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Abstract

Weakly supervised object detection (WSOD) has recently
attracted much attention. However, the lack of bounding-
box supervision makes its accuracy much lower than fully
supervised object detection (FSOD), and currently modern
FSOD techniques cannot be applied to WSOD. To bridge
the performance and technical gaps between WSOD and
FSOD, this paper proposes a new framework, Salvage of
Supervision (SoS), with the key idea being to harness ev-
ery potentially useful supervisory signal in WSOD: the
weak image-level labels, the pseudo-labels, and the power
of semi-supervised object detection. This paper proposes
new approaches to utilize these weak and noisy signals
effectively, and shows that each type of supervisory sig-
nal brings in notable improvements, outperforms existing
WSOD methods (which mainly use only the weak labels)
by large margins. The proposed SoS-WSOD method also
has the ability to freely use modern FSOD techniques. SoS-
WSOD achieves 64.4 mAPsq on VOC2007, 61.9 mAPs5 on
VOC2012 and 16.6 mAPsg.95 on MS-COCO, and also has
fast inference speed. Ablations and visualization further
verify the effectiveness of SoS.

1. Introduction

Large-scale datasets with precise annotations are critical
in developing detection algorithms, but are expensive to ob-
tain. Thus, weakly supervised object detection (WSOD),
which only needs image-level labels on training images,
is popular these days. WSOD has borrowed ideas from
fully supervised object detection (FSOD), such as object
proposals [2, 34] and the Fast-RCNN framework [11]. But
modern FSOD has discarded external object proposals and
has developed better techniques like Faster-RCNN [25] and
FPN [21]. Furthermore, current WSOD methods mostly use
VGG16 [29] as the backbone and Fast-RCNN [11] as the
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detector, which confines both accuracy and speed. That is,
due to the lack of detailed box-level annotations, WSOD
cannot enjoy the progress from FSOD. In fact, it has been
shown that modern FSOD techniques such as ResNet back-
bones and RolAlign will even deteriorate WSOD detec-
tors [28]. The weak image-level label is often the only su-
pervisory signal utilized for object detection in WSOD, by
resorting to a multi-instance recognition setup [4].

In this paper, we argue that WSOD must fight hard to
harness every potential source of supervisory signal, and
should find a way to utilize the progress in FSOD. The
proposed Salvage of Supervision (SoS) framework (SoS-
WSOD) is illustrated in Fig. 1, which has 3 stages. Stage 1
trains a detector with any WSOD method, and we propose
an improved OICR [33] as our stage 1. Stage 2 is pseudo-
FSOD, where the difficulty is to generate good pseudo box-
level annotations in order to boost performance and adopt
newer FSOD techniques (e.g., ResNet [14], RolAlign [13],
and FPN [21]), i.e., to salvage the supervision. This prob-
lem has been largely ignored in WSOD, for which we pro-
pose a simple but effective solution. Stage 3 is proposed
by us, named as SSOD, in which we split the whole dataset
into a “clean” and a “noisy” part, then treat the noisy part
as unlabeled. That is, we salvage additional useful supervi-
sory signals by creating a semi-supervised object detection
(SSOD) problem. Hence, we have salvaged supervisory sig-
nals out of weak labels by designing novel algorithms to
generate high-quality pseudo box-level labels and by creat-
ing a semi-supervised learning problem, respectively.

Compared to existing WSOD methods, our SoS-WSOD
not only harnesses every potentially useful supervisory sig-
nal, but also enables WSOD to fully enjoy both accu-
racy and speed benefits of modern FSOD methods. Al-
though pseudo FSOD has been tried [7, 10, 33, 43], we
will show that SoS-WSOD salvages pseudo-supervision of
much higher quality. Hence, our contributions are:

e We propose SoS-WSOD, a new WSOD framework,
showing that we must harness all potential supervi-
sory signals in WSOD: generate high-quality pseudo-
annotations for FSOD, and treat the generated pseudo-
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Figure 1. The SoS-WSOD pipeline. Stage 1 trains a weakly supervised detector with only image-level labels. We design PGF to filter its
detection results and to generate high-quality pseudo box-level annotations in stage 2, which enables us to train a fully supervised detector.
Stage 3 splits the training set into “clean” and unlabeled “noisy” parts, and trains a detector in a semi-supervised manner.

label dataset as a noisy dataset to utilize SSOD.

e We show that although existing WSOD methods lag far
behind FSOD in terms of both accuracy and technique,
it is very beneficial and feasible to fill this gap. Our
pseudo-FSOD enjoys the benefits of all modern FSOD
techniques in WSOD, and achieves both higher accuracy
and faster speed.

o We improve WSOD accuracy by large margins, with 64.4
mAP5o on VOC2007, 61.9 mAP55 on VOC2012, and
16.6 mAP50.95 on MS-COCO. Besides, SoS-WSOD also
has fast detection speed.

2. Related Work

Weakly supervised object detection (WSOD). Weakly
supervised object detection (WSOD) seeks to detect the lo-
cation and type of multiple objects given only image-level
labels during training. WSOD methods often utilize ob-
ject proposals and the multi-instance learning (MIL) frame-
work. WSDDN [4] was the first to integrate MIL into end-
to-end WSOD. OICR [33] proposed pseudo groundtruth
mining and an online instance refinement branch. PCL [32]
clustered proposals to improve pseudo groundtruth min-
ing, and C-MIL [35] improved the MIL loss. Recently,
MIST [26] changed the pseudo groundtruth mining rule of
OICR, and proposed a Concrete DropBlock module. Zeng
et al. [28] made the ResNet [14] backbones working in
WSOD. CASD [15] proposed self-distillation along with
attention to improve WSOD. Some methods [6, 8, 44] pro-
posed to boost WSOD detector performance with the help
of fully annotated COCO-60 dataset.

Some methods tried to adopt modern FSOD techniques
into WSOD [27, 28]. Some methods have used the out-
put of WSOD methods (pseudo box annotations) to retrain
WSOD models with FSOD. W2F [43] proposed a pseudo
groundtruth excavation and a pseudo groundtruth adapta-
tion module to mine large and complete objects for retrain-
ing. However, they directly retrain WSOD models with-
out considering any noise in the generated pseudo-labeled

dataset which is bound to be very noisy. In contrast, we
propose to reconsider the pseudo-labeled dataset with noisy
label training perspective and harness the semi-supervised
learning paradigm to squeeze better pseudo-labels.

