
Look Closer to Supervise Better:
One-Shot Font Generation via Component-Based Discriminator

Yuxin Kong,1 Canjie Luo,1 Weihong Ma,1 Qiyuan Zhu,2 Shenggao Zhu,2 Nicholas Yuan,2 Lianwen Jin*1 3

1School of Electronic and Information Engineering, South China University of Technology.
2Huawei Cloud AI. 3Peng Cheng Laboratory, Shenzhen, Guangdong, China.

{kongyxscut, canjie.luo, scutmaweihong, lianwen.jin, nicholas.jing.yuan}@gmail.com
{zhuqiyuan2, zhushenggao}@huawei.com

Abstract

Automatic font generation remains a challenging re-
search issue due to the large amounts of characters with
complicated structures. Typically, only a few samples can
serve as the style/content reference (termed few-shot learn-
ing), which further increases the difficulty to preserve local
style patterns or detailed glyph structures. We investigate
the drawbacks of previous studies and find that a coarse-
grained discriminator is insufficient for supervising a font
generator. To this end, we propose a novel Component-
Aware Module (CAM), which supervises the generator to
decouple content and style at a more fine-grained level, i.e.,
the component level. Different from previous studies strug-
gling to increase the complexity of generators, we aim to
perform more effective supervision for a relatively simple
generator to achieve its full potential, which is a brand
new perspective for font generation. The whole frame-
work achieves remarkable results by coupling component-
level supervision with adversarial learning, hence we call it
Component-Guided GAN, shortly CG-GAN. Extensive ex-
periments show that our approach outperforms state-of-the-
art one-shot font generation methods. Furthermore, it can
be applied to handwritten word synthesis and scene text im-
age editing, suggesting the generalization of our approach.

1. Introduction
To better tackle the few-shot font generation issue, we

rethink the following two questions: 1) What determines
people’s judgment on font styles? 2) How do people learn
to write a new character/glyph in the correct structure? To
answer the first question intuitively, we present a text string
in three different font styles in Fig. 1. Since their overall
architectures are similar, we naturally pay more attention to
local details, including endpoint shapes, corner sharpness,

*Corresponding author.

Figure 1. A same text string presented in three different font styles.

stroke thickness, joined-up writing pattern, etc., which ap-
pear at a more local level, i.e., the components of a char-
acter. Although the components cannot present some font
style properties, such as the inclination and aspect ratio,
we argue that the components determine the font style to
a greater extent than the whole character shape. As for the
second question, one strong assumption is that when people
learn a complicated glyph, they first learn the components
that form the character. Intuitively, if all the components in
a glyph are properly written, we can obtain the glyph cor-
rectly. Drawing inspiration from the above observations, an
intuitive method for few-shot font generation is to utilize
the component information that is largely correlated with
the font style properties and glyph structures.

Few-shot font generation (FFG) has received consider-
able research interest in recent years due to its critical ap-
plications [3, 30, 33, 40, 47, 50]. An ideal FFG system can
greatly reduce the burden of the time-consuming and labor-
intensive font design process, particularly for those lan-
guage systems with a massive number of glyphs, e.g., Chi-
nese with more than 25,000 glyphs. Another application is
to create a cross-lingual font library, e.g., Chinese to Ko-
rean, given the fact that Adobe and Google take years to
create the Source Han Sans Font, a universal font style that
supports Chinese, Korean, and Japanese simultaneously.

Recently, several attempts have been made to few-shot
font generation; however, they all have certain limitations
and further improvements are therefore required. For in-
stance, [33] learns to map the source font style to a fixed
target font style, and thus has to be retrained for another

ar
X

iv
:2

20
5.

00
14

6v
2

 [
cs

.C
V

]
 8

 M
ay

 2
02

2

new style. “zi2zi” [50] learns multiple font styles by adding
a pre-defined style category embedding, but still cannot
generalize to unseen font styles. One notable approach is
EMD [47], which is generalizable to unseen styles by disen-
tangling the style and content representation, but the result
is not promising due to its flaw in loss function design.

Lately, several methods utilize the idea of composition-
ality. Still, they have significant drawbacks. For instance,
CalliGAN [40] generates glyph images conditioned on the
learned embeddings of the component labels and style la-
bels, hence cannot generalize to either unseen styles or un-
seen components. DM-Font [3] employs a dual-memory ar-
chitecture for font generation. However, it requires a refer-
ence set containing all the components to extract the stored
information, which is unacceptable for the FFG scenario.
LF-Font [30] can be extended to unseen styles conditioned
on the component-wise style features. However, its visual
quality decreases significantly in the one-shot generation
scenario. Although these component-based algorithms ad-
vance by successfully encoding the diverse local styles, they
explicitly depend on the component category inputs to ex-
tract style features, and thus the capability of cross-lingual
font generation is entirely beyond their reach. Meanwhile,
the above methods [3, 30, 33, 40, 47, 50] have a common
limitation, that is, they require large amounts of paired data
for pixel-level strong supervision. Although DG-Font [41]
achieves unsupervised font generation, the generated glyphs
often contain characteristic artifacts. Overall, the perfor-
mance of the state-of-the-arts is still unsatisfactory.

In this paper, we propose a novel component-guided gen-
erative network, namely CG-GAN, which might provide a
new perspective for few-shot font generation. The proposed
method is inspired by two human behavior: 1) people nat-
urally pay more attention to component parts when distin-
guishing font styles, and 2) people learn a new glyph by first
learning its components. Such a human learning scheme is
perfectly adopted in our proposed Component-Aware Mod-
ule (CAM), supervising the generator at the component
level for both styles and contents. Specifically, CAM first
employs an attention mechanism for component extraction,
acting as a loss function to supervise whether each compo-
nent is transferred properly during the generation. Then the
learned attention maps, which represent the corresponding
component information, are used to conduct per-component
style classification and realism discrimination. Finally, with
the multiple component-level discriminative outputs, CAM
can feedback more fine-grained information to the gener-
ator by backpropagation, encouraging the generator to si-
multaneously focus on three critical aspects at the compo-
nent level: style consistency, structural correctness, and im-
age authenticity. Therefore, the quality of the generated
glyph images is significantly boosted. Since CAM is only
performed as the component-level supervision during train-

ing, it will not bring additional compute time in inference.
In addition, paired training data are not required with our
method. Once the model is trained, our generator is capa-
ble to generalize to unseen style, unseen content, even other
unseen language glyphs, i.e., cross-lingual font generation.

