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Abstract
We present TubeFormer-DeepLab, the first attempt to

tackle multiple core video segmentation tasks in a unified
manner. Different video segmentation tasks (e.g., video se-
mantic/instance/panoptic segmentation) are usually consid-
ered as distinct problems. State-of-the-art models adopted
in the separate communities have diverged, and radically
different approaches dominate in each task. By contrast, we
make a crucial observation that video segmentation tasks
could be generally formulated as the problem of assign-
ing different predicted labels to video tubes (where a tube
is obtained by linking segmentation masks along the time
axis) and the labels may encode different values depend-
ing on the target task. The observation motivates us to de-
velop TubeFormer-DeepLab, a simple and effective video
mask transformer model that is widely applicable to mul-
tiple video segmentation tasks. TubeFormer-DeepLab di-
rectly predicts video tubes with task-specific labels (either
pure semantic categories, or both semantic categories and
instance identities), which not only significantly simplifies
video segmentation models, but also advances state-of-the-
art results on multiple video segmentation benchmarks.

1. Introduction
We observe that video segmentation tasks could be for-

mulated as partitioning video frames into tubes with differ-
ent predicted labels, where a tube contains segmentation
masks linked along the time axis. Based on the target task,
the predicted labels may encode only semantic categories
(e.g., Video Semantic Segmentation (VSS) [8, 64]), or both
semantic categories and instance identities (e.g., Video In-
stance Segmentation (VIS) [74, 84] for only foreground
‘things’, or Video Panoptic Segmentation (VPS) [44,79] for
both foreground ‘things’ and background ‘stuff’) (Fig. 1).

However, the underlying similarity of several video seg-
mentation tasks (i.e., assigning tubes with predicted labels)
has been long overlooked, and thus models developed for
video semantic, instance, and panoptic segmentation have
fundamentally diverged. For example, some VSS meth-
ods [29, 94] warp features between video frames, while the
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Figure 1. Video segmentation tasks can be formulated as partition-
ing video frames (e.g., a clip) into tubes (i.e., segmentation masks
linked along time) with different labels. TubeFormer-DeepLab di-
rectly predicts class-labeled tubes, providing a simple and general
solution to Video Semantic Segmentation (VSS), Video Instance
Segmentation (VIS), and Video Panoptic Segmentation (VPS).
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Figure 2. Our proposed hierarchical dual-path transformer per-
forms attention on three consecutive input frames (a) for VSS,
VIS, and VPS tasks. While the global memory learns the spatio-
temporally clustered attention for individual tube regions (b), our
latent memory learns task-specific attention (c).
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modern VIS model [5] predicts hundreds of frame-level in-
stance masks [34] and then propagates them to other neigh-
boring frames. To make matters more complicated, state-
of-the-art VPS methods [68, 80] adopt separate prediction
branches, specific to semantic segmentation, instance seg-
mentation, and object tracking, respectively.

In this work, instead of exacerbating the bifurcation be-
tween video segmentation models, we take a step back and
rethink the following question: Can we exploit the simi-
lar nature between video segmentation tasks, and develop
a single model that is both effective and generally applica-
ble? To answer this, we propose TubeFormer-DeepLab
that builds upon mask transformers [75] for video segmen-
tation by directly predicting class-labeled tubes, where the
labels encode different values depending on the target task.

Specifically, similar to other Transformer architec-
tures [10, 73], TubeFormer-DeepLab extends the mask
transformer [75] to generate a set of pairs, each containing
a class prediction and a tube embedding vector. The tube
embedding vector, multiplied by the video pixel embedding
features obtained by a convolutional network [48], yields
the tube prediction. As a result, TubeFormer-DeepLab
presents the first attempt to tackle multiple core video seg-
mentation tasks in a general framework without the need to
adapt the system for any task-specific design.

Naı̈vely applying the image-level mask transformer [75]
to the video domain does not yield a satisfactory result,
mainly due to the difficulty of learning attentions for video-
clip (i.e., multi-frames) features with large spatial resolu-
tions. To alleviate the issue, we introduce the latent dual-
path transformer block that is in charge of passing mes-
sages between video-frame (i.e., single-frame) features and
a latent memory, followed by the global dual-path trans-
former block that learns the attentions between video-clip
features and a global memory. This hierarchical dual-path
transformer framework facilitates the attention learning and
significantly improves the video segmentation results. In-
terestingly, as shown in Fig. 2, our latent memory learns
task-specific attention, while the global memory learns the
spatio-temporally clustered attention for individual tube re-
gions. Additionally, we split the global memory into two
sets, thing-specific and stuff-specific global memory, with
the motivation to exploit the different nature of ‘thing’
(countable instances) and ‘stuff’ (amorphous regions).

During inference, practically we could only fit a video
clip (i.e., a short video sequence) for video segmentation.
The whole video sequence segmentation result is thus ob-
tained by applying the video stitching [69] to merge clip
segmentation results. To enforce the consistency between
video clips, we additionally propose a Temporal Consis-
tency loss that encourages the model to learn consistent pre-
dictions in the overlapping frames between clips.

Finally, we propose a simple and effective data augmen-

tation policy by extending the image-level thing-specific
copy-paste [27, 32]. Our method, named clip-paste (clip-
level copy-paste), randomly pastes either ‘thing’ or ‘stuff’
(or both) regions from a video clip to the target video clip.

To demonstrate the effectiveness of our proposed
TubeFormer-DeepLab, we conduct experiments on multiple
core video segmentation datasets, including KITTI-STEP
(VPS) [79], VSPW (VSS) [64], YouTube-VIS (VIS) [84],
SemKITTI-DVPS (depth-aware VPS) [69], and recent
VIPSeg [63] (VPS). Our single model not only signif-
icantly simplifies video segmentation systems (e.g., the
proposed model is end-to-end trained and does not re-
quire any task-specific design), but also advances state-
of-the-art performance on several benchmarks. In partic-
ular, TubeFormer-DeepLab outperforms published works
Motion-DeepLab [79] by +13.1 STQ on KITTI-STEP test
set, TCB [64] by +21 mIoU on VSPW test set, IFC [40]
by +2.9 track-mAP on YouTube-VIS-2019 val set, ViP-
DeepLab [69] by +3.6 DSTQ on SemKITTI-DVPS test
set, Clip-PanoFCN [63] by +13.6 STQ and +3.9 VPQ
on VIPSeg test set. Our experimental results validate
TubeFormer-DeepLab’s general efficacy for video segmen-
tation tasks.

