Perturbed edges B

0.5

0.6

0.7

0.8

0.9

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

Random attack
Zoo attack
RL attack

(b) Citeseer.

1 2 3 4 5
#Perturbed edges B

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(c) Pubmed.

Figure 2. Attack successful rate vs. #perturbed edges B on SGC for node classification.

3 6 9 12 15
#Perturbed edges B

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(a) MNIST.

3 6 9 12 15
#Perturbed edges B

0.2

0.3

0.4

0.5

0.6

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(b) CIFAR10.

Figure 3. Attack successful rate vs. #perturbed edges B on GIN for
graph classification.

20 40 60 80 100
#Queries T

0.1

0.2

0.3

0.4

0.5

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(a) MNIST.

20 40 60 80 100
#Queries T

0.1

0.2

0.3

0.4

0.5

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(b) CIFAR10.

Figure 4. Attack successful rate vs. #queries T on GIN for graph
classification.

RL attack obtains less than 53% attack successful rate in the
two image graphs. All these results verify that the black-box
bandit feedback in our algorithm is very useful to guide the
selection of the optimal edges to be perturbed. In contrast,
the heuristic RL attack is hard to do so.

Impact of the number of queries. In this experiment, we
separately fix the bounded total costs C to be 25 and 75, and
the maximal number of perturbed edges B to be 2 and 5
on attacking node classification models and graph classifica-
tion models, respectively. The results of attacking GIN for
graph classification and attacking GCN and SGC for node
classification are shown in Figure 4, Figure 5, and Figure 6,
respectively. First, all attack approaches achieve a larger at-
tack successful rate when the number of queries T increases.
This is because a larger T allows an adversary to obtain
more predictions via querying the GNN models and thus

have a better capability to perform the attack. Second, our
attack requires much fewer queries to achieve the same at-
tack successful rate than the compared attacks. In particular,
compared to our attack, RL attack requires 1.5-3x queries,
when achieving comparable attack performance against node
classification models and graph classification models, respec-
tively. Third, given the same number of queries, our attack
achieves 10%− 20% higher successful rate than RL attack
across all citation graphs and image graphs. Similarly, these
results again verify that the black-box bandit feedback is
really beneficial in designing our attack.

Impact of the total costs. We study the impact of the total
costs C and fix the number of queries T to be 50. As our
attack outperforms the compared attacks, we only study our
attack on attacking GCN for simplicity. Note that we have
similar observations on attacking SGC and GIN.

20 40 60 80 100
#Queries T

0.2

0.4

0.6

0.8

1.0
At

ta
ck

 su
cc

es
sf

ul
 ra

te

Our attack
Random attack
Zoo attack
RL attack

(a) Cora.

20 40 60 80 100
#Queries T

0.5

0.6

0.7

0.8

0.9

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(b) Citeseer.

20 40 60 80 100
#Queries T

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(c) Pubmed.

Figure 5. Attack successful rate vs. #queries T on GCN for node classification.

20 40 60 80 100
#Queries T

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(a) Cora.

20 40 60 80 100
#Queries T

0.2

0.4

0.6

0.8

1.0
At

ta
ck

 su
cc

es
sf

ul
 ra

te

Our attack
Random attack
Zoo attack
RL attack

(b) Citeseer.

20 40 60 80 100
#Queries T

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack
Random attack
Zoo attack
RL attack

(c) Pubmed.

Figure 6. Attack successful rate vs. #queries T on SGC for node classification.

5 10 15 20 25 30
Total costs C

0.3

0.4

0.5

0.6

0.7

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack, B = 2
Our attack, B = 4
Our attack, B = 6

(a) Cora.

5 10 15 20 25 30
Total costs C

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack, B = 2
Our attack, B = 4
Our attack, B = 6

(b) Citeseer.

5 10 15 20 25 30
Total costs C

0.4

0.5

0.6

0.7

0.8
At

ta
ck

 su
cc

es
sf

ul
 ra

te

Our attack, B = 2
Our attack, B = 4
Our attack, B = 6

(c) Pubmed.

Figure 7. Attack successful rate vs. #total costs C on GCN for node classification.