Essentially, our goal is to seek an algorithm that can ef-
fectively enhance the representational ability of the genera-
tor. The proposed CG-GAN allows to employ style-content
disentanglement at a more fined grained level, i.e., the com-
ponent level, thus enabling to extract high-quality represen-
tations from even a single reference image. The method
of utilizing component-level supervision rather than pixel-
level strong supervision is a human-like method that shows
effectiveness in capturing localized style patterns and pre-
serving detailed glyph structures. Compared with exist-
ing component-based methods, CG-GAN has two outstand-
ing properties:1) the performance improvement is gained by
providing more effective supervision for the generator, not
by struggling to increase the complexity of the generator;
and 2) the generator is able to capture local style patterns
without explicit dependency on the predefined component
categories, showing remarkable one-shot Chinese font gen-
eration and cross-lingual font generation abilities.

Extensive experiments demonstrate that our proposed
CG-GAN significantly outperforms state-of-the-arts in one-
shot font generation. Furthermore, by coupling the
component-level guidance with a novel framework design,
CG-GAN can flexibly extend to two other different tasks:
handwriting generation and scene text editing, producing
stunning results that far exceed our expectations, indicating
the significant potential of our proposed method.

2. Related works

2.1. Image-to-Image Translation

Image-to-image (I2I) translation aims to translate an in-
put image in the source domain into a corresponding output
image in the target domain. Pix2pix [14] is the first gen-
eral framework for the I2I translation task, which is in su-
pervised learning and built upon the conditional adversarial
network [28]. However, paired training data are unavail-
able for many scenarios. Therefore, several methods are
proposed to tackle the unpaired setting. UNIT [22] is an ex-
tension of CoGAN [24], which learns the joint distribution
across domains with the combination of generative adver-
sarial networks [8] and variational autoencoders [21]. One
notable work is CycleGAN [49], which tackles the unsu-
pervised image translation problem by introducing the cy-
cle consistency loss. Concurrent to CycleGAN [49], Disco-
GAN [20] and DualGAN [43] also utilize the cycle con-
sistent constraint to implement unpair I2I translation. The
above approaches are limited to translating images between
two classes. Later, [1, 5, 13] are proposed to achieve multi-

Feature Encoderer

Visual Feature H

Attention Decoder

Attend

Attention Maps

Style Classifier

Component-wise Discriminato

Character-wise

style labels

Component-wise

style labels

Component-wise

real/fake

Style Encoder

Content Encoder Mixer

Content Image

Style Image

Generated Image

Component-Aware Module CAMGenerator (G)
Discriminator (D)

tion M

ent Imag

g

Weak Supervision

Figure 2. Overview of the proposed method.

class unsupervised I2I translation, capable of translating im-
ages among multiple seen classes. FUNIT [23] further ex-
tends its generalization ability to unseen classes by learning
to encode the content images and class images respectively.

2.2. Few-shot Font Generation

Few-shot font generation (FFG) aims to create a com-
plete font library in the required style given only a few ref-
erence images. Several methods [4, 26, 33, 50] regard the
FFG task as an I2I translation problem as both tasks learn a
mapping from the source domain to the target domain. For
instance, “Rewrite” [33] is built upon the pix2pix frame-
work and learns to transfer only one font style. DC-font [15]
learns the transformation relationship between two fonts in
deep space via the feature reconstruction network. How-
ever, all of them cannot generalize to unseen styles. Af-
ter that, EMD [47] and SA-VAE [36] are proposed to sep-
arate the representations for styles and contents, and are
thus generalizable to unseen styles. However, they fail to
capture local style patterns. Later, some component-based
methods [3, 12, 30, 31, 40] are proposed. For example, RD-
GAN [12] can generate unseen glyphs in a one-shot setup
by introducing a radical extraction module, but can only
transfer to a fixed target font style. [3, 30] improve the
generative quality by learning component-wise style repre-
sentation, where DM-Font [3] introduces a dual memory
structure and LF-Font [30] utilizes a factorization strategy.
However, they suffer from estimation errors and cannot gen-
eralize to cross-lingual font generation due to the explicit
dependency on the components labels. To tackle the cross-
lingual scenario, MX-Font [31] employs a multi-headed en-
coder design, where each head can extract different local-
ized features in a weak component supervision manner. All
of the above works are in supervised learning and require
paired data for strong supervision. After that, DG-Font [41]
achieves unsupervised learning by introducing a deforma-
tion skip connection, but the results contain artifacts.

3. Methodology

The overall architecture of our proposed CG-GAN is
shown in Fig. 2, which consists of a generator G, a

Component-Aware Module (CAM) and a discriminator D.
The generator G aims to implement style-content disentan-
glement at the component level. To this end, CAM is em-
ployed to provide component-level feedback to the gener-
ator through multi component-level discrimination outputs.
A U-Net based discriminator [35] D is also employed to
perform per-image and per-pixel discrimination, further en-
hancing the quality of the generated glyph.

3.1. Generator

As shown in Fig. 2, the generator consists of a style en-
coder, a content encoder and a mixer. Given a style image
Is and a content image Ic, the generated image Ig should
present the font style of Is while maintaining the same un-
derlying structure of Ic. Specifically, the content encoder
encodes the input content image into a style-invariant con-
tent feature map Xc. Meanwhile, the style encoder is em-
ployed to extract the style representation at two different
levels from the style reference image: a style feature map
Xs and a style latent vector fs. Here, Xs is extracted from
the style reference image, and is later mapped to a style
latent vector fs through a mapping network f , which is im-
plemented using a multi-layer perception (MLP).

Finally the mixer is employed to integrate the style and
content representation and reconstruct the target image. The
style feature map Xs and the content feature map Xc,
which have the same spatial dimensions, are concatenated
in the channel-wise dimension and are later fed to the mixer.
Meanwhile, the style latent vector fs is injected into each
up-sampling block of the mixer M through the AdaIN [11]
operation. In addition, we adopt the skip-connection be-
tween the content encoder and the mixer, where the output
of every down-sampling block in the content encoder is con-
catenated to the input of the up-sampling block that has the
same resolution in the mixer.

3.2. Component-Aware Module

Intuitively, a glyph font style and structure are closely
related to the component information. However, most ex-
isting methods [15, 33, 47, 50] employ pixel-level strong
supervision while ignoring the critical component informa-
tion. Therefore, we introduce the Component-Aware Mod-

ule (CAM), where the main idea is to make full use of the
component information to better guide the font generation
process. Hence, CAM is designed to supervise the genera-
tor at the component level using the following strategies:

Component extraction A prerequisite for font gener-
ation is to preserve the detailed structure of the target
glyph. Therefore, the component extraction process aims
to supervise whether the glyph structure is correctly trans-
ferred. Since every Chinese glyph can be decomposed into
a unique component set following a depth-first reading or-
der, we treat the component extraction process as a sequen-
tial problem. To proceed, the CNN-based feature encoder
F extracts high-level visual features from the input im-
age x: H = F(x), where H has a spatial dimension of
C×H×W . Thus the encoder outputH is a feature vector
of L = H ×W elements, where each element hi is a C-
dimensional vector that represents its corresponding region
in the input image, denoted byH = {h1, h2, ..., hL}.