2. Related Works
Video Semantic Segmentation (VSS). Extending image
semantic segmentation [13, 17, 22, 26, 37, 39, 60, 81, 88, 92,
96] to the video domain requires predicting all pixels in a
video with different semantic classes [8, 64]. Prior meth-
ods [29, 42, 52, 65, 94, 95] exploit the temporal informa-
tion via a warping module [23, 38, 41]. Recently, Mao et
al. [64] introduced a large-scale VSS benchmark, called
VSPW (Video Scene Parsing in the Wild), along with a solid
baseline that effectively aggregates video context informa-
tion by extending [88] and [92] to the temporal dimension.
Video Instance Segmentation (VIS). Combining multi-
object tracking [4, 7, 24, 30, 67] and instance segmenta-
tion [11,33,34,58,68,71], video instance segmentation [74,
84] aims to track instance masks across video frames. Most
state-of-the-art VIS methods [5, 9, 28, 40, 54, 57, 77, 84]
are detection-based approaches, allowing overlapping mask
predictions (e.g., based on Mask R-CNN [34], FCOS [72],
or DETR [10, 93]). Our work is similar to the concurrent
work IFC [40], which uses memory features for video in-
stance segmentation. However, our work does not exploit
memory features for inter-frame communication, and thus
does not require extra modules to perform such a task. In-
stead, the latent memory features are deployed in the pro-
posed latent dual-path transformer block to facilitate per-
frame segmentation. Finally, LatentGNN [90] also explored
the latent features in the graphical neural networks [70].
Video Panoptic Segmentation (VPS). Recently, panop-
tic segmentation [19, 45, 46, 51, 53, 75, 76, 83, 86] has
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also been extended to the video domain. Video Panop-
tic Segmentation [44] attempts to unify video semantic
and instance segmentation, requiring temporally consis-
tent panoptic segmentation results. Different from VIS,
VPS disallows overlapping instance masks and requires la-
beling each pixel, including both ‘thing’ and ‘stuff’ pix-
els. Current state-of-the-art approaches [69,79,80] adopted
complicated pipelines due to the intricate nature of VPS.
Specifically, VPSNet [44] contains multiple task-specific
heads, including Mask R-CNN [34], deformable convo-
lutions [23], and MaskTrack [84] for instance segmen-
tation, semantic segmentation, and tracking, respectively,
while ViP-DeepLab [69] extends Panoptic-DeepLab [20]
(which employs dual-ASPP [15] and dual-decoder struc-
tures specific to semantic and instance segmentation, re-
spectively) by adding another next-frame instance segmen-
tation branch. On the other hand, our approach signifi-
cantly simplifies the current pipeline by employing mask
transformers [75] to directly predict clip-level mask seg-
mentation results. Finally, our proposed model could also
be easily extended to the recent task of Depth-aware Video
Panoptic Segmentation (DVPS) [69], which further requires
per-pixel depth estimation on top of VPS results. We note
that current with our work, Video K-Net [50], extending
K-Net [91], also develops a unified framework for video
panoptic segmentation.

3. Method
In this section, we introduce the formulation of sev-

eral video segmentation tasks, followed by a general for-
mulation that inspires our TubeFormer-DeepLab. We then
present its model design, training and inference strategies.

3.1. Video Segmentation Formulation

Let us denote with v ∈ RT×H×W×3 an input video clip
containing T video frames of spatial size H ×W (T could
be equal to the video sequence length if memory allows).
The video clip is annotated with a set of class-labeled tubes
(a tube is defined as segmentation masks linked along the
time axis): {yi}Ki=1 = {(mi, ci)}Ki=1 , where the K ground
truth tubes mi ∈ {0, 1}T×H×W do not overlap with each
other, and ci denotes the ground truth class label of tube mi.
Below, we briefly introduce several tasks.

Video Semantic Segmentation (VSS) is typically for-
mulated as per-video pixel classification, where the pixel
features for classification are enriched by warping [94] or
aggregating [64] features from neighboring frames. For-
mally, the model predicts the probability distribution over
a predefined set of categories C = {1, ..., D} for every
video pixel: {p̂i|p̂i ∈ ∆D}T×H×Wi=1 , where ∆D is the
D-dimensional probability simplex. The final segmenta-
tion output ŷ is then obtained by taking its argmax (i.e.,
ŷi = arg maxc p̂i(c),∀i ∈ {1, 2, . . . , T ×H ×W}).

Video Instance Segmentation (VIS) requires to seg-
ment and temporally link object instances in the video. For
each detected foreground ‘thing’ i in the video, the model
predicts a video tube (i.e., video-level instance mask track)
m̂i ∈ [0, 1]T×H×W with a probability distribution p̂i over
C defined for only thing classes. Depending on the target
dataset or evaluation metric, the model may generate over-
lapping video tubes (e.g., Youtbue-VIS [84] adopts track-
mAP, allowing overlapping predicted tubes, while KITTI-
MOTS [74] adopts HOTA [62], disallowing so).

Video Panoptic Segmentation (VPS) requires tempo-
rally consistent semantic and instance segmentation results
for both ‘thing’ and ‘stuff’ classes. Specifically, the model
predicts a set of non-overlapping video tubes {ŷi}Ni=1 =

{(m̂i, p̂i(c))}Ni=1, where m̂i ∈ [0, 1]
T×H×W denotes the

predicted tube, and p̂i(c) denotes the probability of assign-
ing class c to tube m̂i belonging to a predefined category set
C that contains both ‘thing’ and ‘stuff’ classes.

Depth-aware Video Panoptic Segmentation (DVPS)
builds on top of VPS by additionally requiring a model to
estimate the depth value of each pixel. Similar to VPS out-
put, the prediction has the following format: {ŷi}Ni=1 =

{(m̂i, p̂i(c), d̂i)}Ni=1, where d̂i ∈ [0, dmax]
T×H×W de-

notes the estimated depth value and dmax is the maximum
depth value specified in the target dataset. Accordingly, the
dataset contains ground truth depth.

