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Abstract

Building reliable object detectors that can detect out-
of-distribution (OOD) objects is critical yet underex-
plored. One of the key challenges is that models lack
supervision signals from unknown data, producing over-
confident predictions on OOD objects. We propose a
new unknown-aware object detection framework through
Spatial-Temporal Unknown Distillation (STUD), which dis-
tills unknown objects from videos in the wild and mean-
ingfully regularizes the model’s decision boundary. STUD
first identifies the unknown candidate object proposals in
the spatial dimension, and then aggregates the candi-
dates across multiple video frames to form a diverse set
of unknown objects near the decision boundary. Along-
side, we employ an energy-based uncertainty regular-
ization loss, which contrastively shapes the uncertainty
space between the in-distribution and distilled unknown ob-
jects. STUD establishes the state-of-the-art performance
on OOD detection tasks for object detection, reducing the
FPR95 score by over 10% compared to the previous best
method. Code is available at https://github.com/
deeplearning-wisc/stud.

1. Introduction

Object detection models have achieved remarkable suc-
cess in known contexts for which they are trained. Yet,
they often struggle with out-of-distribution (OOD) data—
samples from unknown classes that the network has not
been exposed to during training, and therefore should not be
predicted by the model in testing. Teaching the object detec-
tors to be aware of unknown objects is critical for building a
reliable vision system, especially in safety-critical applica-
tions like autonomous driving [8] and medical analysis [2].

While much research progress is made in OOD detec-
tion for classification models [17, 20, 29, 31, 33, 36, 59], the
problem remains underexplored in the context of object de-
tection. Unlike image-level OOD detection, detecting un-
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Figure 1. (a) Vanilla object detectors can predict OOD objects
(e.g., deer) as an ID class (e.g., pedestrian) with high confidence.
(b) Unknown objects (in bounding boxes) naturally exist in the
video datasets, such as billboards, traffic cones, overbridges, street
lights, etc. Image is taken from the BDD100K dataset [67].

knowns for object detection requires a finer-grained under-
standing of the complex scenes. In practice, an image can
be OOD in specific regions while being in-distribution (ID)
elsewhere. Taking autonomous driving as an example, we
observe that an object detection model trained to recog-
nize ID objects (e.g., cars, pedestrians) can produce a high-
confidence prediction for an unseen object such as a deer;
see Figure 1(a). This happens when our object detector min-
imizes its training error without explicitly accounting for
the uncertainty that could appear outside the training cate-
gories. Unfortunately, the plethora of ways that unknown
objects can emerge are innumerable in an open world. It is
arguably expensive to annotate a large number of OOD ob-
jects in complex scenes—in addition to the already costly
process of ID data collection.

In this paper, we propose a new unknown-aware object
detection framework through Spatial-Temporal Unknown
Distillation (STUD), which distills unknown objects from
videos in the wild and meaningfully regularizes the model’s
decision boundary. Video data naturally captures the open-
world environment that the model operates in, and encap-
sulates a mixture of both known and unknown objects; see
Figure 1(b). For example, buildings and trees (OOD) may
appear in the driving video, though they are not labeled ex-
plicitly for training an object detector for cars and pedes-
trians (ID). Our approach draws an analogy to the concept
of distillation in chemistry, which refers to the “process of
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separating the substances from a mixture” [46]. While clas-
sic object detection models primarily use the labeled known
objects for training, we attempt to capitalize on the un-
known ones for model regularization by jointly optimizing
object detection and OOD detection performance.

Concretely, our framework consists of two components,
tackling challenges of (1) distilling diverse unknown ob-
jects from videos, and (2) regularizing object detector with
the distilled unknown objects. To address the first problem,
we introduce a new spatial-temporal unknown distillation
approach, which automatically constructs diverse unknown
objects (Section 3.1). In the spatial dimension, for each ID
object in a frame, we identify the unknown object candi-
dates in the reference frames based on an OOD measure-
ment. We then distill the unknown object by linearly com-
bining the selected objects in the feature space, weighted
by the dissimilarity measurement. The distilled unknown
object therefore captures a more diverse distribution over
multiple objects than using single ones. In the temporal
dimension, we propose aggregating unknown objects from
multiple video frames, which captures additional diversity
of unknowns in the temporal dimension.

Leveraging the distilled unknown objects, we further
employ an unknown-aware training objective (Section 3.2).
Unlike vanilla object detection, we train the object detector
with an uncertainty regularization branch. Our regulariza-
tion facilitates learning a more conservative decision bound-
ary between ID and OOD objects, which helps flag unseen
OOD objects during inference. To achieve this, the regular-
ization contrastively shapes the uncertainty surface, which
produces larger probabilistic scores for ID objects and vice
versa, enabling effective OOD detection in testing. Our key
contributions are summarized as follows:

• We propose a new framework STUD, addressing a chal-
lenging yet underexplored problem of unknown-aware
object detection. To the best of our knowledge, we are
the first to exploit the rich information from videos to en-
able OOD identification for the object detection models.

• STUD effectively regularizes object detectors by distill-
ing diverse unknown objects in both spatial and tem-
poral dimensions without costly human annotations of
OOD objects. Moreover, we show that STUD is more
advantageous than synthesizing unknowns in the high-
dimensional pixel space (e.g., using GAN [30]) or using
negative proposals as unknowns [23].