Compared with other sequential learning methods, e.g.,
CTC [9] and Transformer [37], the attention mechanism is
particularly well suited for our purposes due to its efficiency
and ease of convergence. Therefore, we adopt the attention-
based decoder A to generate the component sequences, de-
noted by Y = {y1, y2, ..., yT }, where T is the length of the
component sequence. Note that the length of the compo-
nent sequence is variable. The decoder predicts the output
sequence one symbol at a time until an end-of-sequence to-
ken ′EOS′ is predicted. At every time step t, output yt is,

yt = Softmax(Woxt + bo), (1)

where xt is the output vector at time step t. We update xt
alongs with the hidden state st using a gated recurrent unit
(GRU) as:

(xt, st) = GRU((gt, yprev), st−1), (2)

where (gt, yprev) is the concatenation of the glimpse vectors
gt and the embedding vetors of the previous output yt−1; gt
is calculated through the attention mechanism as follows:

yprev = Embedding(yt−1), (3)
et = tanh(st−1Ws + yprevWy + b), (4)

αt,i = exp(et,i) /

L∑
j=1

(exp(et,j)), (5)

gt =

L∑
i=1

(αt,ihi), (6)

where Wo, bo,Ws,Wy and b are trainable parameters; hi
denotes the i-th feature vector in the input feature mapH .

Using only component labels as weak supervision, the
attention-based decoder is able to localize every component

by minimizing the structure retention loss. Note that F and
A are only optimized with the real samples Is, denote as:

LCAM
strc = EIs∈Ps

[
−

T∑
i=1

ŷt log(A(F(Is)))t
]
, (7)

where ŷt denotes the corresponding ground-truth compo-
nent label at time step t. As shown in Fig. 3, at every time
step t, the decoder is able to focus on the corresponding
component region. Thus, if the component prediction of
the generated glyph goes wrong, the generator G is penal-
ized for an incorrect structure transfer, denote as:

LG
strc = EIs∈Ps,Ic∈Pc

[
−

T∑
i=1

ŷt log(A(F(G(Is, Ic))))t
]
.

(8)
In this manner, G is supervised to generate glyph struc-

ture at the component level, devoted to preserving every sin-
gle component correctly. Unlike most existing methods that
only extract a global content representation, which often
leads to incomplete structures, we employ LG

strc to super-
vise the content encoder Ec at the component level, guiding
Ec to actively decompose the content representation from Ic
at the component level. Such a learning scheme is more ca-
pable of handling the enormous Chinese categories, as well
as preserving the complicated structures.

Multi component-level discrimination We further in-
troduce a style classifier CLS(·) and a discriminator
Dcomp to conduct component-level discrimination. Intu-
itively, people naturally pay more attention to the local
parts/components but less to the entire shape when distin-
guishing different font styles. Therefore, we conduct the
style classification and realism discrimination by utilizing
the attention maps A = {α1, α2, ..., αT }, αt ∈ RH×W

as the label of component regions. To effectively guide the
generation process, we conduct multi-component-level dis-
crimination for each input image simultaneously.

3.3. Loss Function

Adversarial loss The generator G aims to synthesize
a realistic image that is indistinguishable from real sam-
ples. Hence, we adopt a U-Net based discriminator [35],
where the encoder partDenc and the decoder partDdec per-
form per-image and per-pixel discrimination, respectively.
Therefore, the generator now has to fool both Denc and
Ddec via the adversarial loss:

Ladv = Lenc
adv + λdecLdec

adv, (9)

Lenc
adv = EIs∈Ps,Ic∈Pc

[logDenc(Is)+log(1−Denc(G(Is, Ic)))],
(10)

Ldec
adv = EIs∈Ps,Ic∈Pc

[∑
i,j

log[Ddec(Is)]i.j

+
∑
i,j

log(1− [Ddec(G(Is, Ic))]i,j)
]
,

(11)

where [Ddec(·)]i,j denotes the discrimination output at
position(i, j). We set λdec to 0.1 in our experiments.

Style matching loss In addition to using structure reten-
tion loss to supervise the structure correctness (Sec. 3.2),
the generated image should also maintain both global and
local style coherence. To this end, the style classifier
CLS(·) performs the style classification over the whole in-
put image to ensure global style coherence, along with per-
forming this classification on a per-component basis to esti-
mate the local style consistency. Therefore, the style match-
ing loss is computed by considering the above two aspects
simultaneously. Given the 2D-attention map αt at time step
t and the corresponding style label w of the reference style
image Is, the style matching loss is defined as:

LCAM
sty = EIs∈Ps

[
− w log(CLS(F(Is))

−
T∑

t=1

w log(CLS(αt ⊗F(Is))
]
.

(12)

Here, ⊗ refers to an element-wise multiplication. Note that
CLS(·) is only optimized with real samples Is, thus it can
guide the generator to synthesize images with a highly simi-
lar font style w to the reference image Is. Correspondingly,
the generator is optimized by minimizing:

LG
sty = EIs∈Ps,Ic∈Pc

[
− w log(CLS(F(G(Is, Ic))

−
T∑

t=1

w log(CLS(αt ⊗F(G(Is, Ic))))
]
.

(13)

Essentially, the LG
sty enforces the style encoder Es to disen-

tangle the style representation at the component level, thus
enabling the Es to capture diverse local styles while main-
taining global style coherence. Notably, the LG

sty results in
a more powerful style encoderEs, which can accurately en-
code local style patterns from any reference style sample Is
without accessing the corresponding component labels.

Component realism loss Furthermore, a discriminator
Dcomp is additionally employed to classify each component
patch into being real or fake, further supervising the visual
verisimilitude of Igen at the component level, denoted as:

Lcomp = EIs∈Ps,Ic∈Pc

[
logDcomp(F(Is))

+

T∑
i=1

log(1−Dcomp(αt ⊗F(G(Is, Ic)))
]
,

(14)

encouraging the generator to pay more attention to local re-
alism of the generated glyph images.