General task formulation. Despite the superficial differ-
ences between tasks, we discover the underlying similar-
ity that video segmentation tasks could be generally for-
mulated as the problem of assigning different predicted la-
bels to video tubes and the labels may encode different val-
ues depending on the target task. For example, if only se-
mantic categories are predicted, it becomes video seman-
tic segmentation. Similarly, if both semantic categories
and instance identities are required (i.e., one predicted
tube for each category-identity pair), it then becomes ei-
ther video instance segmentation (if only foreground ‘thing’
classes are considered) or video panoptic segmentation.
This motivates us to develop a general video segmentation
model that directly predicts class-labeled tubes {ŷi}Ni=1 =
{(m̂i, p̂i(c))}Ni=1 (and optionally depth, if required).

3.2. TubeFormer-DeepLab Architecture

We first introduce TubeFormer-DeepLab-Simple, our
video-level baseline, which will be improved by our pro-
posed latent dual-path transformer, resulting in the final
TubeFormer-DeepLab.

TubeFormer-DeepLab-Simple. We adopt the per-clip
pipeline which takes a video clip and outputs clip-level re-
sults. Inspired by [75], our TubeFormer-DeepLab-Simple
integrates a CNN backbone and a global memory feature in
a dual-path architecture, i.e., global dual-path transformer.
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Figure 3. TubeFormer-DeepLab architecture overview. TubeFormer-DeepLab extends the mask transformer [75] to generate a set of
pairs, each containing a class prediction p(c) and a tube embedding vector w. The tube embedding vector, multiplied by the video pixel
embedding features xv′

obtained by a convolutional network, yields the tube prediction m̂. We introduce a hierarchical structure with the
latent dual-path transformer block that is in charge of passing messages between frame-level features xf and a latent memory xl, followed
by the global dual-path transformer block that learns the attentions between video-clip features xv and a global memory xm.

Given an input video clip v, the CNN backbone pro-
cesses the input frames independently, and generates pixel
features xv ∈ RT×H×W×C , where C is channels. The
pixel self-attention is performed at the frame level (frame-
to-frame, F2F) via an axial-attention block [76].

Afterwards, the global dual-path transformer operates in
a per-clip manner, taking the flattened video pixel features
xv ∈ RTHW×C and a 1D global memory xm ∈ RN×C of
length N (i.e. the size of the prediction set). Passing through
the global dual-path transformer, we expect three attentions:
(1) memory-to-video (M2V) attention (in which the video
features encode per-clip information to the memory fea-
ture), (2) memory-to-memory (M2M) self-attention, and (3)
video-to-memory (V2M) attention (in which the video pixel
features refine themselves by receiving tube-level informa-
tion gathered in the global memory). The global dual-path
transformer blocks can be stacked multiple times at any lay-
ers of the network.

On top of the global memory, there are two output heads:
a segmentation head and a class head, each composed of
two Fully-Connected (FC) layers. The global memory of
size N is independently passed to the two heads, resulting
in N unique tube embeddings w ∈ RN×C and N corre-
sponding class predictions p(c) ∈ RN×|C|. Note that the
possible classes C 3 c include “none” category ∅ in case
the embedding does not correspond to any region in a clip.
Our video tube prediction m̂ is computed in one shot as a
dot-product between the decoded video pixel features xv′

and the tube embeddings w:

m̂ = softmaxN (xv′
· w) ∈ RN×T×H×W . (1)

The final video-clip segmentation {ŷi}Ni=1 =
{(m̂i, p̂i(c))}Ni=1 can be obtained by combining N bi-
nary video tubes with their corresponding class predictions.

TubeFormer-DeepLab with Latent Dual-Path Trans-
former. Modeling long-range interactions in video-clip
(i.e., multi-frames) features is especially difficult, when
dealing with high-resolution inputs or a large number of in-
put frames. To both alleviate the issue and facilitate the at-
tention learning, we propose a hierarchical structure, which
allows two levels of attention mechanisms: frame-level, fol-
lowed by video-level. Note the video-level attention is per-
formed by the aforementioned global dual-path transformer.

Prior to the global dual-path transformer, we introduce a
new latent dual-path transformer block in charge of passing
messages between frame-level features and a latent mem-
ory. It processes individual video frames in parallel (batch-
wise). Our latent memory is inspired by the graphical mod-
els with latent representations [40, 47, 90], allowing a low-
rank representation for the graph affinity of high complex-
ity. Concurrent with IFC [40], we discovered that latent
features facilitate attention learning. However, we deployed
them in a different framework (e.g., dual-path transformer
and no cross-frame communication).

Specifically, the initial latent memory xl ∈ RL×C is
copied per frame and paired with each frame’s features
xf ∈ RHW×C (flattened) to construct the input. Passing
through the latent dual-path transformer, the latent mem-
ory first collects messages from frame features via latent-
to-frame (L2F) attention, and perform latent-to-latent (L2L)
self-attention among themselves. Afterwards, the per-frame
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knowledge from the latent memory is propagated back to
the frame features via frame-to-latent (F2L) attention. Note
the latent memory features are trainable parameters like the
global memory features. However, they are only deployed
in the latent space (i.e., intermediate layers) and will not be
used in the final output layers.

As shown in Fig. 3, our hierarchical dual-path trans-
former blocks consist of a series of one axial-attention
block, the latent dual-path transformer, and the global dual-
path transformer. The stacking of multiple blocks will al-
ternate the latent and the global communications, allowing
the pixel features to refine themselves by attending to both
frame-level and video-level memory, and vice versa. This
in turn enriches the features of all three paths: pixel-, latent-
memory and global-memory paths, and enables learning
more comprehensive representations of the given video clip.

Global memory with split thing and stuff. To further
improve the segmentation quality, we propose to split the
global memory into two sets: thing-specific and stuff-
specific global memory. Originally, the global memory in
[75] deals with thing masks and stuff masks in a unified
manner. However, the design ignores the natural difference
between them — There could be multiple instances of the
same thing class in an image, but at most one mask is al-
lowed for each stuff class. We thus allocate the last |Cstuff|
out of N elements in the global memory specifically for pre-
dicting stuff classes. The ordering is enforced by assigning
the stuff-specific global memory to the ground truth stuff
classes, instead of including them in the bipartite matching.

3.3. Training Strategy

VPQ-style loss. To train TubeFormer-DeepLab for vari-
ous video segmentation tasks in a unified manner, we adopt
a VPQ-style loss that directly optimizes the set of class-
labeled tubes. Similar to the image-level PQ-style loss [75],
we draw inspiration from video panoptic quality (VPQ) [44]
and approximately optimize VPQ within a video clip.