• We extensively evaluate the proposed STUD on large-
scale BDD100K [67] and Youtube-VIS datasets [66].
STUD obtains state-of-the-art results, outperforming the
best baseline by a large margin (10.88% in FPR95 on
BDD100K) while preserving the accuracy of object de-
tection on ID data.

2. Problem Setup
We start by formulating the OOD detection problem for

the object detection task. Most previous formulations of
OOD detection treat entire images as anomalies, which
can lead to ambiguity shown in Figure 1(a). In particular,
natural images are not monolithic entities but instead are
composed of numerous objects and components. Knowing
which regions of an image are anomalous allows for the
safe handling of unfamiliar objects. Compared to image-
level OOD detection, object-level OOD detection is more
relevant in realistic perception systems, yet also more chal-
lenging as it requires reasoning OOD uncertainty at the fine-
grained object level. We design reliable object detectors
that are aware of unknown OOD objects in testing. That is,
an object detector trained on the ID categories (e.g., cars,
trucks) can identify test-time objects (e.g., deer) that do not
belong to the training categories and refrain from making a
confident prediction on them.

Setup. We denote the input and label space by X = Rd
and Y = {1, 2, ...,K}, respectively. Let x ∈ X be the input
image, b ∈ R4 be the bounding box coordinates associated
with objects in the image, and y ∈ Y be the semantic label
of the object. An object detection model is trained on ID
data D = {(xi,bi, yi)}Mi=1 drawn from an unknown joint
distribution P . We use neural networks with parameters
θ to model the bounding box regression pθ(b|x) and the
classification pθ(y|x,b).

OOD detection for object detection. The OOD detec-
tion can be formulated as a binary classification problem,
distinguishing between the in vs. out-of-distribution ob-
jects. Let PX denote the marginal probability distribution
on X . Given a test input x∗ ∼ PX , as well as an object
b∗ predicted by the object detector, the goal is to predict
pθ(g|x∗,b∗). We use g = 1 to indicate a detected object
being ID, and g = 0 being OOD, with semantics outside
the support of Y .

3. Unknown-Aware Object Detection
Our unknown-aware object detection framework trains

an object detector in tandem with the OOD uncertainty reg-
ularization branch. Both share the feature extractor and the
prediction head and are jointly trained from scratch (see
Figure 2). Our framework encompasses two novel com-
ponents, which address: (1) how to distill diverse unknown
objects in the spatial and temporal dimensions (Section 3.1),
and (2) how to leverage the unknown objects for effective
model regularization (Section 3.2).

3.1. Spatial-Temporal Unknown Distillation

Our approach STUD distills unknown objects guided by
the rich spatial-temporal information in videos, without ex-
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Figure 2. Overview of the proposed unknown-aware object detection framework STUD. For an ID object from the key frame encoded
as ĥ(x0,bi), we perform energy filtering to identify the unknown object candidates in the reference frames. We then distill the unknown
object ôi by linearly combining the unknown objects in the feature space, weighted by the dissimilarity score si,j . The distilled unknowns,
along with the ID objects, are used to train the uncertainty regularization branch (Luncertainty). Luncertainty contrastively shapes the uncertainty
surface, which produces a larger score for ID objects and vice versa. During testing, we use the output of the logistic regression for OOD
detection. ⊗ denotes the operation in Equation (3) and 1 ≤ k ≤ T is the index of the reference frames.

plicit supervision signals of unknown objects. Video data
naturally encapsulates a mixture of both known and un-
known objects. While classic object detection models pri-
marily use the labeled known objects for training, we at-
tempt to capitalize on the unknown ones for model regular-
ization. For this reason, we term our approach unknown dis-
tillation—extracting unknown objects w.r.t the known ob-
jects. Notably, our distillation process for object detection
is performed at the object level, in contrast to constructing
the image-level outliers [18]. That is, for every ID object in
a given frame, we construct a corresponding OOD counter-
part. The distilled unknowns will be used for model regu-
larization (Section 3.2).

While intuition is straightforward, challenges arise in
constructing unknown objects in an unsupervised manner.
The plethora of ways that unknown objects can emerge are
innumerable in high-dimensional space. Taking the ID ob-
ject car as an example (c.f. Figure 3), the objects such as
billboards, trees, buildings, etc. can all be considered as un-
knowns w.r.t the car. This undesirably increases the sample
complexity and demands a diverse collection of unknown
objects to be observed. We tackle the challenge through
distilling diverse unknown objects by leveraging the rich in-
formation in the spatial and temporal dimensions of videos.

Spatial unknown distillation. In the spatial dimension,
for each ID object in a given frame, we create the un-
known counterpart through a linear combination of the ob-
ject features from the reference frames, weighted by the
dissimilarity measurement. Utilizing multiple objects cap-
tures a more diverse distribution of unknowns than using
single ones. STUD operates on the feature outputs from
the proposal generator to calculate dissimilarity. Specifi-
cally, we consider a pair of frames x0,x1 at timestamps t0
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Figure 3. The dissimilarity measurement. For each ID object
at timestamp t0 (in blue), we discover the objects in the reference
frame that are dissimilar to it (in green), which are more likely to
contain OOD objects for model regularization. The red numbers
show the dissimilarity after normalization (Equation (2)).