The results are shown in Figure 7. We observe that the
attack successful rate becomes higher when the cost budget
is larger. Moreover, note that the cost for perturbing each
edge is within [1, 5]. If the cost budget is sufficient, i.e.,
C ≥ 10, 20, 30 for B = 2, 4, 6, then the attack successful
rate is stable, as our attack finds the same space for structure
perturbation. In contrast, if the cost budget is insufficient,
even the allowed number of perturbed edges is larger, our
attack performance cannot be improved, e.g., C = 20 for
B = 4, 6 on Citeseer. The result demonstrates that cost
budget is a key factor to affect our attack performance.

7. Conclusion and Future work

In this paper, we study black-box attacks to GNNs via
manipulating the graph structure. We first formulate our

attack as a binary optimization problem, which is NP-hard.
Then, we relax and reformulate our attack problem as a
bandit optimization problem, and propose a bandit-based
attack algorithm and rigorously prove that our attack yields
a sublinear regret bound O(

√
NT 3/4) within T queries for

attacking a graph with N nodes. Finally, we evaluate our
attack against GNN models for both node classification and
graph classification. Our results demonstrate both the ef-
fectiveness and efficiency of our attack and that our attack
significantly outperforms the state-of-the-arts.

Acknowledgments. This work of Wang is supported by the
startup funding. The work of Li is partially supported by
the National Natural Science Foundation of China (NSFC)
under Grant No. 62102028, and China Postdoctoral Science
Foundation under Grant No. 2021M700434, and Zhou is
supported by the NSFC under Grant No. 61972448.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, and et

al. Slic superpixels compared to state-of-the-art superpixel
methods. IEEE TPAMI, 2012. 6

[2] Peter Auer and Ronald Ortner. Ucb revisited: Improved
regret bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica, 61(1-2):55–65, 2010. 4

[3] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In IEEE S&P, 2017. 3

[4] Heng Chang, Yu Rong, Tingyang Xu, and et al. A restricted
black-box adversarial framework towards attacking graph
embedding models. In AAAI, 2020. 5

[5] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-
Jui Hsieh. Zoo: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute
models. In AISec, 2017. 3, 4, 5, 6

[6] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-
armed bandit: General framework and applications. In ICML,
2013. 4

[7] Minhao Cheng, Thong Le, Pin-Yu Chen, and et al. Query-
efficient hard-label black-box attack: An optimization-based
approach. In ICLR, 2019. 1

[8] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and
Jun Zhu. Improving black-box adversarial attacks with a
transfer-based prior. In NeurIPS, 2019. 5

[9] Hanjun Dai, Hui Li, Tian Tian, and et al. Adversarial attack
on graph structured data. In ICML, 2018. 1, 2, 3, 5, 6

[10] Vijay Dwivedi, Chaitanya K Joshi, Thomas Laurent, and et
al. Benchmarking graph neural networks. arXiv, 2020. 1, 6

[11] Abraham Flaxman, Tauman Kalai, and Brendan McMahan.
Online convex optimization in the bandit setting: gradient
descent without a gradient. In SODA, 2005. 5, 11, 13

[12] ON Granichin. Stochastic approximation with input perturba-
tion under dependent observation noises. Vestn. Leningrad.
Gos Univ, (4):27–31, 1989. 4

[13] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy
Lin. Black-box adversarial attacks with limited queries and
information. In ICML, 2018. 1, 5

[14] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior
convictions: Black-box adversarial attacks with bandits and
priors. In ICLR, 2019. 3, 5, 6

[15] Thomas Kipf and Max Welling. Semi-supervised classifica-
tion with graph convolutional networks. In ICLR, 2017. 2,
6

[16] Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng,
and Junzhou Huang. Adversarial attack on community detec-
tion by hiding individuals. In WWW, 2020. 5

[17] Yandong Li, Lijun Li, and Liqiang Wang. Nattack: Learning
the distributions of adversarial examples for an improved
black-box attack on deep neural networks. In ICML, 2019. 1

[18] Sijia Liu, Xingguo Li, Pin-Yu Chen, Jarvis Haupt, and Lisa
Amini. Zeroth-order stochastic projected gradient descent for
nonconvex optimization. In IEEE GlobalSIP, 2018. 3, 5