To start with, a VPQ-style similarity metric between a
class-labeled ground truth tube yi = (mi, ci) and a pre-
dicted tube ŷj = (m̂j , p̂j(c)) can be defined as: sim(yi, ŷj)
= p̂j(ci) × Dice(mi, m̂j), where p̂j(ci) ∈ [0, 1] denotes
the probability of predicting the correct tube class ci and
Dice(mi, m̂j) ∈ [0, 1] measures the Dice coefficient be-
tween a predicted tube m̂j and a ground truth tube mi.

We match the predicted tubes to the ground truth tubes,
and optimize the predictions by maximizing the total VPQ-
style similarity. The implementation details follow the PQ-
style loss in [75]. In addition, we generalize the auxiliary
losses used in [75] to video clips, resulting in a tube-ID
cross entropy loss, a video semantic segmentation loss, and
a video instance discrimination loss.

Shared semantic and panoptic prediction. Originally,

the auxiliary semantic segmentation loss in [75] is applied
to the backbone feature with a separate semantic decoder.
Instead, we propose to apply the loss directly to the decoded
video pixel features xv′

(cf . Eq. (1)) with a linear layer,
which learns better features for segmentation.

Temporal consistency loss. The VPQ-style loss benefits
the learning of spatial-temporal consistency within an in-
put clip. To further achieve the clip-to-clip consistency
over a longer video, we propose to use a temporal consis-
tency loss applied between clips. Specifically, we minimize
the distance between the N tube logits predicted from the
overlapping frames of two clips. We use L1 loss for the
consistency metric. The loss is back-propagated through
the dot-product of the pixel features and N global mem-
ory features, affecting both pixel and global memory paths.
TubeFormer-DeepLab thereby achieves implicit multi-clip
consistency, which makes our training objective symmetri-
cal to the whole-video inference pipeline (Sec. 3.4).

Clip-level copy-paste. Additionally, we propose a sim-
ple and effective data augmentation policy by extending
the image-level thing-specific copy-paste [27, 32]. Our
augmentation method, named clip-paste (clip-level copy-
paste), randomly pastes either ‘thing’ or ‘stuff’ (or both)
region tubes from a video clip to the target video clip. We
use clip-paste with a probability of 0.5.

Depth prediction branch. To grant TubeFormer-
DeepLab the ability to perform monocular depth estimation,
we add a small depth prediction module (i.e., ASPP [14]
and DeepLabv3+ lightweight decoder [17]) on top of the
CNN backbone features xv . Note that we found the perfor-
mance slightly degrades if we add the depth prediction to
the decoded video pixel features xv′

, indicating that it is not
beneficial to share depth estimation with segmentation pre-
diction in our case. We apply Sigmoid to constrain the depth
prediction to the range (0, 1), and then multiply it by the
maximum depth. Following [69], we use the combination
of scale invariant logarithmic error [25] and relative squared
error [31] as the training loss. The depth loss weight is set
to 100 when jointly trained with the other losses.

3.4. Inference Strategy

Clip-level inference. The clip-level segmentation is in-
ferred by simply performing argmax twice. Specifically, a
class label is predicted for each tube: ĉi = arg maxc p̂i(c) .
And then, a tube-ID ẑt,h,w is assigned per-pixel:
ẑt,h,w = arg maxi m̂i,t,h,w . In practice, our inference sets
tube-IDs with class confidence below 0.7 to void.

For video instance segmentation, we also explore per-
mask assignment scheme [21, 87], which treats the predic-
tion of each object query as one object mask proposal.

Video-level inference. At the clip level, TubeFormer-
DeepLab outputs temporally consistent results for T video
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frames. To obtain the video-level prediction, we perform
clip-level inference for every T consecutive frames with
T −1 overlapping frames (i.e., we move along the temporal
axis by only one frame at each inference step). The clip-
level results are then stitched together by matching tubes in
the overlapping frames based on their IoUs, similar to [69].

4. Experimental Results

Our proposed TubeFormer-DeepLab is a general video
segmentation model. To demonstrate its effectiveness, we
conduct experiments on KITTI-STEP [79], VIPSeg [63],
VSPW [64], YouTube-VIS [84], SemKITTI-DVPS [69]
for Video Panoptic Segmentation (VPS), Video Semantic
Segmentation (VSS), Video Instance Segmentation (VIS),
and Depth-aware Video Panoptic Segmentation (DVPS), re-
spectively.

4.1. Datasets

KITTI-STEP [79] is a new video panoptic segmenta-
tion dataset that additionally annotates semantic segmen-
tation for KITTI-MOTS [74]. It contains 19 seman-
tic classes (similar to Cityscapes [22]), among which two
classes (‘pedestrians’ and ‘cars’) come with tracking IDs.
For evaluation, KITTI-STEP adopts STQ [79] (segmenta-
tion and tracking quality), which is the geometric mean of
SQ (segmentation quality) and AQ (association quality).

VIPSeg [63] is also a new video panoptic segmentation
dataset for diverse in-the-wild scenarios. It contains 124 se-
mantic classes (58 ‘thing’ and 66 ‘stuff’ classes) with 3536
videos, where each video spans 3 to 10 seconds.

VSPW [64] is a recent large-scale video semantic seg-
mentation dataset, containing 124 semantic classes. VSPW
adopts mIoU as the evaluation metric.

YouTube-VIS [84] contains two versions for video in-
stance segmentation; The YouTube-VIS-2019 contains 40
semantic classes and the YouTube-VIS-2021 is an im-
proved version with higher number of instances and videos.
Youtube-VIS adopts track mAP for evaluation.

SemKITTI-DVPS [69] is a new dataset for depth-aware
video panoptic segmentation, which is obtained by pro-
jecting the 3D point cloud panoptic annotations of Se-
manticKITTI [3] to 2D image planes. It contains 19 classes,
among which 8 are annotated with tracking IDs. For eval-
uation, SemKITTI-DVPS uses DSTQ (depth-aware STQ),
which considers depth inlier metric [25] in addition to STQ.