Semi-supervised object detection (SSOD). SSOD
trains a detector with a small set of images with box-level
annotations plus many images without any labels. Com-
pared to WSOD, fewer methods have been proposed for
SSOD. SSM [36] stitched high-confidence patches from un-
labeled to labeled data. CSD [16] used consistency and
background elimination. Recently, STAC [30] used strong
data augmentation for unlabeled data. Liu ef al. [23] used
a teacher-student framework, and ISMT [39] used mean
teacher. However, these methods need an exact split of la-
beled and unlabeled data, and noisy-free box-level annota-
tions for labeled images, but all these are not available in
WSOD. We will generate them from the noisy output of the
previous stage in SoS-WSOD.

Learning with noisy labels. As deep neural networks
are annotation-hungry, training DNN with noisy labels also
attracts much attention, especially in image classification.
Some [31,40] proposed iterative methods to relabel noisy
samples by using network predictions. [1,24] focused on
reweighting. Besides, considering samples with smaller
losses as clean ones is also commonly used in many works,
such as in [12, 19]. In SoS-WSOD, we adopt the small loss
idea to split the noisy output of stage 2 to split the data into
“clean” and “noisy” parts.

3. Salvage of Supervision

Notation. We first define our notation. A training set D,,
consists of training images [;, and image-level annotations
Ly,. Specifically, each image € R"*“*3 in I,, has a
corresponding label y = [y1, 2, -+ ,yc] € [0,1]¢, where
C is the total number of object categories. We will train a
detector W ;1 without using any additional annotations.

Overview. Algorithm 1 is the pipeline of the proposed
SoS-WSOD. We first train a WSOD detector W, 504, Which
generates pseudo bounding boxes by,.. These pseudo su-



Algorithm 1 Salvage of Supervision

Input: Training images I, and image-level class labels L;,, test images I
Train a WSOD model W, 5,4, and generate pseudo groundtruth bounding boxes by, for training images
Use Iy and by, to train a fully supervised object detector W,

Use Wy to initialize, and learn a semi-supervised Wipna on Ly, I, (with b},.) and I,

1
2
3. Divide Iy, into a labeled subset I}, with pseudo boxes b}, and an unlabeled subset I},.
4
5

: Return: Use W4 to predict the bounding boxes and their class labels for test images

pervision signals are used to train an FSOD model Wy,
which can use modern FSOD techniques. Then, we treat
the generated pseudo-labeled dataset as a noisy one. With
our proposed splitting rule, it is split into an unlabeled sub-
set with I] and a “clean” labeled subset (those images with
confident pseudo boxes) which consists of I}. and b;,.. Fi-
nally, we adopt an SSOD method to train the final detector
W tina: on the pseudo labeled dataset.

3.1. Stage 1: Improved WSOD

A traditional WSOD detector starts the process. Besides
the given image-level annotations Iy, most WSOD meth-
ods use external object proposals R as extra inputs. Among
them, the pipeline of OICR [33] is widely used, which first
selects a small number of most confident object proposals
R as foreground proposals and then refines them by filter-
ing and adding bounding box regression branches.

We propose to improve OICR with two simple changes
as our stage 1. First, recent works [20, 26,32, 41] demon-
strate that better proposal mining rules are critical in obtain-
ing higher recall of objects, which are essential for WSOD
detectors. For example, MIST [26] proposed to mine more
proposals with low overlap between each other. We find
that MIST can catch more objects but will also mine a
large number of wrong proposals, while OICR is able to
mine accurate proposals but ignores many groundtruth in-
stances. Hence, we introduce a mining rule which strikes a
balance between recall and precision. In addition, inspired
by CASD [15], we find the multi-input technique is also
helpful even without using inverted attention and CASD’s
self-attention transfer. More details are in the appendix.

Our proposed WSOD (stage 1) is a strong baseline (cf.
Sec. 4). However, we will also show that SoS-WSOD
can achieve excellent performance by adopting a weaker
WSOD baseline in stage 1, too.

3.2. Stage 2: High-quality pseudo boxes for FSOD

If we are able to output pseudo bounding boxes by, from
stage 1’s detector Wy,s0q that are accurate to some extent,
a subsequent FSOD using these boxes can further improve
detection. [33] was the first to re-train a WSOD detector
by selecting the top-one detection result per class as pseudo
groundtruth label, but it will miss a large amount of objects,
especially for complicated datasets such as MS-COCO. As

Figure 2. Comparison of W2F [43] (top) and PGF (bottom). W2F
tends to generate clustered objects in complicated scenarios.

will be shown in the ablations in Sec. 4, missed objects will
be treated as backgrounds and will even deteriorate the de-
tection accuracy. W2F [43] proposed pseudo groundtruth
excavation (PGE) and pseudo groundtruth adaption (PGA)
to generate pseudo groundtruth from WSOD output. How-
ever, W2F only dealt with the VOC datasets, which have a
small number of objects per image and the objects are often
large in size. Both modules in W2F are designed to mine
large complete objects, and are not suitable for general de-
tection. Figure 2 shows that W2F tends to cluster multiple
objects into one pseudo-box. Instead, we propose a sim-
ple but effective algorithm called pseudo groundtruth filter-
ing (PGF) to generate high-quality pseudo-boxes from stage
1’s WSOD model, whose pipeline is shown in Algorithm 2.

For each groundtruth class, we only keep the top-scored
predictions and those with high confidence (> tj¢ep, line 6).
Then, we remove tiny proposals which are mostly contained
inside other proposals in the same category (lines 8-10). Af-
ter PGF generates pseudo groundtruth P, in SoS-WSOD,
we are able to use P to supervise and train an FSOD de-
tector Wy, using modern FSOD methods (e.g., Faster-
RCNN [25] + FPN [21]). Please note that the impact of our
pseudo-FSOD phase is two-fold. First, the retrained WSOD
detector gets accuracy and speed gains from these salvaged
supervisory signals. Besides, now we are able to use almost
all modern FSOD techniques which are previously not ap-
plicable in WSOD. In other words, a WSOD detector now
has the flexibility to select most backbones and architecture
as needed in WSOD, without resorting to extensive efforts
(e.g., as in [28]).



