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Abstract

While general object detection with deep learning has
achieved great success in the past few years, the perfor-
mance and efficiency of detecting small objects are far
from satisfactory. The most common and effective way to
promote small object detection is to use high-resolution
images or feature maps. However, both approaches in-
duce costly computation since the computational cost grows
squarely as the size of images and features increases. To
get the best of two worlds, we propose QueryDet that uses a
novel query mechanism to accelerate the inference speed
of feature-pyramid based object detectors. The pipeline
composes two steps: it first predicts the coarse locations
of small objects on low-resolution features and then com-
putes the accurate detection results using high-resolution
features sparsely guided by those coarse positions. In this
way, we can not only harvest the benefit of high-resolution
feature maps but also avoid useless computation for the
background area. On the popular COCO dataset, the pro-
posed method improves the detection mAP by 1.0 and mAP-
small by 2.0, and the high-resolution inference speed is im-
proved to 3.0× on average. On VisDrone dataset, which
contains more small objects, we create a new state-of-the-
art while gaining a 2.3× high-resolution acceleration on
average. Code is available at https://github.com/
ChenhongyiYang/QueryDet-PyTorch.

1. Introduction
With the recent advances of deep learning [15, 53], vi-

sual object detection has achieved massive improvements
in both performance and speed [3, 12, 26, 27, 29, 37, 39, 49].
It has become the foundation for widespread applications,
such as autonomous driving and remote sensing. However,
detecting small objects is still a challenging problem. There
is a large performance gap between small and normal scale
objects. Taking RetinaNet [27], one of the state-of-the-art
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Figure 1. QueryDet achieves highly effective small object detec-
tion in high-resolution features. The locations (query keys) where
small objects might exist are first predicted in the low-resolution
features, and a sparse feature map (query values) is constructed
using high-resolution features in those locations. Finally, a sparse
detection head is used to output the detected boxes. This paradigm
is applied in a cascaded manner, enabling fast and accurate small
object detection.

object detectors, as an example, it achieves 44.1 and 51.2
mAP on objects with medium and large sizes but only ob-
tains 24.1 mAP on small objects on COCO [28] test-dev
set. Such degradation is mainly caused by three factors: 1)
the features that highlight the small objects are extinguished
because of the down-sampling operations in the backbone
of Convolutional Neural Networks (CNN); hence the fea-
tures of small objects are often contaminated by noise in
the background; 2) the receptive field on low-resolution fea-
tures may not match the size of small objects as pointed in
[25]; 3) localizing small objects is more difficult than large
objects because a small perturbation of the bounding box
may cause a significant disturbance in the Intersection over
Union (IoU) metric.

Small object detection can be improved by scaling the
size of input images or reducing the down-sampling rate
of CNN to maintain high-resolution features, as they in-
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crease the effective resolution in the resulted feature map.
However, merely increasing the resolution of feature maps
can incur considerable computation costs. Several works [1,
26, 29] proposed to build a feature pyramid by reusing the
multi-scale feature maps from different layers of a CNN
to address this issue. Objects with various scales are han-
dled on different levels: large objects tend to be detected
on high-level features, while small objects are usually de-
tected on low levels. The feature pyramid paradigm saves
the computation cost of maintaining high-resolution fea-
ture maps from shallow to deep in the backbone. Never-
theless, the computation complexity of detection heads on
low-level features is still enormous. For example, adding
an extra pyramid level P2 into RetinaNet will bring about
300% more computation (FLOPs) and memory cost in the
detection head; hence severely lowering down the inference
speed from 13.6 FPS to 4.85 FPS on NVIDIA 2080Ti GPU.

In this paper, we propose a simple and effective method,
QueryDet, to save the detection head’s computation while
promoting the performance of small objects. The motiva-
tion comes from two key observations: 1) the computation
on low-level features is highly redundant. In most cases,
the spatial distribution of small objects is very sparse: they
occupy only a few portions of the high-resolution feature
maps; hence a large amount of computation is wasted. 2)
The feature pyramids are highly structured. Though we
cannot accurately detect the small objects in low-resolution
feature maps, we can still infer their existence and rough
locations with high confidence.