4.2. Implementation Details

TubeFormer-DeepLab builds upon MaX-DeepLab [75]
with the official codebase [78]. The hyper-parameters
mostly follow the settings of [75]. Unless specified, we
use their small model MaX-DeepLab-S, which augments
ResNet-50 [35] with axial-attention blocks [76] in the last

method rank STQ SQ AQ
Motion-DeepLab [79] 7 52.19 59.81 45.55

ICCV 2021 challenge entries
HybridTracker 6 54.99 55.54 55.54
slain 5 57.87 60.71 55.16
EffPs MM 4 62.93 64.41 61.49
REPEAT [61] 2 67.13 68.49 65.81
UW IPL/ETRI AIRL [89] 1 67.55 64.04 71.26

TF-DL-B3 3 65.25 70.27 60.59

Table 1. [VPS] KITTI-STEP test set results. Ranking includes un-
published methods. The challenge winning entries [61, 89] adopt
separate and ensemble methods for tracking and segmentation.

two stages (i.e., stage-4 and stage-5). We also experiment
with scaling up the backbone [16] by stacking the axial-
attention blocks in stage-4 by n times, and refer them as
TubeFormer-DeepLab-Bn in the experiments. For VPS, we
pretrain the models on Cityscapes [22] and COCO [56],
while for other experiments, we only pretrain on COCO.
The pretraining procedure is similar to prior works [5, 36,
79]. Using the pretrained weights, TubeFormer-DeepLab is
trained on the target datasets using a batch size of 16, with
T = 2 for all datasets except T = 5 for YouTube-VIS dataset.
We use the global memory size N = 128 (i.e., output size),
latent memory size L = 16, and C = 128 channels. We use
‘TF-DL’ to denote TubeFormer-DeepLab in the results.

4.3. Main Results

[VPS] We evaluate TubeFormer-DeepLab on the chal-
lenging video panoptic segmentation dataset, KITTI-
STEP [79] in Tab. 1. Our model achieves state-of-the-art
performance with 65.25 STQ (70.27 SQ and 60.59 AQ).
Among single unified approaches, our model ranks first,
significantly outperforming the published baseline Motion-
DeepLab [79] by +13.1 STQ. Our model performs com-
parably with the challenge winning methods [61, 89] with-
out exploiting extra 3D object formulation, depth informa-
tion, or pseudo labels, and even without the employment
of separate and ensemble methods for tracking and seg-
mentation. Nevertheless, our model delivers the best seg-
mentation quality (70.27 SQ), showcasing our TubeFormer-
DeepLab’s segmentation ability.

We further evaluate TubeFormer-DeepLab on the recent
video panoptic segmentation dataset, VIPSeg [63] in Tab. 2.
Our method outperforms Clip-PanoFCN [63] (which built
on top of Panopitc FCN [53]) by +13.6 STQ and +3.9 VPQ
on the test set.

[VSS] We assess TubeFormer-DeepLab on the video se-
mantic segmentation dataset, VSPW [64]. We show the
single-model single-scale results on val set in Tab. 3. In
the table, TubeFormer-DeepLab outperforms all compet-
ing methods, which are based on state-of-the-art backbones
(BEiT [2], Swin-L [59]) and decoders (OCRNet [88], Uper-
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method STQ VPQ
val set
Clip-PanoFCN [63] 31.5 22.9
TF-DL-B1 39.8 29.2
TF-DL-B3 41.5 31.2

test set
Clip-PanoFCN [63] 25.0 22.9
TF-DL-B3 38.6 26.8

Table 2. [VPS] VIPSeg val and test set results, using the latest
test server at https://codalab.lisn.upsaclay.fr/
competitions/9743

method mIoU VC8 VC16
TCB [64] 37.82 87.86 83.99

ICCV 2021 challenge entries
BetterThing [18] 57.89 - -
CharlesBLWX [43] 61.44 - -
jjRain [36] 59.30 90.07 86.87

TF-DL-B4 63.16 92.08 87.95

Table 3. [VSS] VSPW val set results. Comparison includes pub-
lished and unpublished methods.

method rank ens. m.s. pseudo mIoU VC8 VC16
old codalab
TCB [64] 13 35.62 86.21 81.90

ICCV 2021 challenge entries
BetterThing [18] 3 X X 57.35 93.28 90.56
CharlesBLWX [43] 2 X X 57.44 91.29 87.70
jjRain [36] 1 X X X 58.85 94.77 92.59
TF-DL-B4 4 56.64 90.16 86.38

new codalab
TCB [64] 32.58 79.46 73.23
TF-DL-B4 52.99 90.16 86.38

Table 4. [VSS] VSPW test set results. Ranking includes pub-
lished and unpublished methods. Some methods use model en-
sembles, multi-scale inference, or teacher-student pseudo label-
ing strategy to boost performance on test set. In the bottom
rows, we also include the new test set results, using the latest
test server at https://codalab.lisn.upsaclay.fr/
competitions/7869

Net [81]). Tab. 4 shows the test set results. Our single-
model TubeFormer-DeepLab achieves competitive results
(rank 4 out of 17) with the ICCV 2021 challenge winners,
while not employing model ensembles, multi-scale infer-
ence, and pseudo labels. Finally, we attain a better +21
mIoU than the published work TCB [64] on the test set.
As shown in the bottom of Tab. 4, we also include the new
test set results using the latest test server.

[VIS] We show that TubeFormer-DeepLab is sufficiently
general to solve instance-level video segmentation in a uni-
fied manner. The same model, loss, and training procedure
is seamlessly applied by treating the background region as
a single ‘stuff’ class. At testing, we explore both per-pixel
and per-mask argmax for tube ID assignment (Sec. 3.4).

method T AP AP50 AP75 AR1 AR10

MaskTrack [84] 2 31.8 53.0 33.6 33.2 37.6
SipMask [9] 2 33.7 54.1 35.8 35.4 40.1
STEm-Seg [1] 8 34.6 55.8 37.9 34.4 41.6
CrossVIS [85] 2 36.6 57.3 39.7 36.0 42.0
MaskProp [5] 13 46.6 - 51.2 44.0 52.6
Seq Mask R-CNN [54] 36 47.6 71.6 51.8 46.3 56.0
VisTR [77] 36 40.1 64.0 45.0 38.3 44.9
IFC [40] 36 44.6 69.2 49.5 44.0 52.1

TF-DL-B4 (per-pixel) 5 45.4 66.6 48.8 48.3 56.9
TF-DL-B4 (per-mask) 5 47.5 68.7 52.1 50.2 59.0

Table 5. [VIS] YouTube-VIS-2019 val set results.

method T AP AP50 AP75 AR1 AR10

MaskTrack [84] 2 28.6 48.9 29.6 - -
SipMask [9] 2† 31.7 52.5 34.0 - -
CrossVIS [85] 2† 34.2 54.4 37.9 - -
IFC [40] 36† 36.8 57.9 39.3 - -
TF-DL-B4 (per-mask) 5 41.2 60.4 44.7 40.4 54.0

Table 6. [VIS] YouTube-VIS-2021 val set results. †: T inferred
from their Youtube-VIS-2019 settings.

method rank DSTQ
ViP-DeepLab [69] 3 63.36

ICCV 2021 challenge entries
rl lab 5 54.77
ywang26 4 55.99
HarborY [49] 2 63.63

TF-DL-B4 1 67.00

Table 7. [DVPS] SemKITTI-DVPS test set results. Ranking in-
cludes published and unpublished methods.

