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Abstract

Point cloud classifiers with rotation robustness have
been widely discussed in the 3D deep learning community.
Most proposed methods either use rotation invariant de-
scriptors as inputs or try to design rotation equivariant net-
works. However, robust models generated by these meth-
ods have limited performance under clean aligned datasets
due to modifications on the original classifiers or input
space. In this study, for the first time, we show that the
rotation robustness of point cloud classifiers can also be
acquired via adversarial training with better performance
on both rotated and clean datasets. Specifically, our pro-
posed framework named ART-Point regards the rotation of
the point cloud as an attack and improves rotation robust-
ness by training the classifier on inputs with Adversarial
RoTations. We contribute an axis-wise rotation attack that
uses back-propagated gradients of the pre-trained model to
effectively find the adversarial rotations. To avoid model
over-fitting on adversarial inputs, we construct rotation
pools that leverage the transferability of adversarial rota-
tions among samples to increase the diversity of training
data. Moreover, we propose a fast one-step optimization to
efficiently reach the final robust model. Experiments show
that our proposed rotation attack achieves a high success
rate and ART-Point can be used on most existing classifiers
to improve the rotation robustness while showing better per-
formance on clean datasets than state-of-the-art methods.

1. Introduction
A very basic requirement for point cloud classification

is expecting the network to obtain stable predictions on in-
puts undergoing rigid transformations since such transfor-
mations do not change the shape of the object, let alone
change its semantic meanings. This basic requirement is
even more important in practical applications. For exam-
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ple, when a robot is identifying and picking up an object,
the object is usually in an unknown pose. However, many
studies [7,17,51] have shown that most existing point cloud
classifiers can be easily attacked by simply rotating the in-
puts. To use these classifiers we require to align all input
objects which is a very expensive and time-consuming pro-
cess. To this end, how to improve the robustness of point
cloud classifiers to arbitrary rotations, becomes a very pop-
ular and necessary research topic.

In order to make the network robust to rotated inputs,
most existing works can be classified into three categories:
(1) Rotation Augmentation Methods attempt to augment
the training data using rotations and have been widely used
in the earlier point cloud classifiers [30, 31, 39]. How-
ever, data augmentation can hardly be applied to improve
model robustness to arbitrary rotations due to the astronom-
ical number of rotated data [49]. (2) Rotation-Invariance
Methods propose to convert the input point clouds into ge-
ometric descriptors that are invariant to rotations. Typi-
cal invariant descriptors can be the distance and angles be-
tween local point pairs [4, 8, 47, 48] or point norms [17, 49]
and principal directions [47] calculated from global coor-
dinates. (3) Rotation-Equivariance Methods try to solve
the rotation problem from the perspective of model archi-
tectures. For example, [5, 28, 37, 40] use convolution with
steerable kernel bases to construct rotation-equivariant net-
works and [7, 35, 50] modify existing networks with equiv-
ariant operations. While both methods (2) and (3) can effec-
tively improve model robustness to arbitrary rotations, they
either require time-consuming pre-processing on inputs or
need complex architectural modifications, which will result
in limited performance on clean aligned datasets.

In this paper, we try to explore a new technical route
for the rotation robustness problem in point clouds. Our
method is inspired by adversarial training [22], a typical
defense method to improve model robustness to attacks.
The idea of adversarial training is straightforward: it aug-
ments training data with adversarial examples in each train-
ing loop. Thus adversarially trained models behave more
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normally when facing adversarial examples than standardly
trained models. Adversarial training has shown its great
effectiveness in improving model robustness to image or
text perturbations [9, 11, 21, 34, 44], while keeping a strong
discriminative ability. In 3D point clouds, [18, 36] also
successfully leverage adversarial training to defend against
point cloud perturbations such as random point shifting or
removing. However, using adversarial training to improve
the rotation robustness of point cloud classifiers has rarely
been studied.