[19] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards
more practical adversarial attacks on graph neural networks.
NeurIPS, 2020. 1, 5

[20] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon
Mannion, and Michael M Bronstein. Fake news detection on
social media using geometric deep learning. arXiv, 2019. 1

[21] Jiaming Mu, Binghui Wang, Qi Li, and et al. A hard label
black-box adversarial attack against graph neural networks.
In CCS, 2021. 5

[22] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian
Osband, and Zheng Wen. A tutorial on thompson sampling.
Foundations and Trends in Machine Learning, 2018. 4

[23] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad. Collective classifica-
tion in network data. AI magazine, 2008. 6

[24] Chence Shi, Minkai Xu, Zhaocheng Zhu, and et al. Graphaf:
a flow-based autoregressive model for molecular graph gener-
ation. In ICLR, 2020. 1

[25] James Stewart. Essential calculus: Early transcendentals.
Cengage Learning, 2012. 11

[26] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh,
and Vasant Honavar. Adversarial attacks on graph neural
networks via node injections: A hierarchical reinforcement
learning approach. In The Web Conference, 2020. 1, 5

[27] Binghui Wang and Neil Gong. Attacking graph-based classi-
fication via manipulating the graph structure. In CCS, 2019.
1

[28] Binghui Wang, Tianxiang Zhou, Minhua Lin, and et al. Effi-
cient evasion attacks to graph neural networks via influence
function. arXiv, 2020. 5

[29] Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge,
and Talal Rahwan. Hiding individuals and communities in a
social network. Nature Human Behaviour, 2018. 5

[30] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan
Vaswani. Online influence maximization under independent
cascade model with semi-bandit feedback. In NIPS, 2017. 4

[31] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr,
Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Simpli-
fying graph convolutional networks. In ICML, 2019. 6

[32] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty,
Kai Lu, and Liming Zhu. Adversarial examples on graph data:
Deep insights into attack and defense. In IJCAI, 2019. 1

[33] Kaidi Xu, Hongge Chen, Sijia Liu, and et al. Topology at-
tack and defense for graph neural networks: An optimization
perspective. In IJCAI, 2019. 1, 3, 5

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? In ICLR, 2019. 6

[35] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal
graph convolutional networks: A deep learning framework
for traffic forecasting. In IJCAI, 2018. 1

[36] Xiao Zang, Yi Xie, Jie Chen, and Bo Yuan. Graph universal
adversarial attacks: A few bad actors ruin graph learning
models. arXiv, 2020. 5

[37] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang
Gong. Backdoor attacks to graph neural networks. In SAC-
MAT, 2021. 5

[38] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann.
Adversarial attacks on neural networks for graph data. In
KDD, 2018. 1, 5, 6

[39] Daniel Zügner and Stephan Günnemann. Adversarial attacks
on graph neural networks via meta learning. ICLR, 2019. 1, 5

Appendix

A. Notations
In Table 2, we summarize the mathematical notations used in this paper .

Table 2. Summary of Notations
Notations Meanings

G = (V, E ,X) The graph G with node set V , edge set E and node feature matrix X
N The size of node set
M The size of node set
av The adjacency vector of node v
xu The feature vector of node u
Y The label set
yu The label of node u
LC The number of labels
VL The training data set

AGG(·) The neighborhood aggregation function of the GNN
UPDATE(·) The node representation update function of the GNN

l
(k)
v The aggregated representation vector of node v in layer k

h
(k)
v v’s representation in the k-th layer
Θ The GNN model parameters

fΘ(av) v’s model output
B The maximum number of perturbed edges
C Cost budget
sv The adversarial structure perturbation vector for the targeted node v
ŝv The relaxed vector of sv
cv The cost vector associated with v on edges

L(av) The loss function for the targeted node v without attack
L(av ⊕ sv) The attack loss for the targeted node v under perturbation sv

CL The Lipschitz constant with respect to loss L(·)
Reg(T) The incurred regret within T rounds
W The arm set consisting of feasible ŝv
S The unit sphere with respect to 2-norm
B The unit ball with respect to 2-norm
L̃(·) The smooth loss function
vt The prior vector at round t
ut The random unit vector
ĝ The estimated gradient using in PGD

B. Proof of Lemma 3

Proof. We first consider the case where N = 1, i.e., scalar setting. Thus, we have |u| = 1 and u takes value in {−1, 1}. When
uniformly sampling its value, we have,

∇L̂(ŝv) = Eu∈{−1,1}[
1

δ
L(ŝv + δu)u]

=
1

2

L(s+ δ)

δ
− 1

2

L(s− δ)
δ

= L′(s).