Algorithm 2 Pseudo Groundtruth Filtering (PGF)

Input: boxes P with scores S for an input image (out-
put of stage 1) and its active labels y1,...,ymn, keep
threshold tcep, containment threshold ¢y,

Output: Pseudo groundtruth boxes P

1: P=g
22 fori=1, ..., mdo
3: S; = S[i,:] /I get scores for the i-th active class
4: indmaz, S/ = max(S;) // get index and
score of the top proposal
5: P"* = Plindpmaz,:] // get bounding box for
the top proposal
6: Remove all proposals whose scores < tjeep, and
the remaining boxes form a set P;
7: P, =P, P
8: for any two different bounding boxes u, v remain-
ing in P; do
9: if 50 > ¢, then P, = P, \ v
10 end for
11 P=P|P

12:  end for

We intentionally designed PGF to be very simple in or-
der to achieve both generality and simplicity. In practice, it
is also possible to tailor the pseudo groundtruth mining al-
gorithm to the characteristics of the dataset (e.g., as in [43].)

3.3. Stage 3: Split noisy data for SSOD

FSOD detectors can bring performance gains to WSOD
detectors if a high percentage of the generated pseudo
groundtruth are correct. However, noisy or wrong pseudo
groundtruth (e.g., missing instances, wrong classification
results or inaccurate bounding boxes) are inevitable in
WSOD. To deal with this issue, we propose to further sal-
vage supervision by treating the generated pseudo-labeled
dataset from the perspective of noisy label learning. After
splitting the dataset into “clean” labeled part and unlabeled
“noisy” part, the semi-supervised learning paradigm can be
used.

Data split. Many works [12, 17] have shown that noisy
annotations will deteriorate the performance. The pseudo
groundtruth boxes P generated by PGF will inevitably have
many noisy ones. As shown in [12, 18, 19], a deep network
tends to fit clean data first, then gradually memorize noisy
ones. Thus, we use the FSOD detector W}ul ; (the detector
before performing learning rate decay in the pseudo-FSOD
stage) to divide training images I, into labeled I}. (with
relatively clean pseudo groundtruth boxes bj,) and unla-
beled ones I}, (whose pseudo groundtruth boxes are more
noisy). In a classification problem, the split is simple [12]:
calculate the loss of each training image, and those with
smaller loss values are “clean” ones. But, in object detec-

tion, it is hard to decide whether an image is clean simply
based on the sum of all losses of all proposals. We follow
the small loss idea but revise it for object detection.

Surely we want to focus on foreground objects, hence we
propose the following simple splitting process. In Faster-
RCNN, regions of interest (Rols, denoted as R) are divided
into foreground and background Rols according to the IoU
between Rols and pseudo groundtruth boxes. Then, we do
not calculate losses for background Rols, and accumulate
the RPN losses and Rol losses (both classification and re-
gression branches) of different foreground Rols. The ag-
gregated loss is the split loss for an input image:

1 )
Lspiit(I) = Z ]ljlv{;mcsplit(Ri) , (N

N, pos
Lpiit(Ri) = LrRPNgy, (Ri) + LRPN ., (Ri)

+ Lrotcy, (Ri) + LRolg.,(Ri), (2)
where N, is the number of foreground Rols, IL?;TS is
the indicator function for whether a proposal R; belongs
to foreground Rols or not, Lrpx and L, are RPN and
Rol head losses, respectively, and Cls and Reg stand for
classification and regression, respectively. We then rank
all training images by Lp;;: and choose images with small
loss values as “clean” labeled data. For simplicity, we use
a hard threshold K to decide sizes of each part. We believe
there exist better but more complicated choices such as dy-
namically using GMM to fit the loss distribution to divide
pseudo-labeled dataset. Fig. 3 shows our labeled “clean”
part are indeed cleaner than the “noisy” unlabeled part.

The optimal choice of K varies depends on the size and
difficulty of datasets, and we provide a rule-of-thumb for it.
We find that traditional WSOD performs well for easy im-
ages which will be split as “clean”. Thus, we set K around
the number of images which has a single class label (or few
for datasets with many object categories). Ablation studies
in Sec. 4 verify the effectiveness of such a rule-of-thumb.

Semi-supervised detection. Now we can perform semi-
supervised detection. Unbiased Teacher [23] is an effec-
tive semi-supervised detector, whose key idea is a teacher-
student pair updated by mutual learning. It first trains a de-
tector using only labeled data (i.e., burn-in) and then uses it
to initialize both the student and the teacher detectors. In the
mutual learning phase, the teacher will dynamically gener-
ate pseudo labels for unlabeled data with weak data aug-
mentation. The student will learn from both well-annotated
labeled data and strong augmented unlabeled data with the
generated pseudo labels. The teacher will receive updates
from the student via exponential moving average.

But, clean data is not available in WSOD. We use the
Unbiased Teacher pipeline with a few changes and improve-
ments. First, the pseudo-FSOD training is actually a burn-
in process, and we do not need an additional burn-in stage.
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Figure 3. Per-class accuracy of pseudo groundtruth bounding boxes of the labeled and unlabeled subsets on VOC2007 when K = 2000.

Then, the student learns by minimizing
L= Esup + Auﬁunsup ) (3)

where the student will learn from both labeled (L.;) and
unlabeled (L, sup) data, and A, is the weight to balance the
unsupervised and supervised loss terms. Specifically, L.,
and Ly, are defined as follows:

Lowp =Y Lrpne, (x5, 65) + LrpNg,, (), b))

+ Loty (%5, 6]) + LRotg,, (®],b7),  (4)
‘Cunsup = Z ‘CRPchs (:B;L, b;) + ‘CRoIczs (iB:L, b;) 6)

where x} and b; are images and pseudo groundtruth boxes
in the “clean” subset I}.. ! and b/ are images in the unla-
beled subset I, and pseudo groundtruth dynamically gen-
erated by the teacher. Ly, is for labeled data only. For
Lynsup, the teacher generates pseudo labels for the student
with weak data augmentations, then the student uses strong
data augmentations along with pseudo labels to calculate it.
We believe the predictions of the teacher are less accurate
than annotations for the “clean” data, s0 L5y only con-
tains the classification loss. In other words, all the regres-
sion branches are only learned with “clean” labeled data.

Pseudo boxes generated by the teacher for unlabeled im-
ages are not always accurate. Hence, different from regular
SSOD, we utilize the image-level labels (i.e., another sal-
vage of supervision) by filtering out false positive pseudo
labels, which brings additional benefits to WSOD. Finally,
the student detector updates its weights according to Eq. 3,
and the teacher receives its update from the student through
exponential moving average (EMA).