A natural idea to utilize these two observations is that we
can only apply the detection head to small objects’ spatial
locations. This strategy requires locating the rough location
of small objects at a low cost and sparse computation on the
desired feature map. In this work, we present QueryDet that
is based on a novel query mechanism Cascade Sparse Query
(CSQ), as illustrated in Fig. 1. We recursively predict the
rough locations of small objects (queries) on lower resolu-
tion feature maps and use them to guide the computations in
higher resolution feature maps. With the help of sparse con-
volution [13, 55], we significantly reduce the computation
cost of detection heads on low-level features while keep-
ing the detection accuracy for small objects. Note that our
approach is designed to save the computation spatially, so
it is compatible with other accelerating methods like light-
weighted backbones [44], model pruning [16], model quan-
tization [51], and knowledge distillation [5].

We evaluate our QueryDet on the COCO detection
benchmark [28] and a challenging dataset, VisDrone [59],
that contains a large amount of small objects. We show our
method can significantly accelerate inference while improv-
ing the detection performance. In summary, we make two
main contributions:

• We propose QueryDet, in which a simple and effective

Cascade Sparse Query (CSQ) mechanism is designed.
It can reduce the computation costs of all feature pyra-
mid based object detectors. Our method can improve
the detection performance for small objects by effec-
tively utilizing high-resolution features while keeping
fast inference speed.

• On COCO, QueryDet improves the RetinaNet baseline
by 1.1 AP and 2.0 APS by utilizing high-resolution
features, and the high-resolution detection speed is im-
proved by 3.0× on average when CSQ is adopted.
On VisDrone, we advance the state-of-the-art results
in terms of the detection mAP and enhance the high-
resolution detectopm speed by 2.3× on average.

2. Related Works
Object Detection. Deep Learning based object detection
can be mainly divided into two streams: the two-stage
detectors [2, 11, 12, 26, 39] and the one-stage detec-
tors [17, 29, 35–37, 58] pioneered by YOLO. Generally
speaking, two-stage methods tend to be more accurate
than one-stage methods because they use the RoIAlign
operation [14] to align an object’s features explicitly.
However, the performance gap between these two streams
is narrowed recently. RetinaNet [27] is the first one-stage
anchor-based detector that matches the performance of
two-stage detectors. It uses feature pyramid network
(FPN) [26] for multi-scale detections and proposes Fo-
calLoss to handle the foreground-background imbalance
problem in dense training. Recently, one-stage anchor-free
detectors [7, 7, 21, 23, 45, 56] have attracted academic
attentions because of their simplicity. In this paper, we im-
plement our QueryDet based on RetinaNet and FCOS [45]
to show its effectiveness and generalization ability.

Small Object Recognition. Small object recognition,
like detection and segmentation, is a challenging com-
puter vision task because of low-resolution features. To
tackle this problem, a large amount of works have been
proposed. These methods can be mainly categorized
into four types: 1) increasing the resolution of input
features [1, 10, 22, 24, 26, 29, 41, 48]; 2) oversampling and
strong data augmentation [20, 29, 60]; 3) incorporating
context information [4, 6, 57], and 4) scale-aware train-
ing [25, 26, 42, 43].

Spatial Redundancy. Several methods have used sparse
computation to utilize the spatial redundancy of CNNs
in different ways to save computation costs. Perforated-
CNN [9] generates masks with different deterministic sam-
pling methods. Dynamic Convolution [47] uses a small
gating network to predict pixel masks, and [54] proposes
a stochastic sampling and interpolation network. Both of
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Figure 2. The FLOPs distribution of different module when using
ResNet-50 backbone. In RetinaNet, the computational cost on the
high-resolution P3 accounts for 43% of the total cost; when the
higher-resolution P2 is added, they together account for 74% of
the total cost. Our QueryDet can effectively reduce the computa-
tion on those features by 99%, leading to a fast inference speed
and keeping a high detection accuracy. Note LR stands for the
low-resolution P4 to P7.

them adopt Gumbel-Softmax [18] and a sparsity loss for the
training of sparse masks. On the other hand, the Spatially
Adaptive Computation Time (SACT) [8] predicts a halting
score for each spatial position that is supervised by a pro-
posed ponder cost and the task-specific loss function. SB-
Net [38] adopts an offline road map or a mask to filter out
ignored region. Unlike these methods, our QueryDet fo-
cuses on objects’ scale variation and simply adopts the pro-
vided ground-truth bounding box for supervision. Another
stream of works adopts a two-stage framework: glance and
focus for adaptive inference. [50] selects small regions from
the original input image by reinforcement learning and pro-
cesses these regions with a dynamic decision process. [46]
adopts a similar idea on object detection task. One similar
work to our QueryDet is AutoFocus [33]. AutoFocus first
predicts and crop region of interest in coarse scales, then
scaled to a larger resolution for final predictions. Compared
with AutoFocus, our QueryDet is more efficient since the
“focus” operation is conducted on feature pyramids other
than image pyramids, which reduces the redundant compu-
tation in the backbone.