(8)

For N > 1 setting, the lemma can be proved using Stoke’s theorem [25]. For more details, please refer to [11].

C. Proof of Lemma 4

Proof. We start the proof from Lipschitz continuity assumed for L(·). Based on Eq. (4), we have

E[|L(sv)− L(ŝtv)|]
(a)

≤ E[CL||sv − ŝtv||2]

(b)
= CLE[

√√√√ N∑
i=1

(sv(i)− ŝtv(i))
2]

(c)

≤ CL

√√√√ N∑
i=1

E[(sv(i)− ŝtv(i))
2]

(d)
= CL

√√√√ N∑
i=1

E[(sv(i)− E[sv(i)])2]

(e)
= CL

√√√√ N∑
i=1

E[sv(i)2]− E[sv(i)]2

(g)

≤ CL

√√√√ N∑
i=1

E[sv(i)2]
(f)
= CL

√
||ŝtv||1

(h)

≤ CL

√√
N ||ŝtv||2

(i)

≤ CL

√√
N ||vt−1 − ηĝt−1||2

(j)

≤ CL

√√
N ||vt−1||2 + η

√
N ||ĝt−1||2

(k)

≤ CLN
3/4

√
1 +

η

δ
,

where (a) is due to Lipschitz continuity of attack loss function L(·), (b) is due to the definition of 2-norm, (c) holds due to
applying Jensen’s inequality, (d) is due to the random rounding between ŝtv and sv , (e) is due to definition of variance related
to random variable sv(i), i.e., E[(sv(i) − E[sv(i)])

2] = Var[sv(i)] = E[sv(i)
2] − E[sv(i)]

2. In (g), we drop the negative
term that does not affect the bound. In (f), we use the fact that each component sv(i) ∈ {0, 1} is bounded by one such that
sv(i)

2 = sv(i). Besides, we apply the definition of 1-norm. In (h), we use the inequality ||ŝtv||1 ≤
√
N ||ŝtv||2 for 1-norm and

2-norm. In (i), we substitute the ŝtv by the projected gradient descent equation and apply the non-extensive property of the
projection onto convex set. In (j), we apply the triangle inequality. In (k), we expand the 2-norm using the definition of vt−1

and ĝt−1.

Similar claim can be found in bOGD [?]. However, the differences of bOGD [?] and our result in Lemma 4 are two-fold:
1) we consider the bandit setting of OCO, which requires to estimate gradient while bOGD performs based on the derived
gradient when observing the loss function; 2) we only assume that the loss function is Lipschitz continuous related to 2-norm
while bOGD additionally assume the loss is Lipschitz continuous related to 1-norm and 2-norm.

D. Proof of Theorem 1

Proof. Suppose the arm setW satisfies R1B ⊆ W ⊆ R2B. We begin the proof from the regret definition.

Reg(T) = E[

T∑
t=1

L(sv)]− TL(s∗v)

(a)

≤ E[

T∑
t=1

L(sv)]− TL(ŝ∗v)

(b)

≤ E[

T∑
t=1

L(sv)]− min
w∈(1−α)W

T∑
t=1

L(w) + min
w∈(1−α)W

T∑
t=1

L(w)− TL(ŝ∗v)

(c)

≤ E[

T∑
t=1

L(sv)]− min
w∈(1−α)W

T∑
t=1

L(w) + 2αT

(d)

≤ E
[T∑
t=1

[L(sv)− L(ŝtv)]
]

+ E[

T∑
t=1

L(ŝtv)]− min
w∈(1−α)W

T∑
t=1

L(w) + 2αT

(e)

≤ E[

T∑
t=1

L(ŝtv)]− min
w∈(1−α)W

T∑
t=1

L(w) + 2αT + CLTN
3/4

√
1 +

η

δ

(f)

≤ E[

T∑
t=1

L̃(vt)]− min
w∈(1−α)W

T∑
t=1

L̃(w) + E
[T∑
t=1

[L(ŝtv)− L̃(vt)]
]

+ min
w∈(1−α)W

T∑
t=1

[L̃(w)− L(w)] + 2αT + CLTN
3/4

√
1 +

η

δ
.