Identity loss We additionally adopt the identity loss to
guarantee the identity mapping in the generator G: the gen-
erator G is able to reconstruct the style reference image Is

T=4

T=5

T=6

Figure 3. Visualization of attention maps on different lengths of
component sequences. Symbols below the images are the pre-
dicted components.

when Is is also provided as the content input, i.e.,

Lidt = EIs∈Ps
‖Is −G(Is, Is)‖1 . (15)

This identity loss stabilizes the training process to a certain
extent, as it avoids an excessive style transfer. Content loss
We adopt a content loss to guarantee that the extracted con-
tent representation Xc is style-invariant, denoted as:

Lcnt = EIs∈Ps,Ic∈Pc
‖Xc − Ec(G(Is, Ic))‖1 . (16)

Full objective Finally, the discriminator D, the
Component-Aware Module CAM and the generator G of
our proposed CG-GAN are optimized respectively as

LD = −Ladv,LCAM = −Lcomp + LCAM
strc + LCAM

sty ,
(17)

LG = Ladv+Lcomp+LG
strc+LG

sty+Lidt+λcntLcnt. (18)

The entire framework is trained from scratch in an end-to-
end manner. We set λcnt to 10 in our experiments.

4. Experiments
4.1. Chinese font generation

Datasets To evaluate our method with the Chinese font
generation task, we collect a dataset containing 423 fonts.
We randomly select 399 fonts as the training set (i.e. seen
fonts), where each font contains 800 Chinese characters (i.e.
seen characters) that can be decomposed by 385 compo-
nents. We evaluate the one-shot Chinese font generation
ability on two test sets: One is the 399 seen fonts with 150
unseen characters per font. The other is the remaining 24
unseen fonts with 200 unseen characters per font. We ad-
ditionally evaluate the generalization ability to the unseen
language glyphs by using a Korean glyph test set consisting
of the 24 unseen fonts with 200 Korean characters per font.

Comparison with state-of-the-art methods We com-
pared our model with six state-of-the-art methods, in-
cluding four few-shot Chinese font generation methods
(zi2zi [50], EMD [47], LF-font [30], DG-Font [41]), and
two unsupervised image-to-image translation methods (Cy-
cleGAN [49], FUNIT [23]). For a fair comparison, we use

Source:

Ours:

CycleGAN:

EMD:

zi2zi:

FUNIT:

DG-Font:

LF-Font-8shot:

Target:

LF-Font-1shot:

(a) Seen styles and unseen contents.

Source:

Target:

Ours:

LF-Font-8shot:

LF-Font-1shot:

FUNIT:

DG-Font:

EMD:

(b) Unseen styles and unseen contents.

Source:

Reference style

Ours:

EMD:

DG-Font:

FUNIT:

(c) Cross lingual font generation.

Figure 4. Comparisons with the state-of-the-art methods for font generation.

the font Song as the source font which is a common setting
in the font generation task [30, 41, 47]. Since Cycle-GAN
can only learn the mapping from one domain to another at
a time, we train a total of 399 CycleGAN models. LF-Font
exhibits a low visual quality in inference if only one ref-
erence sample is provided. Hence, we evaluate its perfor-
mance in an eight-shot setup (its original setting) and a one-
shot setup respectively. All models are trained from scratch
using their official code.

Evaluation metrics We use several metrics for quanti-
tative evaluation. First, SSIM and RMSE are employed to
measure whether pixel-level details can be preserved, and a
higher SSIM and a lower RMSE represent less image distor-
tion of the generated images. Second, LPIPS [46] is adopted
to quantify the perceptual similarity; where a lower LPIPS
denotes the generated image is more in line with human vi-
sual perception. Third, FID [10] is employed to measure
whether the model can match the target data domain distri-
bution. A lower FID represents a higher quality and variety
of the generated images. Finally, a user preference study
is conducted to quantify the subjective quality of output im-

ages. We randomly select 30 seen fonts and 20 unseen fonts
from the two Chinese glyph test sets. At each time, the
participants are shown the reference style image along with
n generated samples generated by the n different methods,
and asked to pick the best result. In total, we have collected
2,400 responses in two scenarios of seen styles and unseen
styles respectively, contributed by 48 participants.

Quantitative comparison The quantitative results are
shown in Table 1. Except for the LF-Font-eight-shot, all the
reported results are tested in a one-shot setting. As shown in
Table 1, CG-GAN achieves the best performance on all the
evaluation metrics for both seen styles and unseen styles.
Particularly, CG-GAN outperforms previous state-of-the-
arts with significant gaps in both perceptual-level metrics
and human visual preference, e.g., achieves 8.92 lower FID
in seen styles and 10.87 lower FID in unseen styles than the
second-best LF-Font-8-shot, and gain more than 60% of the
visual choice under both scenarios. Notably, with just one
shot, CG-GAN still outperforms the second-best LF-Font-
eight-shot, which further demonstrates the powerful gener-
ation ability of our proposed method.

Table 1. Quantitative evaluation on the whole dataset. We eval-
uate methods on seen styles and unseen contents, unseen styles
and unseen contents. The bold number indicates the best.

Methods SSIM↑ RMSE↓ LPIPS↓ FID↓ User
preference (%)

Seen styles and Unseen contents
cycleGAN [49] 0.7092 0.0247 0.3010 64.85 4.48
FUNIT [23] 0.7269 0.0244 0.2720 57.72 5.24
zi2zi [50] 0.7666 0.0216 0.2268 59.79 3.43
EMD [47] 0.7519 0.0213 0.2536 61.29 0.10
DG-Font [41] 0.7697 0.0212 0.2079 41.56 8.19
8-LF-Font [30] 0.7535 0.0223 0.2227 15.46 13.81
1-LF-Font [30] 0.7427 0.0232 0.2499 19.36 -
CG-GAN (ours) 0.7703 0.0212 0.1919 6.54 64.76

Unseen styles and Unseen contents
FUNIT [23] 0.7074 0.0249 0.2892 64.68 3.90
EMD [47] 0.7373 0.0219 0.2620 84.84 0.19
DG-Font [41] 0.7553 0.0221 0.2195 55.73 13.52
8-LF-Font [30] 0.7419 0.0225 0.2295 28.81 8.00
1-LF-Font [30] 0.7310 0.0232 0.2529 33.49 -
CG-GAN (ours) 0.7568 0.0218 0.2058 17.94 74.38

Qualitative comparison In Fig. 4 (a) and (b), we pro-
vide a visual comparison of seen styles and unseen styles,
which intuitively explains the significant gaps of CG-GAN
in the user preference study. For these two challenging
scenarios, our method generates glyph images of higher
quality than state-of-the-arts, particularly better satisfying
both style consistency and structure correctness. Cycle-
GAN and FUNIT often produce results in an incomplete
structure. EMD often produces severe blur and an unclear
background. zi2zi loses some detailed structure if the target
glyph is complex. LF-Font suffers from a significant de-
crease in visual quality if only one reference image is pro-
vided. DG-Font generates glyphs containing characteristic
artifacts, which can be observed in the highlighted region.
As shown in Fig. 4 (c), we further test the generalization
ability to unseen components, i.e., cross-lingual font gen-
eration. Owing to a stronger representation capability, our
model shows superior cross-lingual FFG performance.