3. Methods

In this section, we describe our QueryDet for accurate
and fast small object detection. We illustrate our approach
based on RetinaNet [27], a popular anchor-based dense de-
tector. Note that our approach is not limited to RetinaNet,
as it can be applied to any one-stage detectors and the re-
gion proposal network (RPN) in two-stage detectors with
FPN. We will first revisit RetinaNet and analyze the com-
putational cost distribution of different components. Then
we will introduce how we use the proposed Cascade Sparse
Query to save computation costs during inference. Finally,
the training details will be presented.

3.1. Revisiting RetinaNet

RetinaNet has two parts: a backbone network with FPN
that outputs multi-scale feature maps and two detection
heads for classification and regression. When the size of
input image is H × W , the sizes of FPN features are
P = {Pl ∈ RH′×W ′×C}. Here l indicates the pyramid
level and (H ′,W ′) is usually equals to (⌊H

2l
⌋, ⌊W

2l
⌋) in a

typical FPN implementation. The detection heads consist
of four 3× 3 convolution layers, followed by an extra 3× 3
convolution layer for final prediction. For parameter ef-
ficiency, different feature levels share the same detection
heads (parameters). However, the computation costs are
highly imbalanced across different layers: the FLOPs of de-
tection heads from P7 to P3 increases in quadratic order by
the scaling of feature resolutions. As shown in Figure 2, the
P3 head occupies nearly half FLOPs while the cost of low-
resolution features P4 to P7 only accounts for 15%. Thus, if
we want to extend the FPN to P2 for better small object per-
formance, the cost is unaffordable: high-resolution P2 and
P3 will occupy 75% of the overall cost. In the following,
we describe how our QueryDet reduce the computation on
high-resolution features and promote the inference speed of
RetinaNet, even with an extra high-resolution P2.

3.2. Accelerating Inference by Sparse Query

In the design of modern FPN based detectors, small
objects tend to be detected from high-resolution low-level
feature maps. However, as the small objects are usu-
ally sparsely populated in space, the dense computation
paradigm on high-resolution feature maps is highly ineffi-
cient. Inspired by this observation, we propose a coarse-to-
fine approach to reduce the computation cost of low-level
pyramids: First, the rough locations of small objects are
predicted on coarse feature maps, and then the correspond-
ing locations on fine feature maps are intensively computed.
This process can be viewed as a query process: the rough
locations are query keys, and the high-resolution features
used to detect small objects are query values; thus we call
our approach QueryDet. The whole pipeline of our method
is presented in Figure 3.

To predict the coarse locations of small objects, we add
a query head that is parallel to the classification and regres-
sion heads. The query head receives feature map Pl with
stride 2l as input, and output a heatmap Vl ∈ RH′×W ′

with
V i,j
l indicating the probability of that the grid (i, j) con-

tains a small object. During training, we define small ob-
jects on each level as objects whose scale is smaller than
a pre-defined threshold sl. Here we set sl to the minimum
anchor scale on Pl for simplicity, and for anchor-free detec-
tors it is set to the minimum regression range on Pl. For a
small object o, we encode the target map for Query Head by
computing distance between its center location (xo, yo) and
every location on the feature map, and set locations whose
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Figure 3. The whole pipeline of the proposed QueryDet. The image is fed into the backbone and Feature Pyramid Network (FPN) to
produce a series of feature maps of different resolutions. Beginning from the query start layer (P5 in this image), each layer receives a set
of key positions from previous layer and a query operation is applied to generate the sparse value feature map. Then the sparse detection
head and the sparse query head predict the detected boxes of the corresponding scales and key positions for the next layer.