Tab. 5 and 6 show the comparison with the state-of-the-
art methods on YouTube-VIS 2019 and 2021 datasets [84].
Note that TubeFormer-DeepLab predicts a single unique
mask per object, while other methods often generate multi-
ple overlapping masks, which are favored by the AP metric.
Among end-to-end methods, our TubeFormer-DeepLab-B4
outperforms VisTR [77] by +7.4, and IFC [40] by +2.9 AP.
Our model with T = 5 sets the highest scores among meth-
ods that employ a small value of T . Also, our gains in
AR1 are significant, indicating the benefit of TubeFormer-
DeepLab in the non-overlapping segmentation scenario.

Our model performs comparably to Seq Mask R-
CNN [54]. We point out that TubeFormer-DeepLab is an
end-to-end near-online method, while Seq Mask R-CNN re-
lies on STM [66]-like structure to propagate mask proposals
through the whole sequence, and thus is offline (T=36).

[DVPS] We evaluate TubeFormer-DeepLab on the
SemKITTI-DVPS dataset [69] for depth-aware video
panoptic segmentation. Tab. 7 shows the test set results.
Adding a depth prediction branch to the same exact
TubeFormer-DeepLab used for KITTI-STEP outperforms
ViP-DeepLab [69] by +3.4 DSTQ and achieves the new
state-of-the-art of 67.0 DSTQ.
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(a) input frames (b) global memory attention (c) latent memory attention (d) video panoptic segmentation

Figure 4. Visualization on KITTI-STEP sequence. From left to right: input frames (T = 3), global memory attention, latent memory
attention, and video panoptic segmentation results. The global memory attention is selected for predicted tube regions of interest: a
pedestrian and two cars (left, right) on the sidewalk, and the latent memory attention is selected for 4 (out of L = 16) latent memory.

4.4. Ablation Studies

We provide ablation studies on the KITTI-STEP val
set [79]. To compensate for the training noise, we report
the mean of three runs for every ablation study.

Hierarchical dual-path transformer. In Tab. 8a, we ver-
ify that the gains demonstrated by TubeFormer-DeepLab
come from the proposed hierarchical dual-path transformer.
Note that our baseline method (TubeFormer-DeepLab-
Simple) already uses the axial attentions and the global
memory. Introducing the new latent memory and its com-
munication with the video-frame features (F-L attention:
L2F, L2L, and F2L) brings a large improvement of +1.7
STQ. We also ablate adding attentions between the global
memory and the latent memory (M2L and L2M), which
show no improvements. This suggests the frame-latent (F-
L) attention is sufficient to build effective hierarchical atten-
tions between the latent and the global dual-path transform-
ers. We also ablate different latent memory size, and set the
default size L to be 16.

Training strategy. In addition, Tab. 8b shows that the
proposed temporal consistency loss helps TubeFormer-
DeepLab to learn clip-to-clip consistency, and improves the
inference on longer videos than the training clip length (T ),
as demonstrated by +0.5 STQ gain. The proposed clip-level
copy-paste (clip-paste) augments more training samples for
tube-level segmentation, and further improves by +0.9 STQ.

Scaling. We study the scaling of TubeFormer-DeepLab
in Tab. 8c. Pretraining on ImageNet-22k dataset brings
+1.6 STQ and adding COCO to the training further gives
+1.9 STQ. We also explore scaling up the backbone by
stacking the axial-attention blocks in stage-4 by n times
(TubeFormer-DeepLab-Bn). The increase of every n will
introduce +13M parameters. We notice increasing the stack
from n = 1 to n = 3 improves the STQ from 73.19 to
74.25. Further scaling to n = 4 starts to saturate, probably
limited by the scale of KITTI-STEP dataset. We observe
TubeFormer-DeepLab can further scale to n = 4 on larger-

method L F-L M2L L2M STQ SQ AQ
TF-DL-Simple 0 68.36 74.93 62.38

TF-DL (with
-hierarchical
-dual-path
-transformer)

16 X 70.03 76.83 63.83
16 X X 69.63 76.05 63.75
16 X X 69.64 76.75 63.18
8 X 69.39 75.74 63.54

32 X 69.57 76.71 63.1

(a) Varying transformer attention types. Frame-latent (F-L) attention
is introduced in the proposed latent dual-path transformer, and includes
latent-to-frame, latent-to-latent, and frame-to-latent attentions. We also
ablate memory-to-latent (M2L) and latent-to-memory (L2M) attentions,
and different latent memory size L.

method STQ SQ AQ
TF-DL 70.03 76.83 63.83
+ temporal consistency 70.51 77.64 64.04
+ clip-paste 71.40 76.82 66.36

(b) Adding temporal consistency loss and clip-level copy-paste.

n INet COCO STQ SQ AQ
B1 1 1k 70.03 76.83 63.83
B1 1 1k+22k 72.28 76.27 67.01
B1 1 1k+22k X 73.19 78.11 68.58
B3 3 1k+22k X 74.25 78.31 70.04
B4 4 1k+22k X 73.68 78.16 69.46

(c) Scaling by stacking axial blocks in stage-4 of Axial-ResNet-50 by
n times and pretraining on ImageNet-22K and COCO.

STQ SQ AQ
TF-DL 70.03 76.83 63.83
without sharing semantic and panoptic 68.95 75.83 62.70
without split thing and stuff memory 68.96 75.77 62.76

(d) Ablating architectural improvements

Table 8. Ablation studies on KITTI-STEP val set.

scale datasets, where TubeFormer-DeepLab-B4 performed
better on VSPW and YouTube-VIS datasets.