4. Experiments

We evaluated our SoS-WSOD on three standard WSOD
benchmark datasets: VOC2007 [9], VOC2012 [9] and MS-
COCO [22]. VOC2007 has 2501 training, 2510 valida-
tion and 4952 test images. VOC2012 contains 5717 train-
ing, 5823 validation, and 10991 test images. MS-COCO

contains around 110,000 training and 5000 validation im-
ages. Following the common WSOD evaluation protocol,
we use training and evaluation images to train our model
on VOC2007 and VOC2012, and evaluate on the test im-
ages. For MS-COCO, we train our model on the train-
ing images and evaluate on the validation images. We use
mAP50.95, nAPsg and mAP75 as evaluation metrics for
both MS-COCO and VOC2007. For VOC2012, since la-
bels for test images are not released, we report mAP5 re-
sults returned by the official evaluation server.

4.1. Implementation details

We use PyTorch on RTX3090 GPUs, and our code will
be released soon. Backbone models are pretrained on Im-
ageNet. It is worth noting that WSOD methods lag be-
hind FSOD in terms of backbone and other techniques. For
example, state-of-the-art WSOD methods still use VGG16
as the backbone, while FSOD methods use better architec-
tures. Extra efforts are needed in order to adapt modern
backbones to WSOD [28]. Instead, in stage 2 and 3 our
SoS-WSOD has the freedom to choose backbones and de-
tection architectures. For simplicity and efficiency, we use
FPN with ResNet50 backbone as the FSOD detector in our
main experiments without any extra handling. We also use
VGG16 as backbone and remove FPN for fair comparisons.

Details of our improved OICR for the WSOD train-
ing stage (stage 1) are available in the appendix. In PGF
(Algorithm 2), we set tieep = 0.2 and t.o, = 0.85 for
all datasets. Although generating pseudo groundtruth la-
bels with TTA (Test Time Augmentation) leads to higher
accuracy, the high computational cost (1.5/3/33 hours on
VOC2007/2012/MS-COCO) makes it hard to use in large-
scale datasets. To keep the same setting in all experiments,
we do not use TTA in Algorithm 2.

In both stages 2 and 3, we keep all hyperparameters ex-
cept K the same as the default hyperparameters in [37]
and [23], respectively. We reduce the total training itera-
tions to reduce the training cost. As for K in the data split-
ting process, we use our rule-of-thumb to set it as 2000 and
30000 for VOC2007 and MS-COCO, respectively. More
details can be found in the appendix.



VOCO07 | VOCI12

Method Backbone

mAP5g | mAPsg
Pure WSOD

PCL [32] VGG16 43.5 40.6
W2F [43] VGG16 52.4 47.8
Pred Net [3] VGG16 52.9 48.4
C-MIDM + FR [10] VGGl6 53.6 50.3

SLV + FR [7] VGGl6 53.9 -
WSOD2 [42] VGG16 53.6 472
IM-CFB [41] VGGl6 54.3 494
MIST [26] VGG16 54.9 52.1

CASD [15] VGG16 56.8 53.6
SoS-WSOD (stage 1) VGG16 55.0 52.5
SoS-WSOD (stage 1+2+3) | VGGI16 60.3 57.7
SoS-WSOD (stage 1+2+3) | ResNet50 64.4 61.9
WSOD with transfer (using fully annotated COCO-60)
OCUD + FR [44] ResNet50 60.2 -
LBBA [8] VGG16 56.6 55.4
CaT [6] VGG16 59.2 -

Table 1. Comparison on PASCAL VOC.

MS-COCO
Method Backbone mAPs50.05 mAP5g  mAP75
PCL [32] VGG16 8.5 194 -
C-MIDN [10] VGG16 9.6 214
WSOD2 [42] VGG16 10.8 22.7 -
MIST [26] VGG16 124 25.8 10.5
CASD [15] VGGI16 12.8 26.4 -
SoS-WSOD (stage 1) VGG16 11.9 24.2 10.7
SoS-WSOD (stage 14+2+3) | VGG16 15.5 30.5 14.3
SoS-WSOD (stage 14+2+3) | ResNet50 16.6 32.8 15.2

Table 2. Comparison on MS-COCO.

4.2. Comparison with state-of-the-art methods

We compare our method with state-of-the-art WSOD
methods, with the results reported in Tables 1 and 2. All
results are reported with TTA. Our improved WSOD base-
line (stage 1 of SoS-WSOD) reaches 55.0% mAPs5q, 52.5%
mAPs5q and 11.9% mAP50.95 on VOC2007, VOC2012 and
MS-COCO, respectively, which is already pretty strong.

For a fair comparison, we used VGG16 as backbone and
did not use modern FPN architecture in stages 2 and 3.
By harnessing all possible supervision signals, SoS-WSOD
finally reaches 60.3% and 57.7% mAP5o on VOC2007
and VOC2012, which outperforms previous methods by
large margins. On MS-COCO, SoS-WSOD reaches 15.5%
mAPs0.95, 30.5% mAPs, and 14.3% mAP;5, which out-
performs previous methods significantly, too.

When further adopting modern techniques in FSOD,
with the help of ResNet50 backbone and FPN architecture,
SoS-WSOD further reaches 64.4% and 61.9% mAPs5g on
VOC2007 and VOC2012, respectively. On MS-COCO, ac-
curacy is boosted to 16.6% mAPsg.05, 32.8% mAPs5o and
15.2% mAP75.

Recently, some methods [6, 8, 44] leverage the well-
annotated MS-COCO-60 dataset (removing the 20 cate-

WSOD | PGF | SSOD | mAPs50.05 | mAPsg | mAPr5
v 26.2 54.1 22.8
v v 27.3 57.6 225
v v v 31.6 62.7 28.1

Table 3. Ablations of SoS-WSOD stages on VOC2007.

WSOD | PGF | SSOD | mAPs5q
v 51.8
v v 539
v v v 59.6

Table 4. Ablations of SoS-WSOD stages on VOC2012.

gories in VOC). As shown in Table 1, they have higher
accuracy than pure WSOD methods because of the addi-
tional cross-domain data. However, SoS-WSOD achieves
higher accuracy than them without resorting to these addi-
tional data.