distance is smaller than sl to 1, otherwise 0. Then the Query
Head is trained using FocalLoss [27]. During inference, we
choose the locations whose predicted scores are larger than
a threshold σ as queries. Then qol will be mapped to its four
nearest neighbors on Pl−1 as key positions {kol−1}:

{kol−1} = {(2xo
l + i, 2yol + j),∀i, j ∈ {0, 1}}. (1)

All {kol−1} on Pl−1 are collected to form the key position
set {kl−1}. Then the three heads will only process those
positions to detect objects and compute next level’s queries.
Specifically, we extract features from Pl−1 using {kl−1} as
indices to construct a sparse tensor P v

l−1 that we call value
features. Then the sparse convolution (spconv) [13] kernels
are built using weights of the 4-conv dense heads to com-
pute results on layer l − 1.

To maximize the inference speed, we apply the queries in
a cascade manner. In particular, the queries for Pl−2 would
only be generated from {kl−1}. We name this paradigm as
Cascade Sparse Query (CSQ) as illustrated in Figure 1.
The benefit of our CSQ is that we can avoid generating
the queries {ql} from a single Pl, which leads to exponen-
tially increasing size of corresponding key position kl dur-
ing query mapping as l decreases.

3.3. Training

We keep the training of classification and regression
heads as same as in the original RetinaNet [27]. For the
query head, we train it using FocalLoss [27] with the gener-
ated binary target map: Let the ground-truth bounding box
of a small object o on Pl be bol = (xo

l , y
o
l , w

o
l , h

o
l ). We

first compute the minimum distance map Dl between each
feature position (x, y) on Pl and all the small ground-truth

centers {(xo
l , y

o
l )}:

Dl[x][y] = min
o

{
√
(x− xo

l )
2 + (y − yol )

2}, (2)

Then the ground truth query map V ∗
l is defined as

V ∗
l [x][y] =

{
1 if Dl[x][y] < sl

0 if Dl[x][y] ≥ sl
. (3)

For each level Pl, the loss function is defined as follow-
ing:
Ll(Ul, Rl, Vl) = LFL(Ul, U

∗
l ) + Lr(Rl, R

∗
l ) + LFL(Vl, V

∗
l ) (4)

where Ul, Rl, Vl are the classification output, regressor out-
put and the query score output, and U∗

l , R∗
l , and V ∗

l are their
corresponding ground-truth maps; LFL is the focal loss and
Lr is the bounding box regression loss, which is smooth l1
loss [11] in the original RetinaNet. The overall loss is:

Lall =
∑
l

βl ∗ Ll. (5)

Here we re-balance the loss of each layer by βl. The rea-
son is that as we add the higher-resolution features like
P2, the distribution of the training samples has significantly
changed. The total number of training samples on P2 is
even larger than the total number of training sample cross
P3 to P7. If we don’t reduce the weight of it, the train-
ing will be dominated by small objects. Thus, we need to
re-balance the loss of different layers to make the model
simultaneously learn from all layers.

3.4. Relationships with Related Work

Note that though our method bears some similarities
with two-stage object detectors using RPN, they differ in



the following aspects: 1), we only compute classification
results in the coarse prediction, while RPN computes both
classification and regression. 2), RPN is computed on all
levels of full feature maps while the computation of our
QueryDet is sparse and selective. 3), two-stage methods
rely on operations like RoIAlign [14] or RoIPooling [11] to
align the features with the first stage proposal. Nevertheless,
they are not used in our approach since we do not have box
output in the coarse prediction. It is worth noting that our
proposed method is compatible with the FPN based RPN,
so QueryDet can be incorporated into two-stage detectors
to accelerate proposal generation.

Another closely related work is PointRend [19], which
computes high-resolution segmentation maps using very
few adaptive selected points. The main differences between
our QueryDet and PointRend are: 1) how the queries are
generated and 2) how sparse computation is applied. For
the first difference, PointRend selects the most uncertain re-
gions based on the predicted score at each location, while
we directly add an auxiliary loss as supervision. Our experi-
ments show this simple method can generate high recall pre-
dictions and improve the final performance. As for the sec-
ond, PointRend uses a multi-layer perceptron for per-pixel
classification. It only requires the features from a single lo-
cation in high-resolution feature maps, thus can be easily
batched for high efficiency. On the other hand, as object de-
tection requires more context information for accurate pre-
diction, we use sparse convolution with 3× 3 kernels.