4.2. Handwriting generation

By coupling component-level supervision with a novel
framework design, CG-GAN can be directly applied to
handwriting generation task without any adjustment. To
evaluate this, we conduct experiments on IAM handwrit-
ing dataset [27]. IAM dataset consists of 9,862 text lines
with 62,857 handwritten words, contributed by 500 differ-
ent writers. In our experiments, only the training and val-
idate sets are used for model training, and the test set is
kept apart for evaluation. For a fair comparison, we evalu-
ate our methods with the state-of-the-art handwriting gen-
eration methods under the following two scenarios:

Writer-relevant handwriting generation Following
previous studies [2,17], we first evaluate the writer-relevant
scenario, where FID is calculated for each writer between

Table 2. Writer-relevant handwriting generation quality com-
parison. All four settings: In-Vocabulary words and seen style
(IV-S), In-Vocabulary words and unseen style (IV-U), Out-of-
vocabulary words and seen styles (OOV-S), Out-of-vocabulary
words and unseen styles (OOV-U).

IV-S IV-U OOV-S OOV-U

GAN writing [17] 120.07 124.30 125.87 130.68

HWT [2] 106.97 108.84 109.45 114.10

CG-GAN (ours) 102.18 110.07 104.81 113.01

Table 3. Writer-irrelevant handwriting generation quality
comparison. Writer identity is ignored when calculating FID.

Method ScrabbleGAN [6] HiGAN [7] HWT [2] CG-GAN (ours)

FID 23.78 17.28 19.40 19.03

its corresponding generated samples and real samples, and
finally average the sum of FID of all writers. Thus the fi-
nal FID scores evaluate the generative quality and simulta-
neously, the style imitation capability. We use HWT [2]
and GANwriting [17] as our baselines, which can syn-
thesize images with referenced style. Shortly, HWT is
a transformer-based method that can synthesize arbitrary-
length texts. GANwriting can generate short word images
with no more than ten letters. We evaluate the compet-
ing methods in four different settings: IV-S, IV-U, OOV-S,
OOV-U, respectively.

As shown in Table 2, our proposed CG-GAN shows
comparable performance with the state-of-the-arts. We sur-
pass the second-best HWT under three settings of IV-S,
OOV-S, and OOV-U. Particularly for the most challenging
one, where both words and styles have never been seen dur-
ing training(OOV-U), CG-GAN still achieves around 1.0
lower FID than the second-best HWT. Note that both HWT
and GANwriting use 15 style reference images for training,
and their proposed results are tested in a 15-shot setting,
whereas our method is trained and tested under only a 1-
shot setting.

Writer-irrelevant handwriting generation We further
evaluate the writer-irrelevant scenario, where writer iden-
tity is ignored when calculating the FID score. Under this
scenario, we use HWT [2], ScrabbleGAN [6] and HiGAN
[7] as our baselines. Briefly, ScrabbleGAN can synthesize
long texts with random styles but cannot imitate referenced
styles. HiGAN can synthesis an arbitrary-length text either
with a random or referenced style. As shown in Table 3, our
method achieves comparable performance with the state-of-
the-arts. A visual comparison is shown in Fig. 5.

4.3. Ablation study

We perform multiple ablation studies to evaluate the ef-
fectiveness of our proposed CAM on the one-shot Chinese
font generation task. The results are tested on the unseen

Style CG-GAN (ours) HiGAN GANWriting

Figure 5. Visual comparison for synthesizing handwritten words.

styles test dataset.
Effectiveness of the Component-level supervision We

compare our component-level supervision with commonly
used pixel-level supervision and character-level supervi-
sion. Pixel-level supervision is performed by removing the
CAM module and replacing the component-level objectives
with the L1 loss. Note that pixel-level supervision is trained
using paired data which uses the same reference style im-
ages as our unpaired data settings. Character-level supervi-
sion is implemented by replacing the component labels with
the character labels. In this manner, the loss supervision is
conducted at the character level. As shown in Table 4, We
can see that the quantitative results obviously improve in
terms of SSIM, RMSE, LPIPS and FID, which demonstrate
the effectiveness of our proposed component-level supervi-
sion.

Effectiveness of the Component-Aware Module We
further analyze the influence of each component-level su-
pervision provided by CAM. First, we build a baseline, re-
move the CAM module and replace it with a style classifier
at the image level, and thus the baseline no longer contains
any component-level supervision. Next, we successively
add different parts of the multi-component-level supervi-
sion and analyze their impact, including structure retention
loss, style matching loss and component realism loss. The
results are reported in Table 5, we can observe that all of our
proposed component-level objective functions are essential,
the addition of each objective can make a further improve-
ment on both visual quality and quantitative results.

5. Extension
Our framework can be further extended to the scene text

editing (STE) task, which is challenging due to large varia-
tions in font style, text shape and background. Existing STE
methods [39,42] generally approach this task in two stages:
first rendering the target textual content to obtain the text-
modified foreground, and erasing the original text to obtain
the text-erased background, finally fusion the two to obtain
the desired target image. However, these two-stage methods
do not generalize well to real-world scene text images due

Table 4. Effectiveness of the Component-level supervision.

Method SSIM↑ RMSE↓ LPIPS↓ FID↓
pixel-level 0.7479 0.0223 0.2298 51.44

character-level 0.7529 0.0223 0.2142 33.21

component-level 0.7568 0.0218 0.2058 17.94

Table 5. Effectiveness of the Component-Aware Module.

SSIM↑ RMSE↓ LPIPS↓ FID↓
baseline 0.7517 0.0225 0.2251 49.09

+Lstrc 0.7487 0.0227 0.2138 22.33

+Lstrc+Lsty 0.7532 0.0216 0.2084 18.67

+Lstrc+Lsty+Ldcomp 0.7568 0.0218 0.2058 17.94

to strong mutual interference of the background and fore-
ground. By contrast, our framework abandons the ineffi-
cient multi-stage rendering and alleviates the intervention
problem with the help of component-level supervision. As
shown in Fig. 6, our framework generates quite promising
results that exceed our expectations, showing the impressive
potential of our proposed approach. The implementation
details are shown in the Appendix A.