and t1, designated key frame and reference frame, respec-
tively. For an object (x,b), we denote its feature repre-
sentation as h(x,b) ∈ Rm, where m is the feature dimen-
sion. We collect a set of object features {h(x0, bi)}N0

i=1 and
{h(x1, bj)}N1

j=1 with the objectiveness score above a thresh-
old. We adopt a dissimilarity measurement using the L2

distance between two features:

si,j =
∥∥∥ĥ(x0,bi)− ĥ(x1,bj)

∥∥∥2
2
, (1)

where ĥ(x0,bi) and ĥ(x1,bj) are encoded feature vec-
tors obtained by a small network using the object features
h(x,b) as input. In our experiments, the encoder consists
of two convolutional layers with kernel size of 3 × 3 and an
average pooling layer. The larger si,j is, the more dissim-
ilar the object features are. The dissimilarity measurement
results are illustrated in Figure 3. The OOD objects in the
reference frame, such as street lights and billboards, have a
more significant dissimilarity.

Lastly, we perform a weighted average of the object fea-
tures from frame x1. Using multiple objects captures a di-
verse distribution of unknowns. The weights α are defined
as the normalized exponential of the dissimilarity scores:



ôi =

N1∑
j=1

αi,jh(x1,bj), αi,j =
esi,j∑N1

k=1 e
si,k

, (2)

where ôi is the distilled unknown object (in the feature
space), corresponding to the i-th object at frame x0.

Temporal unknown distillation. Our spatial unknown
distillation mechanism operates on a single reference frame,
which can be extended to multiple video frames to capture
additional diversity of unknowns in the temporal dimen-
sion. For example, consider a video of a car driving on the
highway, the more frames we observe, the more unknown
objects can be observed, such as trees, buildings, and rocks.

Given a frame x0 at timestamp t0, we propose distilling
the unknown objects from multiple frames x1, ...,xT . We
randomly sample T frames within a range [t0 −R, t0 +R].
As a special case, T = 1 reduces to the previous pair-
frame setting. To distill spatial-temporal unknown objects,
we concatenate the object feature vectors from T frames,
and then measure their dissimilarity w.r.t the objects in
frame x0 by Equation (1). For the i-th object in frame x0,
the unknown counterpart is defined as follows:

ôi =

N∑
j=1

αi,jh(x,bj),x ∈ {x1, ...,xT }, (3)

where αi,j denotes the normalized dissimilarity scores de-
fined in Equation 2. N =

∑T
k=1Nk is the total number of

objects across T reference frames. The temporal aggrega-
tion mechanism allows searching through multiple frames
for meaningful and diverse unknown discovery.

Later in Section 4.3, we provide comprehensive ablation
studies on the frame sampling range R and the number of
selected frames T , and show the benefits of temporal aggre-
gation for improved OOD detection.

Unknown candidate object selection. A critical step in
unknown distillation is to filter unknowns in the reference
frame x1 that may be ID objects or simple background.
Without selection, the model may be confused to sepa-
rate the distilled unknown objects from the ID objects or
quickly memorize the simple OOD pattern during training.
To prevent this, we pre-filter the proposals based on the en-
ergy score, and then use the selected ones for the spatial-
temporal unknown distillation. It is shown that the energy
score is an effective indicator of OOD data in image classi-
fication [36]. To calculate the energy score for object detec-
tion network, we feed the object features {h(x1,bj)}N1

j=1 to
the prediction head and follow the definition:

E(x1,bj) = − log

K∑
k=1

expfk(h(x1,bj);wpred), (4)

where fk (h(x1,bj);wpred) is the logit output of the k-
way classification branch. A higher energy indicates more
OOD-ness and vice versa. Then, we select objects with

mild energy scores, i.e., those in a specific percentile p% ≤
Rank(E(x1,bj))/N1 ≤ q% among all objects. In case of
multiple frames x1,x2, ...,xT , the object selection is per-
formed on each individual frame before temporal aggrega-
tion. Ablation study on the effect of the energy filtering and
the selection percentile are provided in Section 4.3.

3.2. Unknown-Aware Training Objective

Leveraging the distilled unknown objects from Sec-
tion 3.1, we now introduce our training objective for
unknown-aware object detection. Our key idea is to per-
form object detection task while regularizing the model to
produce a low uncertainty score for ID objects, and a high
uncertainty score for the unknown ones. The overall objec-
tive function is defined as:

L = Ldet + β · Luncertainty, (5)

where β is the scaling weight when combining the detection
loss Ldet and the uncertainty regularization loss Luncertainty.
Next we describe the details of Luncertainty.

Uncertainty regularization. Following Du et al. [8], we
employ a loss function that contrastively shapes the uncer-
tainty surface, amplifying the separability between known
ID objects and unknown OOD objects. To measure the un-
certainty, we use the energy score in Equation (4), which
is derived from the output of the classification branch. Here
we calculate the energy scoreE(x,b) for the ID objects and
the distilled unknown object featuresE(ô). The uncertainty
score is then passed into a logistic regression classifier with
weight coefficient θu, which predicts high probability for
ID object (x,b) and low probability for the unknown ones
ô. The regularization loss is calculated as:

Luncertainty = Eô∼O

[
− log

1

1 + exp−θu·E(ô)

]
+

E(x,b)∼D

[
− log

exp−θu·E(x,b)

1 + exp−θu·E(x,b)

]
,

(6)

where O contains all the unknown object features (c.f. Sec-
tion 3.1). In Figure 4(a), we show the uncertainty reg-
ularization loss Luncertainty over the course of training on
Youtube-VIS dataset [66]. Upon convergence, Figure 4(b)
shows the energy score distribution for both the ID and dis-
tilled unknown objects. This demonstrates that STUD con-
verges properly and is able to separate the distilled unknown
objects and the ID objects.