4. Experiments
We conduct quantitative experiments on two object de-

tection datasets: COCO [28] and VisDrone [59]. COCO
is the most widely used dataset for general object detection;
VisDrone is a dataset specialized to drone-shot image detec-
tion, in which small objects dominate the scale distribution.

4.1. Implementation Details

We implement our approach based on PyTorch [34] and
the Detectron2 toolkit [52]. All models are trained on 8
NVIDIA 2080Ti GPUs. For COCO, we follow the com-
mon training practices: We adopt the standard 1× sched-
ule and the default data augmentation in Detectron2. Batch
size is set to 16 with the initial learning rate of 0.01. The
weights βl used to re-balance the loss between different lay-
ers are set to linearly growing from 1 to 3 across P2 to P7.
For VisDrone, following [30], we equally split one image
into four non-overlapping patches and process them inde-
pendently during training. We train the network for 50k
iterations with an initial learning rate of 0.01, and decay the
learning rate by 10 at 30k and 40k iteration. The re-balance
weights βl are set to linearly growing from 1 to 2.6. For
both datasets, we freeze all the batch normalization (BN)
layers in the backbone network during training and we did

Method CSQ AP AP50 AP75 APS APM APL FPS
RetinaNet - 37.46 56.90 39.94 22.64 41.48 48.04 13.60

RetinaNet (3x) - 38.76 58.27 41.24 22.89 42.53 50.02 13.83
QueryDet × 38.53 59.11 41.12 24.64 41.97 49.53 4.85
QueryDet ✓ 38.36 58.78 40.99 24.33 41.97 49.53 14.88

QueryDet (3x) × 39.47 59.93 42.11 25.24 42.37 51.12 4.89
QueryDet (3x) ✓ 39.34 59.69 41.98 24.91 42.38 51.12 15.94

Table 1. Comparison of accuracy (AP) and speed (FPS) of our
QueryDet and the baseline RetinaNet on COCO mini-val set.

Method CSQ AP AP50 AP75 AR1 AR10 AR100 AR500 FPS
RetinaNet - 26.21 44.90 27.10 0.52 5.35 34.63 37.21 2.63
QueryDet × 28.35 48.21 28.78 0.51 5.96 36.48 39.42 1.16
QueryDet ✓ 28.32 48.14 28.75 0.51 5.96 36.45 39.35 2.75

Table 2. Comparison of detection accuracy (AP) and speed (FPS)
of our QueryDet and the baseline RetinaNet on VisDrone valida-
tion set.

not add BN layers in the detection heads. Mixed precision
training [32] is used in all experiments to save GPU mem-
ory. The query threshold σ is set to 0.15 and we start query
from P4. Without specified description, our method is con-
structed on RetinaNet with ResNet-50 backbone.

4.2. Effectiveness of Our Approach

In Table 1, we compare the mean average precision
(mAP) and average frame per second (FPS) between our
methods and the baseline RetinaNet on COCO. The base-
line runs at 13.6 FPS, and gets 37.46 overall AP and 22.64
APS for small objects, which is slightly higher than the
results in the original paper [27]. With the help of high-
resolution features, our approach achieves 38.53 AP and
24.64 APS , improving the AP and APS by 1.1 and 2.0.
The results reveal the importance of using high-resolution
features when detecting small objects. However, incorpo-
rating such a high-resolution feature map significantly de-
crease the inference speed to 4.85 FPS. When adopting our
Cascade Sparse Query (CSQ), the inference speed is en-
hanced to 14.88 FPS, becoming even faster than the base-
line RetinaNet that does not use the higher-resolution P2,
while the performance loss is negligible. Additionally, Fig-
ure 2 shows how our CSQ save the computational cost.
Compared with the RetinaNet with higher-resolution P2, in
which P3 and P2 account for 74% of the total FLOPs, our
CSQ successfully reduce those costs to around 1%. The rea-
son is that in QueryDetall computations on high-resolution
P3 and P2 are carried out on locations around the sparsely
distributed small objects. These results sufficiently demon-
strate the effectiveness of our method. We also show the
results of 3× training schedule in Table 1. The stronger
baseline does not weaken our improvement but brings more
significant acceleration. We owe it to the stronger Query
Head as the small object estimation becomes more accurate.