4.3. Ablation studies and visualization

Are salvaged supervision signals useful? Tables 1 and
2 already show that both pseudo boxes (stage 2) and semi-
supervised detection (stage 3) notably improve detection
accuracy on all 3 datasets. Furthermore, Tables 3 to 5
show results on VOC2007, VOC2012 and MS-COCO, re-
spectively. Our improved WSOD (stage 1 of SoS-WSOD)
reaches 54.1%, 51.8% and 23.6% mAPsy on VOC2007,
VOC2012 and MS-COCO, respectively. After pseudo-
FSOD (stage 2), mAPsq is improved by 3.5%, 2.1% and
3.9%, respectively. Finally, another 5.1%, 5.7% and 3.1%
higher mAP5( are boosted by stage 3, respectively. For the
stricter mAP50.95 metric on MS-COCO, stage 2 and 3 bring
18.1% and 15.5% relative improvements, respectively.

Compatibility with other WSOD methods. SoS-
WSOD is compatible with various WSOD methods in stage
1 and can also improve a weaker WSOD method. We tested
the original OICR method in stage 1, and results with TTA
are in Table 6. The basic OICR model gets 50.2 mAP5, on
VOC2007. With SoS-WSOD, such a model finally reaches
59.9 mAPs5g. These results demonstrate the flexibility and
effectiveness of our SoS-WSOD.

Details about accuracy gains in stage 3. As stated
in [23,30], a mixture of weak and strong data augmentation
and EMA updating are essential for SSOD methods. As
shown in Table 7, in addition to gains from strong augmen-
tation and EMA updating, our method always brings signif-
icant gains. As for models use EMA and strong data aug-
mentation but do not adopt the splitting rule (i.e., the third
stage), we use the same (mix weak and strong) data aug-
mentation used in the student branch of stage 3 and main-
tain another model by EMA in stage 2. SoS-WSOD works
well for VGG16 w/o FPN, even when strong augmentation
and EMA updating have minor improvements.

Effectiveness of PGF. As shown in Table 1, some



WSOD | PGF | SSOD | mAPsg.95 | mAPsg | mAP75 | mAPgs | mAPys | mAPL
v 11.6 23.6 10.4 2.3 11.9 20.2
v v 13.7 27.5 12.2 3.8 15.1 22.0
v v v 15.5 30.6 144 54 16.8 24.6
Table 5. Ablations of SoS-WSOD stages on MS-COCO.
Method mAP50;95 ’ITLAP50 mAP75 Method mAP50:95 mAP50 mAP75
baseline (OICR) 24.1 50.2 19.5 Stage 2 w/ EMA & Aug 29.6 59.6 25.7
baseline (OICR+) 27.1 55.0 24.8 Stage 3 w/ random splitting 30.2 61.1 26.3
SoS-WSOD (OICR) 28.5 59.9 23.8 Stage 3 w/ ours 31.6 62.7 28.1
SoS-WSOD (OICR+) 32.6 64.4 29.6

Table 6. Ablations of adopting different WSOD model in stage 1.
OICR+ is our improved OICR.

Backbone | FPN | EMA & Aug | SplitRule | mAPsp.95 mAPsg mAP75
VGG16 X X X 26.8 56.2 22.3
VGGI16 X v X 27.3 56.6 22.8
VGGI16 X v v 28.8 59.0 243

ResNet50 v X X 27.3 57.6 22.5

ResNet50 v v X 29.6 59.6 25.7

ResNet50 v v v 31.6 62.7 28.1

Table 7. Detailed accuracy gains in stage 3. The columns mean
whether FPN, strong data augmentation, EMA, and the proposed
data splitting rule are used or not.

Method Dataset mAPs5p.05 mAP5g  mAP75
Top-One [33] VOCO07 25.8 53.4 22.2
W2F* [43] VOC07 27.2 57.0 22.4
PGF (Ours) VOCO07 27.3 57.6 22.5
W2F* MS-COCO 12.6 24.1 11.7
PGF (Ours) | MS-COCO 13.7 27.5 12.2

Table 8. Results of different pseudo groundtruth mining algo-
rithms. * means that we implemented W2F because its code is
not available.

WSOD methods tried to add a re-train stage. Most of them
follow [33] to re-train a WSOD detector by selecting the
top-one detection result per class as pseudo groundtruth la-
bels. However, the performance of the retrained detector
model starts to saturate with the increasing performance of
the WSOD model, and pseudo-label generation method is
one of the most important reasons. Experimental results
in Table 8 show the effectiveness of the proposed PGF.
Besides, the widely adopted method (Top-One in Table 8)
failed to get benefits from modern techniques. When train-
ing with RPN and FPN, missed objects will be treated as
backgrounds, which will deteriorate localization. Besides,
conspicuous objects also have more chance to become the
top score proposal which would cause imbalanced anchor
allocation and inadequate training in FPN. As for W2F [43],
we have slightly better results on VOCO07, and are far supe-
rior than it on the more complicated MS-COCO, as W2F is
designed for large complete objects in VOC.

Splitting rule vs. random splitting. To demonstrate the
effectiveness of the proposed splitting rule in stage 3, we

Table 9. Comparison of our splitting rule and random splitting

K mAP50.05 | mAPsg | mAPrs5
1000 31.2 63.2 26.8
2000 31.6 62.7 28.1
3000 31.0 62.3 27.2

Table 10. Effects of K in stage 3 on VOC2007.

compare it with the random splitting strategy. As shown
in Table 9, adopting random splitting is notably worse than
our proposed method. However, random splitting can still
surpass simply adopting EMA update and strong data aug-
mentations in stage 2 by a clear margin, which demonstrates
the importance of salvaging useful supervisory signals.

Longer training schedule for WSOD. Counting all 3
stages in, SoS-WSOD does require more training iterations.
Hence, we double the training iteration of the WSOD stage
for a further fair comparison. However, we find that mAPs5
will drop from 54.1% to 52.7% due to overfitting.

Size of the labeled subset in SSOD. In the SSOD stage
(stage 3), we split a dataset into labeled and unlabeled sub-
sets. The number of pseudo labeled images, K, is a hy-
perparameter. When we treat a small number of images as
“clean” labeled ones, severe class imbalance will deterio-
rate the performance. However, when splitting most images
as labeled, the performance will collapse using fully pseudo
annotated labels. As shown in Table 10, K = 2000 is a suit-
able choice for VOC2007. These results also demonstrate
the effectiveness of the rule-of-thumb we proposed. We use
K = 2000 in all our experiments on VOC2007, and dou-
ble the size to 4000 on VOC2012. Following the proposed
rule-of-thumb, for MS-COCO, we use KX = 30000.