(a) (b)     

Figure 4. (a) Uncertainty regularization loss during training. (b)
The negative energy score distribution for both the ID and the dis-
tilled unknown objects after training.

Algorithm 1 STUD: Spatial-Temporal Unknown Distilla-
tion for OOD detection
Input: ID data D = {(xi,bi, yi)}Mi=1, randomly initialized
object detector with parameter θ, energy filtering percentile
[p%, q%], sampling range R, the number of reference
frames T , and weight for uncertainty regularization β.

Output: Object detector with parameter θ∗, and OOD de-
tector G.
while train do

1. Select unknown objects in the reference frames with
mild energy scores as defined by Equation (4).
2. Calculate the dissimilarity (using Equation (2)) be-
tween an object in the key frame w.r.t selected objects
in the reference frames.
3. Distill the unknown objects by Equation (3).
4. Calculate the uncertainty regularization loss by Equa-
tion (6), update the parameter θ based on the total loss
in Equation (5).

end
while eval do

1. Calculate the uncertainty score by Equation (7).
2. Perform thresholding comparison by Equation (8).

end

Compared to Ldet for the vanilla object detector, our loss
intends to facilitate learning a more conservative decision
boundary between ID and OOD objects, which helps flag
unseen OOD objects in testing. We proceed by describing
the test-time OOD detection procedure.
Test-time OOD detection. During inference, we use the
output of the logistic regression uncertainty branch for
OOD detection. In particular, given a test input x∗, the ob-
ject detector produces a box prediction b∗. The uncertainty
score for the predicted object (x∗,b∗) is given by:

pθ(g | x∗,b∗) =
exp−θu·E(x∗,b∗)

1 + exp−θu·E(x∗,b∗)
. (7)

For OOD detection, we use the common thresholding
mechanism to distinguish between ID and OOD objects:

G(x∗,b∗) =

{
1 if pθ(g | x∗,b∗) ≥ γ,
0 if pθ(g | x∗,b∗) < γ.

(8)

The threshold γ is typically chosen so that a high fraction
of ID data (e.g., 95%) is correctly classified. For objects
that are classified as ID, one can obtain the bounding box
and class prediction using the prediction head as usual. Our
approach STUD is summarized in Algorithm 1.
Synergy between unknown distillation and contrastive
regularization. The two key components of STUD—
unknown distillation (Section 3.1) and contrastive regular-
ization (Section 3.2) work collaboratively. First, a set of
well distilled unknown objects may improve the energy-
based contrastive regularization and help learn a more ac-
curate decision boundary between known and unknown ob-
jects. Second, as the contrastive uncertainty loss amplifies
an energy gap between known and unknown objects, the
unknown distillation module can benefit from more accu-
rate unknown object selection (via energy-based filtering).
The entire training process converges when the two compo-
nents perform satisfactorily. Our experiments in Section 4
further justify the efficacy of our framework.

4. Experiments
In this section, we provide empirical evidence to show

the effectiveness of STUD on two large-scale video datasets
(Section 4.1). We show that STUD outperforms other com-
monly used OOD detection baselines on detecting OOD
data in Section 4.2. Ablation studies of STUD and quali-
tative analysis are presented in Sections 4.3 and 4.4.

4.1. Benchmark Construction

Datasets. We use two large-scale video datasets as ID data:
BDD100K [67] and Youtube-Video Instance Segmentation
(Youtube-VIS) 2021 [66]. For both tasks, we evalu-
ate on two OOD datasets containing diverse visual cate-
gories: MS-COCO [34] and nuImages [1]. We perform
careful deduplication to ensure there is no semantic over-
lap between the ID and OOD data. Extensive details on the
datasets are described in the appendix.

Implementation details. We adopt Faster R-CNN [53] as
the base object detector. We use Detectron2 library [11] and
train with the backbone of ResNet-50 [15] and the default
hyperparameters. We set the weight β for Luncertainty to be
0.05 for BDD100K and 0.02 for Youtube-VIS dataset. For
both datasets, we use T = 3 frames and set the sampling
range R = 9. We set the energy filtering percentile to be
40% − 60% among all proposals. Ablation studies on dif-
ferent hyperparameters are detailed in Section 4.3.

Metrics. For evaluating the OOD detection performance,
we report: (1) the false positive rate (FPR95) of OOD sam-
ples when the true positive rate of ID samples is at 95%;
(2) the area under the receiver operating characteristic curve
(AUROC). For evaluating the object detection performance
on the ID task, we report the common metric of mAP.