(9)

In (a), we consider that L(s∗v) ≥ L(ŝ∗v) holds for the relaxed variable ŝ∗v. Generally speaking, the attack loss achieved by
the integer optimal solution is greater than or equal to the one of the relaxed continuous optimal solution. In (b), we consider
the (1 − α)-projection in our algorithm (i.e., line 7). In (c), we apply with the result of Lemma 6. In (d), we consider the
relaxed variable ŝtv . In (e), we apply with the result of Lemma 4. In (f), we adapt the terms to make convenience of using the
result of Lemma 5.

We define a smooth function L̃(·) to approximate the original loss function L(·) as follows,

L̃(v) = Eu∈B[L(v + δu)]. (10)

When δ is small, L̃(v) ≈ L(v). Thus, L̃(v) and L(v) share similar gradient at any v. According to the Lipschitz continuity in
Eq. (4), we have,

|L̃(w)− L(w)| ≤ CLδ, (11)

for all w ∈ W . Due to ŝtv = vt + δut, we obtain,

|L(ŝtv)− L(vt)| = |L(vt + δut)− L(vt)| ≤ CLδ, (12)

where we further have by applying triangle inequality,

|L(ŝtv)− L̃(vt)| ≤ |L(ŝtv)− L(vt)|+ |L(vt)− L̃(vt)| ≤ 2CLδ, (13)

for all t ∈ [T]. To continue bounding Reg(T) in Eq. (9).(f), we have,

Reg(T) ≤
T∑
t=1

L̃(vt)− min
w∈(1−α)W

T∑
t=1

L̃(w) + 3CLδT + 2αT

+ CLTN
3/4

√
1 +

η

δ
.

(14)

0.0 0.2 0.4 0.6 0.8
0.69

0.71

0.73

0.75

0.77

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack

(a) GCN with Cora.

0.0 0.2 0.4 0.6 0.8

0.85

0.86

0.87

0.88

0.89

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(b) GCN with Citeseer.

0.0 0.2 0.4 0.6 0.8

0.58

0.60

0.62

0.64

0.66

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(c) GCN with Pubmed.

0.0 0.2 0.4 0.6 0.8
0.33

0.35

0.37

0.39

0.41

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(d) GIN with MNIST.

0.0 0.2 0.4 0.6 0.8
0.45

0.50

0.55

0.60

0.65

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(e) SGC with Cora.

0.0 0.2 0.4 0.6 0.80.60

0.65

0.70

0.75

0.80

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(f) SGC with Citeseer.

0.0 0.2 0.4 0.6 0.8
0.40

0.45

0.50

0.55

0.60

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack

(g) SGC with Pubmed.

0.0 0.2 0.4 0.6 0.8

0.34

0.36

0.38

0.40

0.42

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(h) GIN with CIFAR10.

Figure 8. Sensitivity of hyperparameter α.

At last, we bound the regret
∑T
t=1 L̃(vt)−minw∈(1−α)W

∑T
t=1 L̃(w), which corresponds to the stochastic gradient descent

in line 7 of Algorithm 1 where the gradient is N
δ L(ŝtv)u

t and the feasible domain is (1 − α)W . Note that we have
(1− α)W ⊆W ⊆ R2B for any 0 < α < 1. It is easy to see that ||Nδ L(ŝtv)u

t||2 ≤ N
δ . According to Lemma 5, we have

E[

T∑
t=1

L̃(vt)]− min
w∈(1−α)W

T∑
t=1

L̃(w) ≤ N

δ
R2

√
T . (15)

In summary, we can bound Reg(T) as,

Reg(T) ≤
N

δ
R2

√
T + 3CLδT + 2αT + CLTN

3/4

√
1 +

η

δ

(a)

≤
N

δ
R2

√
T + 3CLδT + 2αT + CLTN

3/4

√
R2

N
√
T

(b)

≤
N

δ
R2

√
T + 3CLδT + 2αT + CL

√
R2N

1/2T 3/4

(c)

≤
N

δ
R2

√
T +

3(CLR1 + 1)

R1
δT + CL

√
R2N

1/2T 3/4

(d)

≤ 2

√
3R2(CLR1 + 1)N

R1
T 3/4 + CL

√
R2N

1/2T 3/4

(e)
= Λ
√
NT 3/4 = O(

√
NT 3/4).