(a) Original image (b) Edited text image

Figure 6. Visualization of scene text editing results. (a) and (b)
are original text images and text edited images with different text
contents and lengths.

6. Conclusion

In this paper, we propose a simple yet effective CG-
GAN for one-shot font generation. Specifically, we intro-
duce a CAM to supervise the generator. The CAM decou-
ples the style and content at a more fine-grained level, i.e.,
the component level, to guide the generator to achieve more
promising representation ability. Furthermore, to our best
knowledge, CG-GAN is the first FFG method that can be
potentially extended to both handwriting word generation
and scene text editing, showing its generalization ability.

Acknowledgement

This research is supported in part by NSFC (Grant
No.: 61936003) and GD-NSF (No.2017A030312006,
No.2021A1515011870).

References
[1] Asha Anoosheh, Eirikur Agustsson, Radu Timofte,

and Luc Van Gool. ComboGAN: Unrestrained Scal-
ability for Image Domain Translation. In CVPRW,
pages 783–790, 2018. 2

[2] Ankan Kumar Bhunia, Salman Khan, Hisham
Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz
Khan, and Mubarak Shah. Handwriting Transformers.
In ICCV, pages 1086–1094, 2021. 7

[3] Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado
Lee, Seonghyeon Kim, and Hwalsuk Lee. Few-shot
Compositional Font Generation with Dual Memory. In
ECCV, pages 735–751, 2020. 1, 2, 3

[4] Jie Chang, Yujun Gu, Ya Zhang, Yan-Feng Wang, and
CM Innovation. Chinese handwriting imitation with
hierarchical generative adversarial network. In BMVC,
2018. 3

[5] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-
Woo Ha, Sunghun Kim, and Jaegul Choo. StarGAN:
Unified Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation. In CVPR, pages
8789–8797, 2018. 2

[6] Sharon Fogel, Hadar Averbuch-Elor, Sarel Cohen,
Shai Mazor, and Roee Litman. ScrabbleGAN: Semi-
Supervised Varying Length Handwritten Text Genera-
tion. In CVPR, pages 4324–4333, 2020. 7

[7] Ji Gan and Weiqiang Wang. HiGAN: Handwrit-
ing Imitation Conditioned on Arbitrary-Length Texts
and Disentangled Styles. In AAAI, pages 7484–7492,
2021. 7

[8] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In NeurIPS, pages 2672–2680, 2014. 2

[9] Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In ICML, pages 369–
376, 2006. 4

[10] Martin Heusel, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium. In NeurIPS,
pages 6626–6637, 2017. 6

[11] Xun Huang and Serge Belongie. Arbitrary Style
Transfer in Real-Time with Adaptive Instance Nor-
malization. In ICCV, pages 1501–1510, 2017. 3

[12] Yaoxiong Huang, Mengchao He, Lianwen Jin, and
Yongpan Wang. RD-GAN: Few/Zero-Shot Chinese
Character Style Transfer via Radical Decomposition
and Rendering. In ECCV, pages 156–172, 2020. 3

[13] Le Hui, Xiang Li, Jiaxin Chen, Hongliang He, and
Jian Yang. Unsupervised Multi-Domain Image Trans-
lation with Domain-Specific Encoders/Decoders. In
ICPR, pages 2044–2049, 2018. 2

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and
Alexei A Efros. Image-to-Image Translation with
Conditional Adversarial Networks. In CVPR, pages
1125–1134, 2017. 2

[15] Yue Jiang, Zhouhui Lian, Yingmin Tang, and Jianguo
Xiao. DCFont: an end-to-end deep chinese font gen-
eration system. In SIGGRAPH Asia Technical Briefs,
pages 1–4, 2017. 3

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Per-
ceptual losses for real-time style transfer and super-
resolution. In ECCV, pages 694–711, 2016. 2

[17] Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusiñol,
Alicia Fornés, and Mauricio Villegas. GANwriting:
Content-Conditioned Generation of Styled Handwrit-
ten Word Images. In ECCV, pages 273–289, 2020. 7

[18] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Angue-
los Nicolaou, Suman Ghosh, Andrew Bagdanov,
Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vi-
jay Ramaseshan Chandrasekhar, Shijian Lu, et al. IC-
DAR 2015 competition on robust reading. In ICDAR,
pages 1156–1160, 2015. 2

[19] Dimosthenis Karatzas, Faisal Shafait, Seiichi
Uchida, Masakazu Iwamura, Lluis Gomez i Bigorda,
Sergi Robles Mestre, Joan Mas, David Fernan-
dez Mota, Jon Almazan Almazan, and Lluis Pere
De Las Heras. Icdar 2013 robust reading competition.
In ICDAR, pages 1484–1493, 2013. 2

[20] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim,
Jung Kwon Lee, and Jiwon Kim. Learning to
Discover Cross-Domain Relations with Generative
Adversarial Networks. In ICML, pages 1857–1865,
2017. 2

[21] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. In ICLR, 2014. 2

[22] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Un-
supervised Image-to-Image Translation Networks. In
NeurIPS, pages 700–708, 2017. 2

[23] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras,
Timo Aila, Jaakko Lehtinen, and Jan Kautz. Few-Shot
Unsupervised Image-to-Image Translation. In ICCV,
pages 10551–10560, 2019. 3, 5, 7

[24] Ming-Yu Liu and Oncel Tuzel. Coupled generative ad-
versarial networks. In NeurIPS, pages 469–477, 2016.
2

[25] Simon M Lucas, Alex Panaretos, Luis Sosa, An-
thony Tang, Shirley Wong, Robert Young, Kazuki

Ashida, Hiroki Nagai, Masayuki Okamoto, Hiroaki
Yamamoto, et al. ICDAR 2003 robust reading com-
petitions: entries, results, and future directions. In IC-
DAR, pages 105–122, 2003. 2

[26] Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu,
Tengteng Huang, and Wenyu Liu. Auto-encoder
guided gan for chinese calligraphy synthesis. In IC-
DAR, pages 1095–1100, 2017. 3

[27] U-V Marti and Horst Bunke. The IAM-database:
an English sentence database for offline handwriting
recognition. In ICDAR, pages 39–46, 2002. 7

[28] Mehdi Mirza and Simon Osindero. Conditional gen-
erative adversarial nets. arXiv preprint, 2014. 2

[29] Anand Mishra, Karteek Alahari, and CV Jawahar.
Scene text recognition using higher order language
priors. In BMVC, 2012. 2