In-distribution D Method FPR95 ↓ AUROC ↑ mAP (ID)↑ Cost (h)
OOD: MS-COCO / nuImages

BDD100K

MSP [17] 90.11 / 93.98 66.32 / 59.21 31.0 9.1
ODIN [33] 80.32 / 87.75 68.49 / 66.51 31.0 9.1
Mahalanobis [31] 63.06 / 79.02 79.95 / 68.94 31.0 9.1
Gram matrices [54] 68.78 / 82.60 66.13 / 71.56 31.0 9.1
Energy score [36] 78.36 / 86.02 73.75 / 67.08 31.0 9.1
Generalized ODIN [20] 75.99 / 92.15 78.63 / 67.23 30.9 10.5
CSI [59] 69.38 / 80.06 80.85 / 72.59 29.8 15.3
GAN-synthesis [30] 67.95 / 88.53 78.33 / 66.50 30.1 14.6
STUD (ours) 52.18±2.2 / 77.57±3.0 85.67±0.6 / 75.67±0.7 30.5±0.2 10.1

Youtube-VIS

MSP [17] 90.17 / 94.52 70.26 / 54.59 24.8 9.2
ODIN [33] 87.17 / 97.69 71.46 / 57.46 24.8 9.2
Mahalanobis [31] 85.60 / 95.65 72.16 / 62.02 24.8 9.2
Gram matrices [54] 88.68 / 93.20 61.96 / 60.04 24.8 9.2
Energy score [36] 91.77 / 91.78 70.58 / 59.05 24.8 9.2
Generalized ODIN [20] 83.90 / 93.18 71.33 / 62.16 24.3 10.5
CSI [59] 80.21 / 84.85 73.89 / 68.84 23.3 15.7
GAN-synthesis [30] 84.57 / 94.59 71.59 / 64.43 24.4 15.0
STUD (ours) 79.82±0.2 / 76.93±0.4 75.55±0.3 / 71.48±0.6 24.5±0.3 10.2

Table 1. Main results. Comparison with competitive out-of-distribution detection methods. All baseline methods are based on a model
trained on ID data only using ResNet-50 as the backbone. ↑ indicates larger values are better, and ↓ indicates smaller values are better. All
values are percentages. Bold numbers are superior results. We report standard deviations estimated across three runs. The training time is
reported in the “cost” column on four NVIDIA GeForce RTX 2080Ti GPUs.

4.2. Comparison with Baselines

STUD establishes SOTA performance. In Table 1, we
compare STUDwith competitive OOD detection methods in
literature, where STUD significantly outperforms baselines
on both datasets. For a fair comparison, all the methods
use the same ID training data, trained with the same num-
ber of epochs. Our comprehensive baselines include Max-
imum Softmax Probability [17], ODIN [33], Mahalanobis
distance [31], Generalized ODIN [20], energy score [36],
Gram matrices [54], and a latest method CSI [59]. These
baselines rely on the classification output or backbone fea-
ture, and therefore can be seamlessly evaluated on the object
detection model.

The results show that STUD can outperform these base-
lines by a considerable margin because the majority of base-
lines rely on object detection models trained on ID data
only, without being regularized by unknown objects. Such
a training scheme is prone to produce overconfident pre-
dictions on OOD data (Figure 1) while STUD incorporates
unknown objects to regularize the model more effectively.

We also compare with GAN-based approach for synthe-
sizing outliers in the pixel space [30], where STUD effec-
tively improves the OOD detection performance (FPR95)
by 15.77% on BDD100K (COCO as OOD) and 17.66% on
Youtube-VIS (nuImages as OOD). Moreover, we show in
Table 1 that STUD achieves stronger OOD detection perfor-
mance while preserving a high object detection accuracy on
ID data (measured by mAP). This is in contrast with CSI,
which displays significant degradation, with mAP decreas-
ing by 1.2% on Youtube-VIS. Details of reproducing base-
lines are in the Appendix Section D.

Method AUROC ↑ mAP ↑
COCO / nuImages as OOD

�Farthest object 83.04 / 71.38 30.2
�Random object 79.61 / 70.42 30.3
�Object with mild energy 83.60 / 71.24 30.3
�Negative proposal [23] 80.94 / 72.92 30.0
♣GAN [30] 78.33 / 66.50 30.1
♣Mixup [70] 81.76 / 70.17 27.6
\Gaussian noise 83.64 / 71.50 30.3

STUD (ours) 85.67 / 75.67 30.5

Table 2. Ablation on different unknown distillation approaches (on
backbone of ResNet-50, COCO / nuImages are the OOD data).

4.3. Ablation Studies

This section provides comprehensive ablation studies
to understand the efficacy of STUD. For consistency, all
ablations are conducted on the BDD100K dataset, using
ResNet-50 as the backbone. We refer readers to Appendix
Section E for more ablations on using a different backbone
architecture.

Ablation on different unknown distillation approaches.
We compare STUD with three types of unknown distilla-
tion approaches, i.e., (I�) using independent objects without
spatial-temporal aggregation, (II♣) synthesizing unknowns
in the pixel space, and (III\) using noise as unknowns.

• For type I, we utilize objects from the reference frame
without aggregating multiple objects across spatial and
temporal dimensions—a key difference from STUD. The
unknown objects can be constructed by: using the ob-
ject in the reference frame that has the largest dissimi-
larity, using random objects, using the negative object as
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Figure 5. (a)-(b) Ablation study on the sampling rangeR. We vary the range from 3 to infinity. Metrics are AUROC. We set T = 3. (c)-(d)
Ablation study on the number of reference frames T during unknown distillation. We fix the sampling range as R = 9.