(16)

In (a), we set the step η = R2√
TN/δ

− δ. We further simplify the last term, which leads to (b). In (c), we set α = δ
R1

, which

can ensure ŝtv ∈ W [11]. In (d), we set parameter δ = T−1/4
√

R1R2N
3(CLR1+1) to minimize the r.h.s. of (c). In (e), we define the

leading constant as Λ = 2
√

3R2(CLR1+1)
R1

+ CL
√
R2. Based on above deduction, we can prove this theorem.

E. More Experimental Results
In the following sections, we conduct experiments to evaluate the sensitivities of hyperparameters, i.e., projection scale α

and update step δ of the prior vector. We set the default queries as 50 for both node classification and graph classification,
i.e., T = 50. The default number of the perturbed edges is set to 2 and 6 for node classification and graph classification,
respectively. Other parameter settings are consistently configured as the main experiments like learning rate η. α is ranged

10 6 10 5 10 4 10 3 10 2
0.64

0.68

0.72

0.76

0.80

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(a) GCN with Cora.

10 6 10 5 10 4 10 3 10 2
0.80

0.82

0.84

0.86

0.88

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(b) GCN with Citeseer.

10 6 10 5 10 4 10 3 10 2

0.58

0.60

0.62

0.64

0.66

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack

(c) GCN with Pubmed.

10 6 10 5 10 4 10 3 10 20.38

0.40

0.42

0.44

0.46

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(d) GIN with MNIST.

10 6 10 5 10 4 10 3 10 2

0.50

0.55

0.60

0.65

0.70

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(e) SGC with Cora.

10 6 10 5 10 4 10 3 10 20.64

0.68

0.72

0.76

0.80

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack

(f) SGC with Citeseer.

10 6 10 5 10 4 10 3 10 2

0.40

0.45

0.50

0.55

0.60

At
ta

ck
 su

cc
es

sf
ul

 ra
te

Our attack

(g) SGC with Pubmed.

10 6 10 5 10 4 10 3 10 2
0.39

0.41

0.43

0.45

0.47

At
ta

ck
 su

cc
es

sf
ul

 ra
te Our attack

(h) GIN with CIFAR10.

Figure 9. Sensitivity of hyperparameter δ.

in {0, 0.2, 0.4, 0.6, 0.8} and δ is ranged in {10−6, 10−5, 10−4, 10−3, 10−2}. The results are shown in Figure 8 and Figure 9.
Overall, the derivation of the attack successful rate is no more than 10% under different hyperparameters, which demonstrates
that our attack is stable and robust to sensitivity.

Sensitivity evaluation of hyperparameter α. In Figure 8, we evaluate the sensitivity performance of hyperparameter α
over different GNNs (i.e., GCN, SGC and GIN) and different datasets (i.e., Cora, Citeseer, Pubmed, MNIST and CIFAR10).
We can observe that the attack successful rate increases as α increases. This can be explained that the projected domain in
PGD becomes larger when α goes larger. Thus, there is a high probability that the optimal perturbation is located in the larger
projected domain.

Sensitivity evaluation of hyperparameter δ. In Figure 9, we evaluate the sensitivity performance of hyperparameter δ
over different GNNs (i.e., GCN, SGC and GIN) and different dataset (i.e., Cora, Citeseer, Pubmed, MNIST and CIFAR10).
We can observe that the attack successful rate decreases as δ increases. This can be explained that the estimated gradient
ĝ = N

δ L(ŝtv)u
t becomes more inaccurate when δ goes larger. Consequently, it is impossible to derive the optimal perturbation

with an inaccurate gradient.