[30] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee,
and Hyunjung Shim. Few-shot Font Generation with
Localized Style Representations and Factorization. In
AAAI, pages 2393–2402, 2021. 1, 2, 3, 5, 6, 7

[31] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee,
and Hyunjung Shim. Multiple heads are better than
one: Few-shot font generation with multiple localized
experts. In ICCV, pages 13900–13909, 2021. 3

[32] Trung Quy Phan, Palaiahnakote Shivakumara,
Shangxuan Tian, and Chew Lim Tan. Recognizing
text with perspective distortion in natural scenes. In
ICCV, pages 569–576, 2013. 2

[33] Rewrite. https://github.com/kaonashi-tyc/rewrite. 1,
2, 3

[34] Anhar Risnumawan, Palaiahankote Shivakumara,
Chee Seng Chan, and Chew Lim Tan. A robust ar-
bitrary text detection system for natural scene images.
Expert Systems with Applications, pages 8027–8048,
2014. 2

[35] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva.
A U-Net Based Discriminator for Generative Adver-
sarial Networks. In CVPR, pages 8207–8216, 2020.
3, 4, 2

[36] Danyang Sun, Tongzheng Ren, Chongxun Li, Hang
Su, and Jun Zhu. Learning to Write Stylized Chinese
Characters by Reading a Handful of Examples. In IJ-
CAI, pages 920–927, 2018. 3

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In NeurIPS, pages 5998–6008, 2017. 4

[38] Kai Wang, Boris Babenko, and Serge Belongie. End-
to-end scene text recognition. In ICCV, pages 1457–
1464, 2011. 2

[39] Liang Wu, Chengquan Zhang, Jiaming Liu, Junyu
Han, Jingtuo Liu, Errui Ding, and Xiang Bai. Edit-
ing text in the wild. In ACM MM, pages 1500–1508,
2019. 8

[40] Shan-Jean Wu, Chih-Yuan Yang, and Jane Yung-jen
Hsu. CalliGAN: Style and Structure-aware Chinese
Calligraphy Character Generator. In CVPRW, 2020.
1, 2, 3

[41] Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu.
DG-Font: Deformable Generative Networks for Un-
supervised Font Generation. In CVPR, pages 5130–
5140, 2021. 2, 3, 5, 6, 7

[42] Qiangpeng Yang, Jun Huang, and Wei Lin. Swaptext:
Image based texts transfer in scenes. In CVPR, pages
14700–14709, 2020. 8

[43] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong.
DualGAN: Unsupervised Dual Learning for Image-to-
Image Translation. In ICCV, pages 2849–2857, 2017.
2

[44] Moonbin Yim, Yoonsik Kim, Han-Cheol Cho, and
Sungrae Park. SynthTIGER: Synthetic Text Image
GEneratoR Towards Better Text Recognition Models.
In ICDAR, pages 109–124, 2021. 2

[45] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and
Augustus Odena. Self-Attention Generative Adver-
sarial Networks. In ICML, pages 7354–7363, 2019.
2

[46] Richard Zhang, Phillip Isola, Alexei A Efros, Eli
Shechtman, and Oliver Wang. The Unreasonable Ef-
fectiveness of Deep Features as a Perceptual Metric.
In CVPR, pages 586–595, 2018. 6

[47] Yexun Zhang, Ya Zhang, and Wenbin Cai. Separating
Style and Content for Generalized Style Transfer. In
CVPR, pages 8447–8455, 2018. 1, 2, 3, 5, 6, 7

[48] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. The
spatially-correlative loss for various image translation
tasks. In CVPR, pages 16407–16417, 2021. 2

[49] Jun-Yan Zhu, Taesung Park, Phillip Isola, and
Alexei A Efros. Unpaired Image-to-Image Transla-
tion using Cycle-Consistent Adversarial Networks. In
ICCV, pages 2223–2232, 2017. 2, 5, 7

[50] Zi2zi. https://github.com/kaonashi-tyc/zi2zi. 1, 2, 3,
5, 7

Look Closer to Supervise Better:
One-Shot Font Generation via Component-Based Discriminator

Supplementary Material

A. Implementation

A.1. Training details

The model is optimized using Adam with the settings of
β1=0.5 and β2=0.999. All modules are trained from scratch
with a learning rate of 0.0001. We initialize the weights of
convolutional and linear layers with a Guassian distribution
N (0,0.02). The batch size is set to 16 in all experiments.
Our method is implemented in PyTorch and all experiments
are conducted on a single NVIDIA 1080Ti GPU.

Chinese font generation All the images are resized to
128× 128 pixels. The learning rate is initially set to 0.0001
and linearly decreased to zero after 40 epochs.

Handwriting generation The images are resized to a
height of 64 pixels, and the width is calculated with the
original aspect ratio (up to 384 pixels). We keep the learn-
ing rate as 0.0001 for the first 15 epochs and linearly decay
the rate to zero over the next 30 epochs.

Scene text editing For the scene text editing task, the
model is trained with synthetic data and evaluated on real-
world scene text image data. Specifically, we generate 1.4M
synthetic data (Is, I

′

s) with the synthesizing engine Syn-
thTiGER [44], where Is and I

′

s have different textual con-
tent (T, T

′
) respectively but other image properties such as

background, font, etc. remain the same. In the training pro-
cess, we use Is as the style reference input and meanwhile,
render the textual content T

′
into a content reference im-

age, which is used as the content reference input. Since
the scene text image lacks a style label, we set the style
retention loss to zero and add the perceptual loss [16] and
the spatially-correlative loss [48] on the basis of the origi-
nal training objectives. The test set is sampled from regu-
lar and irregular scene text datasets, including IIIT5k [29],
SVT [38], IC03 [25], IC13 [19], SVT-P [32], CUTE80 [34]
and IC15 [18], with a total of 9,350 real-world scene text
images. All the images are resized to 64 × 256 pixels and
the model is trained for 20 epochs with a learning rate of
0.0001.

A.2. Network architectures

Generator architecture Our generator is built upon the
ResNet architecture of [45], and is further extended with
our proposed changes. The original generator of [45] is
an encoder-decoder architecture. In order to obtain the font
generator, we adopt the original encoder architecture as our
style encoder and content encoder, while using the original
decoder architecture as our mixer, with a channel multiplier

ch = 64. Specifically, the style encoder and the content en-
coder have the same architecture, consisting of five ResNet
down-sampling blocks with a total down-sampling rate of
32. In the mixer, the encoded features are upsampled via
five ResNet up-sampling blocks until the original image res-
olution is reached. To produce the 3×H×W output image,
an InstanceNorm-ReLU-conv2d block with output channel
3 is additionally appended as the last layer of the mixer.
We remove the self-attention layer in all ResNet blocks and
add AdaIN operation as the normalization layer in every up-
sampling block of the mixer.