Variants FPR95 ↓ AUROC ↑ mAP ↑
COCO / nuImages as OOD

w/o unknown filtering 62.23 / 83.54 82.87 / 72.29 30.6
w/ ratio 0%-20% 61.41 / 82.33 83.66 / 74.86 30.2

w/ ratio 20%-40% 57.73 / 82.13 85.43 / 74.09 30.3
w/ ratio 40%-60% 52.18 / 77.57 85.67 / 75.67 30.5
w/ ratio 60%-80% 62.29 / 85.12 83.47 / 73.44 30.2
w/ ratio 80%-100% 65.86 / 88.47 82.46 / 72.50 30.3

Table 3. Ablation study on the energy filtering module. Here we
set T = 3 and R = 9.

in [23], and using objects with mild energy scores (per-
centile 40%− 60%) in the reference frame.

• For type II, we consider GAN-based [30] and mixup-
based [70] methods. For [30], the classification outputs
of the objects in the synthesized images are forced to be
closer to a uniform distribution. For mixup, we use a beta
distribution of Beta(1), and interpolate ID objects in the
pixel space for the reference frames.

• For type III, we add fixed Gaussian noise to the ID ob-
jects to create unknown object features.

The results are summarized in Table 2, where STUD out-
performs alternative approaches. Exploiting objects with-
out spatial-temporal distillation (�) is less effective than
STUD, because the generated unknowns either lack diver-
sity (e.g., using object with the biggest dissimilarity or mild
energy) or are too simple to effectively regularize the deci-
sion boundary between ID and OOD (e.g., using negative or
random objects). Synthesizing unknowns in the pixel space
(♣) is either unstable (GAN) or harmful for the object de-
tection performance (mixup). Lastly, Gaussian noise as un-
knowns is relatively simple and does not outperform STUD.

Ablation on candidate object selection. Table 3 investi-
gates the importance of filtering unknown objects based on
the energy score. We contrast performance by either remov-
ing the filtering, or using different filtering percentile (c.f.
Section 3.1). Using the objects with a mild energy score in
the reference frames performs the best. This strategy dis-
tills unknown objects with a proper difficulty level, which
is effective during contrastive uncertainty regularization.

Ablation on the frame sampling range R. Recall our
spatial-temporal unknown distillation requires concatena-

β FPR95 ↓ AUROC ↑ mAP ↑
COCO / nuImages as OOD

0.03 63.52 / 86.18 83.49 / 70.70 30.4
0.04 59.52 / 84.01 84.03 / 72.09 30.3
0.05 52.18 / 77.57 85.67 / 75.67 30.5
0.06 57.37 / 85.53 84.59 / 72.60 30.2
0.07 55.03 / 84.43 84.18 / 71.21 30.2

Table 4. Ablation study on the weight β for the uncertainty regu-
larization loss. In this case, we set T = 3 and R = 9.

tion of objects from T reference frames. We ablate the ef-
fect of randomly selecting T frames within different tempo-
ral horizons w.r.t the key frame, modulated by the sampling
range R. The results with varying R are shown in Figure 5
(a)-(b) with T = 3. We observe that OOD detection bene-
fits from using the reference frames that are mildly close to
the key frame. The trend is consistent for both COCO and
nuImages OOD datasets. A larger sampling range translates
into more dissimilar scenes, resulting in relatively easier un-
knowns to be distilled. When R becomes infinity, STUD
randomly samples frames from the entire video, where the
distilled unknowns are much less effective with AUROC
significantly degrades (from 85.67% to 80.35% on COCO).

Ablation on the number of reference frames T . We
contrast performance under different number of reference
frames T and report the OOD detection results in Figure 5
(c)-(d). This ablation shows that STUD indeed benefits
from aggregating objects from multiple frames across the
temporal dimension. For example, the model trained on
BDD100K with T = 3 achieves an AUROC improvement
of 5.24% (COCO as OOD) compared to T = 1. This high-
lights the importance of temporal distillation with multiple
frames. However, a larger T hurts the OOD detection per-
formance. We hypothesize this is because many redundant
object features are used during unknown distillation.

Ablation on the uncertainty regularization weight β.
Table 4 reports the OOD detection results as we vary the
weight β for Luncertainty. The model is evaluated on both
COCO and nuImages datasets as OOD. The results suggest
that a mild weight is desirable. In most cases, STUD out-
performs the baseline OOD detection methods in Table 1 in
terms of AUROC.
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Ablation on the uncertainty loss. We perform ablation
on three alternatives for Luncertainty: (1) using the squared
hinge loss [36], (2) classifying the unknowns as an addi-
tional K + 1 class in the classification branch and (3) re-
moving the weight θu in Luncertainty. The comparison is sum-
marized in Table 5. Compared to the hinge loss, our logistic
loss improves the AUROC by 11.35% (COCO as OOD). In
addition, classifying the distilled unknowns as an additional
class increases the difficulty of object classification, which
does not outperform either. Moreover, the learnable weight
θu modulates the slope of the logistic function, which al-
lows learning a sharper binary decision boundary for op-
timal ID-OOD separation. This ablation demonstrates the
superiority of the uncertainty loss employed by STUD.

Luncertainty FPR95 ↓ AUROC ↑ mAP ↑
COCO / nuImages as OOD

STUD w/o θu 64.06 / 85.31 83.15 / 69.67 30.1
Hinge loss [36] 74.73 / 90.70 74.32 / 62.59 30.2

K+1 class 84.34 / 93.63 59.40 / 56.25 30.8
STUD (ours) 52.18 / 77.57 85.67 / 75.67 30.5

Table 5. Ablation study on the uncertainty regularization loss.