In VisDrone, as illustrated in Table 2, the discoveries are



HR RB QH CSQ AP AP50 AP75 APS APM APL FPS
37.46 56.90 39.94 22.64 41.48 48.04 13.60

✓ 36.10 56.39 38.17 21.94 39.91 45.25 4.83
✓ 37.66 57.57 40.37 22.03 41.86 49.10 13.60

✓ ✓ 38.11 58.48 40.85 23.06 41.53 49.36 4.83
✓ ✓ ✓ 38.53 59.11 41.12 24.64 41.97 49.53 4.85
✓ ✓ ✓ ✓ 38.36 58.78 40.99 24.33 41.97 49.53 14.88

Table 3. Ablation studies on COCO mini-val set. HR stands for using of high-resolution features; RB stands for the loss re-balance
between FPN layers; QH stands for whether to add QueryHead that provides extra objectiveness supervision.
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Figure 4. The speed and accuracy (AP and AR) trade-off with
input images with different sizes on COCO and VisDrone. The
trade-off is controlled by the the query threshold σ. The leftmost
marker (the ▲ marker) of each curve stands for the result when
Cascade Sparse Query is not applied. QD stands for QueryDet and
RN stands for RetinaNet.

Start Layer AP AP50 AP75 APS APM APL FPS
No Query 38.53 59.11 41.12 24.64 41.97 49.53 4.86

P6 37.91 57.98 40.51 23.18 42.02 49.53 13.42
P5 38.22 58.55 40.86 23.65 42.00 49.53 13.92
P4 38.36 58.78 40.99 24.33 41.97 49.53 14.88
P3 38.45 58.94 41.07 24.50 41.93 49.52 11.51

Table 4. Investigation of the best starting layer of our CSQ on
MS-COCO mini-val set.

similar, but the results are even more significant. We im-
prove the overall AP by 2.1 and AP50 by 3.2 on this small
objects oriented dataset. The inference speed is improved
to 2.3× from 1.16 FPS from 2.75 FPS.

4.3. Ablation Studies

We conduct ablation studies on COCO mini-val set to
analyze how each component affects the detection accuracy
and speed in Table 3. Our retrained RetinaNet achieves
37.46 AP. When we add the high-resolution P2, the AP dra-

matically drops by 1.34. As we discussed in Section 3.3,
this problem is caused by the distribution shift in the train-
ing samples after adding P2. Then we re-balance the loss
of those layers. The result is improved to 38.11, mostly ad-
dressing this problem. Interestingly, the re-balancing strat-
egy only gives us a minor AP enhancement (0.2) when
adopting on the original baseline, suggesting that the loss
re-balance is more critical in the high-resolution scenario.
Then we add our Query Head into the network, through
which we get a further performance gain of 0.42 AP and
1.58 APS , pushing the total AP and APS to 38.53 and 24.64,
verifying the effectiveness of the extra objectiveness super-
vision. Finally, with CSQ, the detection speed is largely
improved to 14.88 FPS from 4.85 FPS, and the 0.17 loss in
detection AP is negligible.

4.4. Discussions

Influence of the Query Threshold. Here we investigate
the accuracy-speed trade-off in our Cascade Sparse Query.
We measure the detection accuracy (AP) and detection
speed (FPS) under different query thresholds σ whose role
is to determine if a grid (low-resolution feature location)
in the input image contains small objects. Intuitively,
increasing this threshold will decrease the recall of small
objects but accelerate the inference since fewer locations
are considered. The accuracy-speed trade-off with different
input sizes are presented in Figure 4. We increase σ by 0.05
sequentially for adjacent data markers in one curve, and
the leftmost marker denotes the performance when CSQ is
not applied. We observe that even a very low threshold
(0.05) can bring us a massive speed improvement. This
observation validates the effectiveness of our approach.
Another observation is about the gap between the AP upper
bound and lower bound of different input resolutions. This
gap is small for large size images, but huge for small size
images, which indicates that for higher-resolution input
our CSQ can guarantee a good AP lower bound even if the
query threshold is set to high.