CAM architecture The proposed CAM aims to super-
vise the generator at the component level. The detailed ar-
chitecture of the CAM is shown in Table 6.

Discriminator architecture For the discriminator net-
works, we adopt a U-Net based discriminator [35]. Specif-
ically, We adopt the U-Net discriminator architecture of the
128× 128 resolution with a channel multiplier ch = 16.

B. Additional qualitative results
In this section, We present more qualitative results and

ablation study results to better validate the effectiveness of
our proposed method.

B.1. One-shot font generation

In Fig. 7 and Fig. 8, we present more generated sam-
ples in two scenarios: seen styles and unseen styles, respec-
tively. Specifically, we randomly select 30 seen fonts and
20 unseen fonts from the two Chinese glyph test sets, and
randomly sample 10 unseen target glyphs for each font to
carry out the qualitative evaluation. Note that all the gen-
erated glyphs are tested in a one-shot setting, with one sin-
gle style reference image provided. The results show that
CG-GAN can generate high-quality glyph images in both
scenarios, suggesting the superior one-shot font generation
ability. Fig. 9 shows that our model is able to extend to
cross-lingual font generation. The model is trained on Chi-
nese fonts but is able to generate a complete Korean font
library in inference.

B.2. Latent space interpolations

In Fig. 11, we perform a linear style interpolation be-
tween two random styles on the IAM dataset. We can ob-
serve that the generated image can smoothly change from
one style to another, while strictly preserving its textual con-
tent. The results indicate that CG-GAN can generalize in
the style latent space rather than memorizing some specific

Table 6. CAM architecture. BN denotes the batch normalization, and IN denotes the Instance normalization

Operation Kernel size Resample Padding Feature maps Normalization Nonlinearity

Feature encoder

Convolution 7 MaxPool 3 96 BN PReLU
Convolution 3 MaxPool 1 128 BN PReLU
Convolution 3 MaxPool 1 160 BN PReLU
Convolution 3 - 1 256 BN PReLU
Convolution 3 MaxPool 1 256 BN PReLU

Attention decoder
256 hidden units,
256 GRU units

Style classifier

Convolution 3 MaxPool 1 256 IN PReLU
Convolution 3 - 1 512 IN PReLU
Convolution 3 MaxPool 1 512 IN PReLU
Convolution 3 - 1 n styles - -

Component-wise discriminator

Convolution 3 MaxPool 1 128 IN PReLU
Convolution 3 MaxPool 1 64 IN PReLU
Convolution 3 - 1 16 IN PReLU
Convolution 3 - 1 1 - -

style patterns. Besides, we present some synthetic word im-
ages with various calligraphic styles in Fig. 10, where each
row presents diverse generated samples in the same calli-
graphic style.

B.3. Scene text editing

In Fig. 12, we present more scene text editing results. As
we can observe, our model can robustly edit textual contents
with different lengths, and achieve promising results even in
challenging cases, such as complex backgrounds or slanted
or curved texts.

B.4. Additional ablation results

Influence of the style latent vector In this part, we
trained a variant where the AdaIN operation including the
style latent vector fs is removed. Results are shown in Ta-
ble 7. It is noted that there is only a slight drop in perfor-
mance, indicating that the style latent vector fs is not that
necessary. Such results partly reflect our primary purpose,
that is, the performance improvement is mainly gained by
providing more effective supervision for the generator, not
by struggling to increase the complexity of the generator.

Influence of the U-net Discriminator We further inves-
tigate the influence of the U-net architecture of the discrim-
inator. Specifically, we trained a variant where the U-net
architecture of the discriminator is removed, only the en-
coder part Denc is preserved. For font generation and hand-
writing generation tasks, we set the channel multiplier ch
of the discriminator to 16 and 64, respectively. As shown
in Table 8, the performance of the variant is comparable
to our current approach on the font generation task, which
still outperforms all the other baselines in all metrics. And
the variant is also competitive on handwriting generation
task, as shown in Table 9. The results indicate that decoder
partDdec has no significant effect on the performance. This

may be due to the simple background of the dataset, which
contains a lot of pixels with values (255,255,255), thus the
pixel-level discrimination performed byDdec may not be so
effective.

Table 7. The impact of the style latent vector on the Chinese font
generation task.

Method SSIM↑ RMSE↓ LPIPS↓ FID↓

CG-GAN (ours) 0.7568 0.0218 0.2058 17.94
w/o style latent 0.7549 0.0225 0.2193 18.73

Table 8. The impact of the U-net architecture of the discriminator
on the Chinese font generation task.

Method SSIM↑ RMSE↓ LPIPS↓ FID↓
Seen styles and Unseen contents

CG-GAN (ours) 0.7703 0.0212 0.1919 6.54
w/o Ddec 0.7795 0.0207 0.1821 7.14

Unseen styles and Unseen contents
CG-GAN (ours) 0.7568 0.0218 0.2058 17.94

w/o Ddec 0.7603 0.0214 0.1967 19.07

Table 9. The impact of the U-net architecture of the discriminator
on the writer-relevant handwriting generation task.

IV-S IV-U OOV-S OOV-U

CG-GAN (ours) 102.18 110.07 104.81 113.01
w/o Ddec 101.48 111.29 102.67 112.77

Figure 7. Seen styles and unseen contents in Chinese one-shot font generation.

Figure 8. Unseen styles and unseen contents in Chinese ont-shot font generation.

Figure 9. Cross lingual font generation.

Style Reference Generated Text

Figure 10. Visual comparison for synthesizing handwritten words.

Real

Generated

Real

Generated

Generated

Real

Real

Generated

Real

Generated

Real

Generated

Real

Generated

tyle tyle

Figure 11. Style interpolation between two different styles.

Figure 12. Additional scene text editing results.

	1 . Introduction
	2 . Related works
	2.1 . Image-to-Image Translation
	2.2 . Few-shot Font Generation

	3 . Methodology
	3.1 . Generator
	3.2 . Component-Aware Module
	3.3 . Loss Function

	4 . Experiments
	4.1 . Chinese font generation
	4.2 . Handwriting generation
	4.3 . Ablation study

	5 . Extension
	6 . Conclusion
	A . Implementation
	A.1 . Training details
	A.2 . Network architectures

	B . Additional qualitative results
	B.1 . One-shot font generation
	B.2 . Latent space interpolations
	B.3 . Scene text editing
	B.4 . Additional ablation results