4.4. Qualitative analysis

Here we further present qualitative analysis on the
instance-level OOD detection results. In Figure 6, we visu-
alize the predictions on several OOD images, using object
detection models trained without distilled unknown objects
(top) and with STUD (bottom). The ID data is BDD100K.
STUD performs better in identifying OOD objects (in green)
than a vanilla object detector and reduces false positives
among detected objects. Moreover, the confidence score of
the false-positive objects of STUD is lower than that of the
vanilla model (e.g., rocks in the 3rd column).

5. Related work
OOD detection for classification can be broadly catego-
rized into post hoc, generative-based and outlier exposure
(OE)-based approaches [65]. For post hoc methods, the
softmax confidence score is a common baseline [17], which

can be arbitrarily high for OOD inputs [16]. Several im-
provements have been proposed, such as ODIN [20, 33],
Mahalanobis [31], energy score [36, 61], Gram matri-
ces score [54] and GradNorm score [21]. Outlier expo-
sure methods exploited regularization using natural images
[5, 18, 32, 42, 64, 71] or images synthesized by GANs [30].
However, real outlier data is difficult to obtain, especially
for object detection. In contrast, STUD automatically dis-
tills unknowns from videos which allows greater flexibility.
Generative models directly estimate the ID density [27, 55,
60], which makes them natural alternatives for OOD detec-
tion. However, they are in general less competitive com-
pared to discriminative-based methods and typically harder
to optimize [19, 28, 45, 52, 57, 63]. Very recently, Sun et
al. [58] showed that a simple activation rectification strat-
egy termed ReAct can significantly improve test-time OOD
detection. Theoretical understandings on different post-hoc
OOD detection methods are provided in [44]. [56, 59] ap-
plied self-supervised learning for OOD detection, which we
compare in Section 4.2.

OOD detection for object detection is currently underex-
plored. Du et al. [8] proposed to synthesize virtual outliers
in the feature space for effective model regularization, and
demonstrated promise on OOD detection for object detec-
tion. In this paper, STUD focuses on OOD detection with
the help of videos and adopts an unknown-aware training
loss. Moreover, [23] used the negative objects as the un-
known samples, which is suboptimal as we show in Table 2.
Harakeh et al. [14] focused on uncertainty estimation for the
localization branch, rather than OOD detection for classifi-
cation problem. Several works [4, 6, 13, 40, 41] used ap-
proximate Bayesian methods, such as MC-Dropout [9] for
OOD detection. They require multiple inference passes to
generate the uncertainty score, which are computationally
expensive on larger datasets and models.

Open-world object detection includes OOD generaliza-
tion [25], zero-shot object detection [12, 50] and incremen-
tal object detection [37, 48], etc. Generally they developed
measures to mitigate catastrophic forgetting [24] or used



auxiliary information [50], such as class attributes, to per-
form object detection on unseen data–both differing from
our focus of OOD detection. Wang et al. [62] adopted dis-
similarity measurement in the cycle forward step, but their
focus is OOD generalization (label space remains the same)
rather than OOD detection. Additionally, it did not consider
aggregating temporal information from multiple frames.

Video anomaly detection (VAD) aims to identify anoma-
lous events on both the object level [7, 22, 68] and frame
level [35, 39, 51] by techniques such as skeleton trajec-
tory modeling [43], weakly supervised learning [69], atten-
tion [47], temporal pose graph [38], self-supervised learn-
ing [10] and autoencoders [3]. Compared with STUD, the
anomalies in VAD do not necessarily have different seman-
tics from the ID training data. Moreover, none of the ap-
proaches considered synthesizing unknowns with the help
of videos or energy-based model regularization.

6. Conclusion
In this paper, we propose STUD, an unknown-aware ob-

ject detection framework for OOD detection. STUD dis-
tills diverse unknown objects during training by exploiting
the rich spatial-temporal information from videos. The dis-
tilled unknowns meaningfully improve the decision bound-
ary between the ID and OOD data, resulting in state-of-the-
art OOD detection performance while preserving the per-
formance of the ID task. We hope our work will inspire fu-
ture research towards unknown-aware deep learning in real-
world settings.
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Supplementary Material
A. Experimental details

We summarize the OOD detection evaluation task in Table 6. The OOD test dataset is selected from MS-COCO and
nuImages dataset, which contains disjoint labels from the respective ID dataset. For the Youtube-VIS dataset, we use the
dataset released in year 2021. Since there are no ground truth labels available for the validation images, we select the last
597 videos in the training set as the in-distribution evaluation dataset. The remaining 2,388 videos are used for training.
The BDD100K and Youtube-VIS model are both trained for a total of 52,500 iterations. See detailed ablations on the
hyperparameters in Section 4.3 of the main paper.

Task 1 Task 2

ID train dataset BDD100K train Youtube-VIS train
ID val dataset BDD100K val Youtube-VIS val
OOD dataset COCO / nuImages COCO / nuImages
#ID train images 273,406 67,861
#ID val images 39,973 21,889
#OOD images from COCO 1,914 28,922
#OOD images from nuImages 2,100 2,100

Table 6. OOD detection evaluation tasks.