Which layer to start query? In our Cascade Sparse Query,
we need to decide the starting layer, above which we run
conventional convolutions to get the detection results for



Query Method AP AP50 AP75 APS APM APL FPS
No Query 38.53 59.11 41.12 24.64 41.97 49.53 4.86

CQ 38.31 58.73 40.98 24.25 41.98 49.53 10.49
CCQ 38.32 58.75 40.98 24.26 41.98 49.53 8.73

CSQ (ours) 38.36 58.78 40.99 24.33 41.97 49.53 14.88

Table 5. Comparison of different query methods on COCO mini-
val set. We compare our CSQ and Crop Query (CQ) and Complete
Convolution Query (CCQ).

Context AP AP50 AP75 APS APM APL FPS
No Query 38.53 59.11 41.12 24.64 41.97 49.53 4.86

1x1 38.25 58.60 40.87 23.88 41.97 49.53 14.09
3x3 38.30 58.66 40.94 24.14 41.97 49.53 14.06
5x5 38.36 58.72 40.98 24.18 41.97 49.53 14.00
7x7 38.37 58.73 40.98 24.30 41.97 49.53 13.77
9x9 38.37 58.73 40.98 24.30 41.97 49.53 13.42

11x11 38.38 58.755 40.99 24.33 41.97 49.53 13.11

Table 6. Comparison of detection AP and speed when using differ-
ent amount of context information on MS-COCO mini-val set. The
context is defined as a patch with various size around the queried
position.

Backbone Model CSQ AP AP50 AP75 APS APM APL FPS

MobileNet V2
RN - 26.72 43.17 28.17 15.27 29.28 34.51 17.75
QD × 29.16 46.20 30.95 16.14 31.26 38.66 5.31
QD ✓ 28.94 45.79 30.71 15.74 31.26 38.66 21.66

ShuffleNet V2
RN - 23.04 38.32 23.75 12.01 25.50 35.16 17.45
QD × 26.07 42.34 27.30 13.20 28.03 36.23 5.26
QD ✓ 25.85 41.96 27.08 12.81 28.05 36.23 20.02

Table 7. Results on different backbone networks. RN and QD
stand for RetinaNet and QueryDet, respectively.

CSQ AP AP50 AP75 APs APm APl FPS
FCOS - 38.37 57.63 41.03 22.34 41.95 48.96 17.06

QueryDet (FCOS) × 40.05 58.69 43.46 25.52 43.43 50.69 7.92
QueryDet (FCOS) ✓ 39.49 57.97 42.82 24.81 43.45 50.69 14.40

Table 8. Performance and speed of our QueryDet (FCOS) and its
baseline model on COCO mini-val set.

large objects. The reason we do not start our CSQ from
the lowest resolution layer are in two folds: 1) The normal
convolution operation is very fast for the low-resolution
features, thus the time saved by CSQ cannot compensate
the time needed to construct the sparse feature map; 2) It
is hard to distinguish small objects on feature maps with
very low resolution. The results are presented in Table 4.
We find that the layer that gets the highest inference speed
is P4, which validates that querying from very high-level
layers such as P5 and P6 would cause loss of speed. We
observe that the AP loss gradually increases as the starting
layer becomes higher, suggesting the difficulty for the
network to find small objects in very low-resolution layers.

What is the best way to use queries? We demonstrate the
high efficiency of our Cascade Sparse Query. We propose

CSQ AP AP50 AP75 APs APm APl FPS
× 38.47 59.44 41.73 22.98 41.90 49.55 17.57
✓ 38.20 58.88 41.50 22.23 41.91 49.55 19.03

Table 9. Performance and speed of using our CSQ in Faster R-
CNN on COCO mini-val set.

two alternative query operations for comparison. The first
Crop Query (CQ), in which the corresponding regions
indicated by queries are cropped from the high-resolution
features for subsequent computations. Note this type of
query is similar to the AutoFocus [33] approach. Another
one is Complete Convolution Query (CCQ) where we use
regular convolutions to compute the full feature map for
each layer, but only extract results from queried positions
for post-processing. For CQ, we crop a 11× 11 patch from
the feature map, which is chosen to fit the receptive field
of the five 3 × 3 consecutive convolutions in the detection
heads. We present the results in Table 5. Generally
speaking, all three methods can successfully accelerate
the inference with negligible AP loss. Among them, our
CSQ can achieve the fastest inference speed.