Hyperparameters in PGF. Figure 5 shows the effects
of hyperparameters tcep and t.,,, introduced in PGF (Algo-
rithm 2). These two hyperparameters are robust and txccp, =
0.2,%t.0n, = 0.85 works best for mAP53 on VOC2007. We
tune these two hyperparameters on the smallest VOC2007
dataset and keep them fixed on all other datasets following
previous works [15,32,35].

Inference speed. SoS-WSOD also enjoys speed benefits
from modern FSOD methods. We compare the inference
speed in Table 11 (on single RTX3090 GPU). Please note



Figure 4. Visualization of SoS-WSOD results on MS-COCO. Top row: groundtruth annotations. 2nd to 4th rows: detection results from

stages 1, 2 and 3, respectively. Last column: a failure case.
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Figure 5. Effect of hyperparameters in PGFE.

Table 11. Inference speed comparison. “Reg” means the bounding
box regression branch.

Method Pro. Time (s / img) | Inf. Time (s / img)
OICR (+Reg.) [33] > 0.2 0.101
SoS-WSOD 0 0.031

that the time for generating proposals is always far longer
than 0.2 seconds per image, e.g., 8.3 s/img for Selective
Search [34], while our SoS-WSOD does not need to gen-
erate external proposals. Hence, SoS-WSOD not only is
significantly faster than baseline WSOD methods, but also
eliminates the time to generate external proposals.

Finally, we provide visualization of detection results on
MS-COCO in Fig. 4. These results show that SoS-WSOD
can mine more correct objects even in complicated environ-
ments. Additional visualization results on VOC2007 and
MS-COCO are shown in the appendix.

5. Conclusions and Remarks

In this paper, we proposed a new three-stage framework
called Salvage of Supervision for the weakly supervised ob-

ject detection task (SoS-WSOD). SoS-WSOD tackles the
WSOD problem from a new perspective, which advocates
harnessing all potentially useful supervisory signals (i.e.,
salvage of supervision) and successfully adopted modern
fully supervised detection techniques in WSOD.

The first stage is a WSOD training stage, in which we
train a detector with any WSOD method. Pseudo-FSOD,
the second stage, improves the WSOD detector by har-
nessing the pseudo groundtruth generated by PGF and then
freely using techniques from modern FSOD. Finally, stage
3 treats the generated pseudo-labeled dataset as a dataset
with noisy labels and proposes a novel criterion to split im-
ages into labeled and unlabeled subsets, so semi-supervised
detection can be used to squeeze useful supervisory sig-
nals to further improve the detection performance. Exten-
sive experiments and visualization on VOC2007, VOC2012
and MS-COCO proved both the effectiveness of our SoS-
WSOD and extra supervision signals. By successfully uti-
lizing modern FSOD methods, SoS-WSOD can also have
faster detection speed than previous WSOD methods.

As for the limitation, SoS-WSOD still suffers from a
large performance gap compared to FSOD, especially on
COCO. Due to the lack of fully annotated box-level an-
notations, we need to salvage more supervisory signals in
the future. And, SOS-WSOD still suffers problems like
part domination, missing instances and clustered instances,
which are widely occurred in WSOD. In the future, we will
continue to explore to solve the common WSOD problem
and develop better rules to split datasets and stronger SSOD
methods for the WSOD task.
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A.1. Introducing the pipeline of OICR

In this part, we will introduce the details of OICR [33],
a widely used framework in WSOD. OICR is composed of
two parts, a multiple instance detection network (MIDN)
and several online instance classifier refinement (OICR)
branches. There are different choices to implement the
MIDN part. WSDDN [4], the first work to integrate the
MIL process into an end-to-end detection model, is the
most commonly used one. As for the OICR branch, orig-
inally it only contained one classifier and a softmax func-
tion. [38] started to introduce the bounding box regressor
into OICR branches, which was proved to be effective in
many works [15,26,41,42].

Specifically, we denote I € R %*3 as an RGB im-
age, ¥ = [y1,¥2,...,yc] € [0,1]¢ as its correspond-
ing groundtruth class labels, and R € R**¥ as the pre-
computed object proposals. C' is the total number of object
categories and N is the number of proposals. With the help
of a pre-trained backbone model, we can extract the feature
map for I, and proposal feature vectors are extracted by an
Rol pooling layer and two FC layers. Following WSDDN,
proposal feature vectors are branched into two streams to
produce classification logits ¢ € R®*" and detection log-
its ¢ € RE*N. Then 2¢ and = will be normalized by
passing through two softmax layers along the category di-
rection and the proposal direction, respectively, as shown in
Equation 6. [o(x°)];; represents the probability of proposal
j belonging to class i and [o(z?)];; represents the likeli-
hood of proposal j to contain an informative part of class ¢
among all proposals in image I.

d

expmff d exp®ii
o(x))i; = o(x®)]ij = ——-
o) @ =

= 4Zf=1 expwzj ’
(6)

The final proposal scores of a multiple instance detection
network are computed by element-wise product: z? =
o(z°) ® o(x?). During the training process, image score
of the c¢'" category ¢, can be obtained by summing over all
proposals: ¢, = Zi,v:l xZ . Then the MIL classification
loss is calculated by Equation 7.

c

Lonit ==Y _[yelogde + (1 = yclog(1 = ¢o))]. (D)

c=1

As to the online instance classifier refinement (OICR)
branches, they are added on top of MIDN, i.e., WSDDN
here. Proposal feature vectors are fed into another K re-
finement stages and to generate classification logits z* €
RE+DXN L ¢ {1,2,..., K}. The k" branch is super-
vised by pseudo labels y* € [0, 1](C+D*N which are gen-
erated by top-score proposals of each category from the pre-
vious branch. One proposal will be encouraged to be clas-
sified as the c-th class only if it has high overlap with any

top-score proposal of the previous OICR branch. The loss
for the classifier of the k" branch is defined as Equation 8,
where w? is the loss weight of proposal 7

1 N C+1
Li=—5D_ D wiye,logag,. ®)

r=1 c=1

The loss for bounding box regressor of the k' OICR
branch is defined as Equation 9, N, is the number of pos-
itive proposals in the k*" branch, Areg 18 a scalar weight
of the regression loss, ¢, #* are the predicted and pseudo

groundtruth offsets of the r*" positive proposal in the k"
branch, respectively:

Npos
1 pos R
Lfeg - N, Z /\Teg‘csvnooth—Ll(tfvtf) . (9)
Pos 1

A.2. Details of our improved OICR

In this part, we provide details of our improved
OICR [33], which is used in stage 1. As we claimed in
Sec. 3.1, we proposed an improved OICR as the baseline in
our main experiments.