B. In-distribution classes
We provide a detailed description of the in-distribution classes for the two video datasets as follows.
BDD100K dataset contains 8 classes, which are pedestrian, rider, car, truck, bus, train, motorcycle, bicycle.
The Youtube-VIS dataset contains 40 classes, which are airplane, bear, bird, boat, car, cat, cow, deer, dog, duck, ear-

less seal, elephant, fish, flying disc, fox, frog, giant panda, giraffe, horse, leopard, lizard, monkey, motorbike, mouse, parrot,
person, rabbit, shark, skateboard, snake, snowboard, squirrel, surfboard, tennis racket, tiger, train, truck, turtle, whale,
zebra.

C. Software and hardware
We run all experiments with Python 3.8.5 and PyTorch 1.7.0, using NVIDIA GeForce RTX 2080Ti GPUs.

D. Baselines
To evaluate the baselines, we follow the original methods in MSP [17], ODIN [33], Generalized ODIN [20], Mahalanobis

distance [31], CSI [59], energy score [36] and gram matrices [54] and apply them accordingly on the classification branch
of the object detectors. For ODIN [33], the temperature is set to be T = 1000 following the original work. For both ODIN
and Mahalanobis distance [31], the noise magnitude is set to 0 because the region-based object detector is not end-to-end
differentiable given the existence of region cropping and ROIAlign. For GAN [30], we follow the original paper and use a
GAN to generate OOD images. The prediction of the OOD images/objects is regularized to be close to a uniform distribution,
through a KL divergence loss with a weight of 0.05. We set the shape of the generated images to be 100×100 and resize
them to have the same shape as the real images. We optimize the generator and discriminator using the Adam optimizer [26],
with a learning rate of 0.001. For CSI [59], we use the rotations (0◦, 90◦, 180◦, 270◦) as the self-supervision task. We set
the temperature in the contrastive loss to 0.5. We use the features right before the classification branch (with the dimension
to be 1024) to perform contrastive learning. The weights of the losses that are used for classifying shifted instances and
instance discrimination are both set to 0.1 to prevent training collapse. For Generalized ODIN [20], we replace and train the
classification head of the object detector by the most effective Deconf-C head shown in the original paper.

E. Ablation study on a different backbone architecture
In this section, we evaluate the proposed STUD using a different backbone architecture of the Faster-RCNN, which is

RegNetX-4.0GF [49]. Similarly, we compare with the same set of OOD detection baselines as stated in the main paper. The



In-distribution D Method FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / nuImages

BDD100K

MSP [17] 80.09 / 93.05 74.19 / 63.14 32.0
ODIN [33] 64.74 / 82.08 77.65 / 67.09 32.0
Mahalanobis [31] 54.02 / 79.85 82.38 / 75.48 32.0
Gram matrices [54] 63.96 / 63.61 67.56 / 67.47 32.0
Energy score [36] 64.79 / 81.62 78.78 / 69.43 32.0
Generalized ODIN [20] 60.76 / 82.00 80.14 / 70.74 32.5
CSI [59] 52.98 / 80.00 83.57 / 74.91 31.8
GAN-synthesis [30] 58.35 / 83.65 81.43 / 70.39 31.5
STUD (ours) 52.51 / 79.75 84.03 / 76.55 32.3

Youtube-VIS

MSP [17] 89.86 / 97.42 67.04 / 54.02 26.7
ODIN [33] 89.28 / 96.30 67.54 / 60.82 26.7
Mahalanobis [31] 90.00 / 94.44 70.47 / 54.83 26.7
Gram matrices [54] 87.64 / 91.25 69.76 / 61.43 26.7
Energy score [36] 88.54 / 90.21 67.83 / 58.02 26.7
Generalized ODIN [20] 85.15 / 98.00 71.57 / 64.23 27.3
CSI [59] 82.43 / 88.61 71.81 / 54.00 24.2
GAN-synthesis [30] 85.75 / 93.75 72.95 / 56.94 25.5
STUD (ours) 81.14 / 80.77 74.82 / 69.52 27.2

Table 7. Comparison with competitive out-of-distribution detection methods. All baseline methods are based on a model trained on ID
data only using RegNetX-4.0GF as the backbone. ↑ indicates larger values are better, and ↓ indicates smaller values are better. All values
are percentages. Bold numbers are superior results.

results are shown in Table 7.
From Table 7, we demonstrate that STUD is effective on alternative neural network architectures. In particular, using Reg-

Net [49] as backbone yields better OOD detection performance compared with the baselines. Moreover, we show that STUD
achieves stronger OOD detection performance while preserving or even slightly increasing the object detection accuracy on
ID data (measured by mAP). This is in contrast with CSI, which displays significant degradation, with mAP decreasing by
3% on Youtube-VIS.

F. Additional visualization examples
We provide additional visualization of the detected objects on different OOD datasets with models trained on different

in-distribution datasets. The results are shown in Figures 7-10.



Figure 7. Additional visualization of detected objects on the OOD images (from MS-COCO) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is BDD100K dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.



Figure 8. Additional visualization of detected objects on the OOD images (from nuImages) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is BDD100K dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.



Figure 9. Additional visualization of detected objects on the OOD images (from MS-COCO) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is Youtube-VIS dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.



Figure 10. Additional visualization of detected objects on the OOD images (from nuImages) by a vanilla Faster-RCNN (top) and STUD
(bottom). The in-distribution is Youtube-VIS dataset. Blue: Objects detected and classified as one of the ID classes. Green: OOD objects
detected by STUD, which reduce false positives among detected objects.
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