How much context do we need? To apply our CSQ,
we need to construct a sparse feature map where only the
positions of small objects are activated. We also need to
activate the context area around the small objects to avoid
decreasing accuracy. However, in practice, we found that
too much context cannot improve the detection AP but
only slow down the detection speed; on the other hand,
too little context would severely decrease the detection
AP. In this section, we explore how much context do we
need to balance the speed-accuracy trade-off. Here, the
context is defined as a patch with various sizes around the
queried position, where our sparse detection head would
also process the features within the patch. The result is
reported in Table 6. From it we conclude that a 5x5 patch
can brings us enough context to detect a small object.
Although more context brings a small AP improvement,
the accelerating effect of our CSQ is negatively affected,
while fewer context cannot grantee a high detection AP.

Results on Light-weight Backbones. As we claim in Sec-
tion 1, our method can be incorporated with light-weighted
backbones to gain more speed improvement. Also, as our
CSQ aims to accelerate the computation in the detection
head, so the overall acceleration is more obvious when
using such backbones, because the inference time for
backbone network becomes less. We report the results with
different light-weight backbones in Table 7.Specifically, the
speed is on average improved to 4.1× for high-resolution
detection with MobileNet V2 [40] and 3.8× with Shuf-



(a) COCO detection (b) COCO query heatmap (d) VisDrone query heatmap(c) VisDrone detection

Figure 5. Visualization of the detection results and the query heatmap for small objects of our QueryDet on MS-COCO and VisDrone2018
datasets. We remove class labels for VisDrone2018 to better distinguish the small bounding boxes.

fleNet V2 [31], which validates that our approach is ready
to deploy on edge devices for real-time applications such
as autonomous driving vehicles for effective small object
detections.

Results on Anchor-Free Detectors. QueryDet can be
applied to any FPN based detector to accelerate high-
resolution detection. Thus, we apply QueryDet on FCOS, a
state-of-the-art anchor-free detector, and report the COCO
results in Table 8. It can be concluded that QueryDet im-
proves APs with the help of high-resolution features,
and when Cascade Sparse Query (CSQ) is adopted, the
high-resolution speed is improved by 1.8× on average,
validating the universality of the proposed approach.

Effectiveness on Two-stage Detectors Our CSQ can also
be applied to FPN based two-stage detectors to reduce com-
putaion cost in the high-resolution layers in RPN. To ver-
ify this claim, we apply CSQ to the Faster R-CNN detec-
tor [39]. In our implementation, the inputs to RPN are
from P2 to P6 and we start query from P4. We modify
the RPN structure to let it have 3 conv layers instead of 1
layer in the normal implementation, which is followed by
3 branches for objectiveness classification, bounding box
regression and query key computation. The former two
branches are trained following common practice [39], and
the query branch is trained by Focal Loss with γ = 1.2 and
α = 0.25. During inference, we set the query threadhold
to 0.15. As shown in Table 9, our Faster R-CNN achieves
38.47 overall AP and 22.98 APS with 17.57 FPS. When
CSQ is utilized, the inference speed is improved to 19.03
FPS with a minor loss in APs. The results verify the effec-
tiveness of our approach in accelerating two stage detectors.

Note that in two-stage detecotrs our CSQ can not only save
time for the dense computaion on in RPN, it can reduced
the number of RoIs that are fed into the second stage.

4.5. Visualization and Failure Cases

In Figure 5, we visualize the detection results and the
query heatmaps for small objects on COCO and VisDrone.
From the heatmaps, it can be seen that our query head can
successfully find the coarse positions of the small objects,
enabling our CSQ to detect them effectively. Additionally,
through incorporating high-resolution features, our method
can detect small objects very accurately.

We also show two typical failure cases of our approach:
1) Even if the corase position of small objects is correctly
extracted by the query head, the detection head may fails to
localize them (the second image of VisDrone); 2) Positions
of large objects is falsely activated, causing the detection
head to process useless positions and hence slowing down
the speed (the first image of COCO).

5. Conclusion

We propose QueryDet that uses a novel query mech-
anism Cascade Sparse Query (CSQ) to accelerate the in-
ference of feature pyramid-based dense object detectors.
QueryDet enables object detectors the ability to detect small
objects at low cost and easily deploy, making it practical to
deploy them on real-time applications such as autonomous
driving. For future work, we plan to extend QueryDet to
the more challenging 3D object detection task that takes
LiDAR point clouds as input, where the 3D space is gen-
erally sparser than 2D image, and computational resources
are more intense for the costly 3D convolution operations.
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