Mining Rules. Recent works [20,26,32,41] demonstrate
that better mining rules are critical in obtaining higher recall
of objects. OICR mines proposals that have high overlap
with top-scoring proposals. MIST [26] mines more propos-
als with low overlap between each other but mines many
wrong proposals, too. We notice that recall and precision
are both essential for mining proposals. Hence, we intro-
duce a mining rule (Algorithm A.3) to strike a balance be-
tween the two factors. In Line 6, the rule to only retain the
top p percent of proposals is learned from MIST, but we
remove low score proposals to keep the precision.

Multi-Input. A very recent paper CASD [15] showed
that the self-attention transfer between different versions
of an input image is beneficial for boosting performance
in WSOD. We find that adopting the multi-input tech-
nique alone is also helpful for performance and stability
of the training process even without using inverted atten-
tion, CASD’s self-attention transfer and other tricks. We
randomly select inputs with two different scales and their
flipped versions, feed them into the model to obtain Rol
scores for different inputs, and average the scores of each
proposal to get the final Rol scores.

A.3. Implementation Details

In this section, we provide additional implementation de-
tails for completeness.

In the WSOD training stage, we set the maximum it-
eration numbers to 50k, 60k and 200k for VOC2007,
VOC2012 and MS-COCO, respectively. Batch size is set



Algorithm A.3 Mining Rules in SoS-WSOD

Input: An input image I, class labels y1, ..., y,, that
are active in I, a set of proposals R with size n, maxi-
mum percent p, score threshold s,
Output: Pseudo groundtruth seed boxes Rfor I

1: R =g

2:  Feed I and R into the model to obtain Rol scores S
for each proposal in R

33 fori=1, ..., mdo

4: S; = S[i,:] /I get scores for the i-th active class

: R; = SORTEDg, (R) /I sort the proposals ac-

cording to the scores in S;

6: Pick top n X p proposals, but remove those whose
scores are low (< st). Denote them as R,

7: R, = NMS(R;,0.01) //remove those proposals
having overlap with higher scored ones

8: R = R U R;;

9:  end for

to be 4 for the basic OICR model. as we input 4 im-
ages with 4 different input transformations, the actual batch
size is 16 when we use the improved OICR. When train-
ing the improved OICR model, p = 0.1,s; = 0.05 are
set for all datasets. When training the FSOD model with
pseudo ground-truth, maximum iteration numbers are 12k,
18k, 50k for VOC2007, VOC2012 and MS-COCO, respec-
tively. Learning rate and batch size are 0.01 and 8 for
VOC2007 and VOC2012. For MS-COCO, we double the
batch size to 16 and adjust the learning rate to 0.02 based
on batch size. The learning rate is decayed with a factor of
10 at (8k, 10.5k), (12k, 16k) and (30k, 40k) for VOC2007,
VOC2012 and MS-COCO, respectively. When mining po-
tential useful supervisory signals by the semi-supervised
learning paradigm, maximum iteration numbers are 15k,
30k, 50k for VOC2007, VOC2012 and MS-COCO, respec-
tively. Batch sizes for the unlabeled subset and “clean” la-
beled subset are both 8 on VOC2007 and VOC2012, and
doubled to 16 on MS-COCO. Learning rate is set to 0.01 on
all datasets. We do not modify any other hyperparameters
of object detectors.

As for the data argumentation, following [27], we use
random flip and multi-scale training in which scales range
from 480 to 1216 with stride 32 in stage 1. In stage 2 and 3,
we apply the same data augmentations as [23]. For weak
augmentation, only scale transform and random flip are
used. Color jittering, grayscale, Gaussian blur, and cutout
patches are randomly applied for strong augmentation addi-
tionally.

A.4. Ability to adopt modern backbones

In order to show that SoS-WSOD can readily enjoy
the benefits from modern fully supervised object detection

techniques, we conducted experiments using ResNet101
and ResNeXt101, which are widely used in fully supervised
object detection, as the backbone of SoS-WSOD in stages
2 and 3. In Table A.1, we show the results on VOC2007.
These results demonstrate that our SoS-WSOD can success-
fully adopt different modern backbones. Note that TTA was
not used for results in Table A.1.

Backbone PGF | SSOD | mAP50.95 | mAPsg | mAP75
ResNet50 v 27.3 57.6 22.5
ResNet50 v v 31.6 62.7 28.1
ResNet101 v 28.7 58.2 24.2
ResNet101 v v 32.4 63.2 29.3
ResNeXt101 v 29.1 59.1 25.5
ResNeXt101 v v 33.0 64.7 30.1

Table A.1. Results for SoS-WSOD when using ResNet101 and
ResNeXt101 as the backbone on VOC2007.

A.S. Ability to adopt different detector archi-
tectures

In order to show that SoS-WSOD can also enjoy ben-
efits from different detector architectures, we conducted
experiments using Cascade R-CNN [5] with ResNet50 as
the backbone on the VOC2007 dataset. Experiment re-
sults in Table A.2 show that SoS-WSOD can successfully
adopt different modern detector architectures such as Cas-
cade R-CNN. The experimental results also illustrate that
using Cascade R-CNN as the detector, SoS-WSOD can ob-
tain performance gains and more high-quality detection re-
sults.

Detector PGF | SSOD | mAP50.95 | mAPsg | mAP7s5
Faster R-CNN v 273 57.6 22.5
Faster R-CNN v v 31.6 62.7 28.1

Cascade R-CNN v 29.9 56.7 27.6
Cascade R-CNN v v 325 61.3 30.8

Table A.2. Results for SoS-WSOD when using Cascade R-CNN
as the detector on VOC2007.