Architectural improvements. We ablate our new archi-
tectural designs: (1) sharing the semantic and panoptic pre-
dictions, and (2) splitting the global memory for separate
thing and stuff classes. As shown in Tab. 8d, we observe
a performance drop of -1.1 STQ by reverting the change of
either (1) or (2) from TubeFormer-DeepLab.
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4.5. Visualization

In Fig. 4, we visualize how the proposed hierarchical
dual-path transformer performs attention onto the input clip
of three consecutive frames. We first visualize the global
memory attention by selecting four output regions of in-
terest from TubeFormer-DeepLab video panoptic predic-
tion. We probe the attention weights between the four tube-
specific global memory embeddings and all the pixels. We
see the global memory attention is spatio-temporally well
separated for individual thing or stuff tubes.

In addition, we select four latent memory indices and
visualize their attention maps in Fig. 4c. We find that
some latent memory learns to spatially specialize on cer-
tain areas (left vs right side of the scene) or attends to
semantically-similar regions (cars or backgrounds) to fa-
cilitate per-frame attention. With the hierarchical atten-
tions made by the global and latent dual-path transformers,
TubeFormer-DeepLab can be a successful tube transformer.

Finally, we provide more visualizations for each video
segmentation task in Sec. 6 and video prediction results at
https://youtu.be/twoJyHpkTbQ.

5. More Experimental Results
In this section, we provide more experimental results,

comparing our methods with published works in detail.
We do not include the unpublished and concurrent ICCV
2021 challenge entries, which usually adopt complicated
pipelines, e.g., model ensembles, separate models for differ-
ent sub-tasks (e.g., tracking, and segmentation), multi-scale
inference, or pseudo labels. In the tables, we explicitly list
the adopted backbones and decoders for a detailed compari-
son. We note that most of the state-of-the-art approaches for
different video segmentation tasks have fundamentally di-
verged, while our proposed TubeFormer-DeepLab is a sim-
ple and unified system for general video segmentation tasks.
[VPS] Tab. 9 summarizes our results on KITTI-STEP val
set. As shown in the table, our TubeFormer-DeepLab-B1,
employing ResNet-50 [35] and axial-attention [76], signif-
icantly outperforms Motion-DeepLab [79] (w/ ResNet-50,
dual-ASPP [15] and dual decoders [17]) and VPSNet [44]
(w/ ResNet-50, FPN [55], and Mask R-CNN [34] multi-
head predictions) by +12 and +14 STQ, respectively. We
also report the results in the VPQ metric [44] (another pop-
ular video panoptic segmentation metric). Similarly, our
model performs better than Motion-DeepLab and VPSNet
by +11.1 and +8.1 VPQ.
[VSS] In Tab. 10, we report our results on VSPW val
set. As shown in the table, our TubeFormer-DeepLab-B1,
employing ResNet-50 and axial-attention, significantly out-
performs TCB [64] (w/ spatial-temporal OCRNet [88] and
a novel memory scheme) by +20.2 mIoU. Our TubeFormer-
DeepLab-B1 also shows better results in terms of VC8 and

VC16 (another video semantic segmentation metrics pro-
posed in [64]).

[VIS] Tab. 11 summarizes our results on Youtube-VIS-
2019 val set, along with several state-of-the-art methods.

Among the methods that predict non-overlapping seg-
mentation, our TubeFormer-DeepLab-B1 (per-pixel), em-
ploying ResNet-50 and axial-attention, outperforms STEm-
Seg [1] (using ResNet-50, FPN, and their novel 3D
convolution-based TSE decoder with multi-head predic-
tions) by +5.8 AP. Our TubeFormer-DeepLab-B1 (per-
pixel) is also better than STEm-Seg with ResNet-101 back-
bone by +1.8 AP. If we also increase our backbone capac-
ity, our TubeFormer-DeepLab-B4 (per-pixel) performs bet-
ter than STEm-Seg w/ ResNet-101 by +10.8 AP.

Our TubeFormer-DeepLab-B1 (per-pixel) performs
worse than other state-of-the-art methods, including
MaskProp [5], Seq Mask R-CNN [54], and the concurrent
work IFC [40], since our per-pixel inference scheme gener-
ates non-overlapping predictions (i.e., only one prediction
for each pixel in the final output), which is disfavored by
the track AP metric. To bridge the gap, we adopt the mask-
wise merging scheme (denoted as per-mask) [21,87], where
each object query generates a mask proposal. The per-mask
scheme significantly improves over the per-pixel scheme by
more than 2 AP in the TubeFormer-DeepLab framework.
Our large model TubeFormer-DeepLab-B4 with per-mask
scheme outperforms MaskProp, VisTR, and IFC, and per-
forms comparably with the best model Seq Mask R-CNN,
which relies on STM [66]-like structure to propagate mask
proposals through the whole sequence.

Notably, our model yields the best AR1 and AR10 (+3.9
and +3.0 AR better than the second best Seq Mask-RCNN
method, respectively), demonstrating the high segmentation
quality in our predictions. Also, TubeFormer-DeepLab em-
ploys a smaller clip value (T = 5), while other state-of-
the-art proposal-based approaches use a large value of clip
(T = 13 or 36).

6. Visualization

In Fig. 5, 6, and 7, we visualize how the proposed hier-
archical dual-path transformer performs attention for video
panoptic/semantic/instance segmentation tasks (VPS, VSS,
and VIS, respectively). We use input clips of three con-
secutive frames for visualization. For each sample, we se-
lect several output tubes of interest from the TubeFormer-
DeepLab prediction. In column-b, we probe the attention
weights between the selected tube-specific global memory
embeddings and all the pixels. Across all three tasks, we
observe the global memory attention is spatio-temporally
clustered for individual tube regions, while respecting dif-
ferent requirements among the tasks. That is, one global
memory answers for each semantic category in VSS, but
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method backbone decoder STQ SQ AQ VPQ
Motion-DeepLab [79] ResNet-50 + dual ASPP [15] dual DeepLabv3+ decoder [17] w/ multi-heads 58.0 67.0 51.0 40.0
VPSNet [44] ResNet-50 + FPN [55] Mask R-CNN [34] style multi-heads 56.0 61.0 52.0 43.0

TF-DL-B1 ResNet-50 + axial-attention [76]† tube-transformer 70.0 76.8 63.8 51.1

Table 9. [VPS] KITTI-STEP val set results. †: Axial attention blocks [76] are used in the last two stages.