A.6. Result on VOC2012

The results on VOC2012 we reported in Sec. 4 of
the main paper were directly returned from the evaluation
server of the PASCAL VOC Challenge [9]. The detailed
results of SoS-WSOD (using all stages) can be obtained by
visiting these two anonymous result links.'?

ttp://host . robots.ox.ac.uk:8080/anonymous /
Q4JFTS.html

2http://host . robots.ox.ac.uk:8080/anonymous /
PDKOQ9.html
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Method ‘Backbone ‘ aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv ‘mAPsU

Pure WSOD
WSDDN [4] VGG16 | 393 430 288 204 8.0 455 479 221 84 335 236 292 385 479 203 200 358 308 419 20.1 30.2
OICR [33] VGG16 | 58.0 624 31.1 194 130 651 622 284 248 447 306 253 378 655 157 241 417 469 643 626 | 412
PCL [32] VGG16 | 544 69.0 393 192 157 629 644 300 251 525 444 196 393 677 178 229 466 575 586 63.0| 435
W2F [43] VGG16 | 635 70.1 505 319 144 720 678 737 233 534 494 659 572 672 276 238 518 587 640 623 | 524
C-MIDN [10] VGG16 | 533 715 498 261 203 703 699 683 287 653 451 646 580 712 200 275 549 549 694 635| 52.6
C-MIDN +FR [10] | VGG16 | 54.1 745 569 264 222 687 689 748 252 648 464 703 663 675 21.6 244 530 3597 687 589 | 53.6
Pred Net [3] VGG16 | 66.7 69.5 528 314 247 745 741 673 146 530 461 529 699 708 185 284 546 60.7 67.1 604 | 529
SLV [7] VGG16 | 656 714 49.0 371 246 696 703 706 308 63.1 360 614 653 684 124 299 524 600 676 645| 535
SLV +FR [7] VGG16 | 62.1 721 541 345 256 667 674 712 242 61.6 475 716 720 672 121 246 517 61.1 653 60.1 539
WSOD2 [42] VGG16 | 651 648 572 392 243 698 662 61.0 298 646 425 601 712 707 219 281 586 597 522 648 | 53.6
IM-CFB [41] VGG16 | 64.1 746 447 294 269 733 720 712 281 667 481 638 555 683 178 277 544 627 705 66.6| 543
MIST [26] VGG16 | 688 777 57.0 277 289 69.1 745 670 321 732 481 452 544 737 350 293 641 538 653 652 549
CASD [15] VGG16 | 70.5 70.1 57.0 458 295 745 728 714 253 676 493 647 658 727 237 259 563 608 654 665| 56.8
SoS-WSOD (ours) VGG16 | 674 831 562 202 446 809 820 787 303 760 495 56.6 749 76.1 301 297 641 566 767 726| 603
SoS-WSOD (ours) | ResNet50 | 77.9 81.2 589 267 543 825 840 835 363 765 575 584 785 786 338 374 640 634 815 740 | 644

WSOD with transfer
OCUD +FR [44] ‘ResNetSO‘65.5 577 65.1 413 430 736 757 804 334 722 338 813 79.6 630 594 109 651 642 727 672 602

LBBA [¢] VGG16 | 703 723 487 387 304 743 766 69.1 334 682 505 670 49.0 736 245 274 631 589 660 692 | 56.6
Table A.3. Per-class detection results on the VOC2007 test set.
Method \ Backbone \ aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv \ CorLocsg
Pure WSOD
WSDDN [4] VGG16 | 65.1 588 585 331 398 683 602 59.6 348 645 305 43.0 56.8 824 255 41.6 615 559 659 637 535
OICR [33] VGG16 | 81.7 804 487 495 328 81.7 854 40.1 406 795 357 337 60.5 888 218 579 763 599 753 8l4 60.6
W2F [43] VGG16 | 854 875 625 543 355 853 86.6 823 397 829 494 765 748 90.0 468 539 845 683 79.1 799 70.3
Pred Net [3] VGG16 | 886 863 718 534 512 876 89.0 653 332 866 588 659 877 933 309 589 834 678 787 802 70.9
SLV [7] VGG16 | 84.6 843 733 585 492 802 870 794 468 836 418 793 888 904 195 597 794 677 829 832 71.0
SLV +FR [7] VGG16 | 858 859 733 569 527 79.7 87.1 840 493 829 468 812 89.8 924 212 593 804 704 821 788 72.0
WSOD2 [42] VGG16 | 87.1 80.0 748 60.1 366 792 838 70.6 435 884 460 747 874 908 442 524 814 618 677 799 69.5
MIST [26] VGG16 | 875 824 760 580 447 822 875 712 491 815 51.7 533 714 928 382 528 794 610 783 76.0 68.8
SoS-WSOD (ours) | VGG16 | 824 91.8 664 475 635 887 948 858 447 936 635 706 91.6 935 378 620 906 71.6 86.6 832 75.5
SoS-WSOD (ours) | ResNet50 | 89.5 93.0 71.8 492 725 887 938 884 544 943 705 706 930 951 397 702 89.6 747 83.1 863 78.7

‘WSOD with transfer
OCUD + FR [44] ‘ResNetSO‘SS‘S 675 87.1 686 683 858 904 887 435 952 316 909 942 888 724 238 887 66.1 89.7 767 75.2

LBBA [8] VGG16 | 89.2 82.0 742 532 512 848 875 837 462 870 483 847 799 924 403 476 887 656 81.0 817 72.5

Table A.4. Correct localization (CorLoc) results on the VOC2007 trainval set.

Figure A.6. Visualization of SoS-WSOD results on MS-COCO (more examples in addition to Fig. 2 in the main paper). Top row:
groundtruth annotations. 2nd to 4th rows: detection results from stages 1, 2 and 3, respectively. Last column: a failure case.



Figure A.7. Visualization of SoS-WSOD results on VOC2007. Top row: groundtruth annotations. 2nd to 4th rows: detection results from
stages 1, 2 and 3, respectively.

Figure A.8. Visualization of SoS-WSOD results on VOC2007 (more examples in addition to Fig. A.7). Top row: groundtruth annotations.
2nd to 4th rows: detection results from stages 1, 2 and 3, respectively.



A.7. Per-class detection results

In Table A.3, we report and compare the per-class de-
tection mAP5q results on VOC2007. Besides, we also re-
port and compare correct localization (CorLoc) results on
VOC2007 trainval set in Table A 4.

A.8. More visualization results

In Sec. 4 of the main paper, we only show some visual-
ization results on MS-COCO due to the limited space. Here,
more visualization results are shown in Fig. A.6 to A.8.
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