method backbone decoder mIoU VC8 VC16
TCB [64] ResNet-101 spatial-temporal OCRNet [88] + memory aggregation 37.8 87.9 84.0

TF-DL-B1 ResNet-50 + axial-attention [76]† tube-transformer 58.0 90.1 86.8

Table 10. [VSS] VSPW val set results. †: Axial attention blocks [76] are used in the last two stages.

method backbone decoder T AP AR1 AR10

MaskProp [5]

ResNet-50 + FPN [55] + HTC [11] Mask R-CNN [34] style
multi-heads
w/ mask refinement
postprocessing

13 40.0 - -
ResNet-101 + FPN [55] + HTC [11] 13 42.5 - -
ResNeXt-101 [82] + FPN [55] + HTC [11] 13 44.3 - -
ResNeXt-101 [82] + FPN [55] + HTC [11] + deform.STSN [6, 23] 13 46.6 - -

Seq Mask R-CNN [54]
ResNet-50 + FPN [55] Mask R-CNN [34] style

multi-heads
w/ many proposals

36 40.4 41.1 49.7
ResNet-101 + FPN [55] 36 43.8 46.3 52.6
ResNeXt-101 [82] + FPN [55] 36 47.6 46.3 56.0

VisTR [77]
ResNet-50

DETR [10] style transformer
36 36.2 37.2 42.4

ResNet-101 36 40.1 38.3 44.9

IFC [40]
ResNet-50 + FPN [55]

DETR [10] style transformer
5 41.0 43.5 52.7

ResNet-50 + FPN [55] 36 42.8 43.8 51.2
ResNet-101 + FPN [55] 36 44.6 44.0 52.1

STEm-Seg [1]
ResNet-50 + FPN [55] 3D Conv-based TSE [1]

w/ multi-heads
8 30.6 31.6 37.1

ResNet-101 + FPN [55] 8 34.6 34.4 41.6

TF-DL-B1 (per-pixel) ResNet-50 + axial-attention [76]†

tube-transformer

5 36.4 40.8 49.5
TF-DL-B1 (per-mask) ResNet-50 + axial-attention [76]† 5 38.8 44.0 51.4
TF-DL-B4 (per-pixel) ResNet-50-n4 + axial-attention [76]† 5 45.4 48.3 56.9
TF-DL-B4 (per-mask) ResNet-50-n4 + axial-attention [76]† 5 47.5 50.2 59.0

Table 11. [VIS] YouTube-VIS-2019 val set results. †: Axial attention blocks [76] are used in the last two stages. ResNet-50-n4 scales the
number of layers in stage-4 by 4 times (i.e., 24 blocks in total), resulting in a backbone with 104 layers.

for each instance identity in VIS, while both cases appear
in VPS task.

In column-c, we select four latent memory indices and
visualize their attention maps. Commonly for all tasks,
some latent memory learns to spatially specialize on certain
areas (left vs right side of the scene) or attends to the tube
boundaries. Interestingly, we find that some latent mem-
ory focuses on relatively far-away region (Fig. 5c-bottom
right), which often requires more attention. Sometimes, it
has more interests to the moving object parts or small ob-
jects (e.g., moving arms and a road-block cone in Fig. 6c-
bottom left and bottom right, respectively).

The task-specific behavior of the latent memory can be
also compared between Fig. 6c and Fig. 7c. The latent
memory in VSS does not distinguish instances of a same
semantic class. In contrast, the attention is instance-specific
in VIS. As shown in Fig. 7c-top left, the occluded noses
of two elephants are highlighted, which is expected to help
the instance discrimination. Also, different latent memory
attends to a single, or different multiples of the instances.

Additionally, Fig. 8 visualizes our depth-aware video

panoptic segmentation results on SemKITTI-DVPS dataset,
where TubeFormer-DeepLab is able to generate temporally
consistent panoptic segmentation and monocular depth es-
timation results.

7. Discussion

We notice that recently there is some hype in the lit-
erature regarding the development of universal or unified
segmentation models for semantic, instance, and panop-
tic segmentation. We would like to emphasize that the
goal of panoptic segmentation is to unify semantic and in-
stance segmentation, and thus a well-designed panoptic seg-
mentation model should naturally demonstrate a fair per-
formance on semantic segmentation and instance segmen-
tation as well. For example, Panoptic-DeepLab [20] and
its Naive-Student version [12] already demonstrate that a
modern panoptic segmentation model could simultaneously
achieve state-of-the-art performance on semantic, instance,
and panoptic segmentation. Our work follows the same di-
rection by working on the video segmentation tasks.
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(a) input frames (b) global memory attention (c) latent memory attention (d) video panoptic segmentation

two cars (left, right) and a person on the road.

three people (left, middle , right,) on the sidewalk.

Figure 5. [VPS] Visualization on KITTI-STEP sequence. From left to right: input frames (T=3), global memory attention, latent
memory attention, and video panoptic segmentation results. The global memory attention is selected for predicted tube regions of interest,
and the latent memory attention is selected for 4 (out of L=16) latent memory.

8. Limitations

Currently, the proposed TubeFormer-DeepLab performs
clip-level video segmentation with the clip value T = 2 (for
VPS and VSS) or T = 5 (for VIS). Our model thus per-
forms short-term tracking and may miss objects that have
track lengths larger than the used clip value. This limita-
tion is also reflected in the AQ (association quality) reported
in Tab. 1 of the main paper (i.e., KITTI-STEP test set re-
sults). We leave the question about how to efficiently in-
corporate long-term tracking to TubeFormer-DeepLab for
feature work.

In any case, our proposed TubeFormer-DeepLab
presents the first attempt to tackle multiple video segmenta-
tion tasks from a unified approach. We hope our simple and
effective model could serve as a solid baseline for future
research.

9. Conclusion

We introduced TubeFormer-DeepLab, a novel archi-
tecture based on mask transformers for video segmenta-
tion. Video segmentation tasks, particularly video se-
mantic/instance/panoptic segmentation, have been tackled
by fundamentally divergent models. We proposed a new
paradigm that formulates video segmentation tasks as the

problem of partitioning video tubes with different predicted
labels. TubeFormer-DeepLab, directly predicting class-
labeled tubes, provides a general solution to multiple video
segmentation tasks. We hope our approach will inspire fu-
ture research in the unification of video segmentation tasks.
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