To this end, by regarding rotation as an attack, we de-
velop the ART-Point framework to improve the rotation ro-
bustness by training networks on inputs with Adversarial
RoTations. Like the general framework of adversarial train-
ing, ART-Point forms a classic min-max problem, where the
max step finds the most aggressive rotations, on which the
min step is performed to optimize the network parameters
for rotation robustness. For the max step, we propose an
axis-wise rotation attack algorithm to find the most offen-
sive rotating samples. Compared with the existing rotation
attack algorithm [51] that directly optimizes the transfor-
mation matrix, our method optimizes on the rotation angles
which reduces the optimization parameters, while ensuring
that the attack is pure rotation to serve for the adversarial
training. For the min step, we follow the training scheme
of the original classifier to retrain the network on the adver-
sarial samples. To overcome the problem of over-fitting on
adversarial samples caused by label leaking [15], we con-
struct a rotation pool that leverages the transferability of ad-
versarial rotations among point cloud samples to increase
the diversity of training data. Finally, inspired by ensemble
adversarial training [38], we contribute a fast one-step opti-
mization method to solve the min-max problems. Instead of
alternately optimizing the min-max problem until the model
converges, the one-step method can quickly reach the final
robust model with competitive performance.

Compared with the rotation-invariant and equivariant
methods, the ART-Point framework aims to optimize net-
work parameters such that the converged model is natu-
rally robust to both arbitrary and adversarial rotations, with-
out the necessity of either geometric descriptor extractions
or architectural modifications that may impede the model
to learn discriminative features. So our resulting robust
model better inherits the original performance on the clean
(aligned) datasets. It has no constraint on the model design
and can be integrated on most point cloud classifiers.

In experiments, we mainly verify the effectiveness of
our methods under two datasets ModelNet40 [42] and
ShapeNet16 [46]. We adopt PointNet [30], PointNet++ [31]
and DGCNN [39] as the basic classifiers. Firstly, com-
pared with the existing rotation attack method [51], our pro-
posed attack achieves a higher attack success rate. Then,
compared with existing rotation robust classifiers, our best

model (ART-DGCNN) shows a more robust performance
on randomly rotated datasets. Meanwhile, our methods
generally show less accuracy reduction on clean aligned
datasets. Beyond arbitrary rotations, the resulting models
also show a solid defense against adversarial rotations.1 Our
contributions can be summarized as follows:

• For the first time, we successfully improve the rotation
robustness of point cloud classifiers from the perspec-
tive of model attack and defense. Our proposed frame-
work, ART-Point, enjoys fewer architectural modifica-
tions than previous rotation-equivariant methods and
requires no descriptor extractions on input data.

• We propose an axis-wise rotation attack algorithm to
efficiently find the most aggressive rotated samples for
adversarial training. A rotation pool is designed to
avoid over-fitting of models on adversarial samples.
We also contribute a fast one-step optimization to solve
the min-max problem.

• We validate our method on two datasets with three
point cloud classifiers. The results show that our at-
tack algorithm achieves a higher attack success rate
than existing methods. Moreover, the proposed ART-
Point framework can effectively improve model rota-
tion robustness allowing the model to defend against
both arbitrary and adversarial rotations, while hardly
affecting model performance on clean data.

2. Related Work
2.1. Rotation Robust Point Cloud Classifiers

Rotation Augmentation. The initial work of the point
cloud classifier [30,31,39] adopt rotation augmentation dur-
ing training to improve rotation robustness. Nevertheless,
rotation augmentation can only result in models robust to
a small range of angles. More recently, to obtain models
robust to arbitrary rotation angles, both rotation-invariance
and rotation-equivariance methods are proposed.

Rotation-invariance methods extract rotation-invariant
descriptors from point clouds as model inputs. For exam-
ple, [4, 8, 29, 48] cleverly construct distances and angles
from local point pairs. [17, 47, 49] further extend local in-
variant descriptors with global invariant contexts. In ad-
dition to using invariant descriptors with a clear geometric
meaning, [20, 29, 32] also design invariant convolutions to
automatically learn various descriptors for processing.

Rotation-equivariance methods expect the learned fea-
tures to rotate correspondingly with the input thus resulting
in rotation robust models. Most of these works usually rely
on rotation-equivariant convolutions [5, 6, 10, 14, 28, 37, 40]

1Code address: https://github.com/robinwang1/ART-
Point.
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to construct equivariant networks. Other works like [7, 35,
50] attempt to modify modules in existing point cloud clas-
sifiers [30, 31, 39] to make them rotation-equivariant.

However, these methods usually require specific descrip-
tors or network modules which will reduce the performance
of the classifier on the aligned datasets. Our study differs
from these methods in that we try to obtain a robust model
by optimizing the parameters without changing the input
space or network architectures.

2.2. Adversarial Training

Adversarial Training [13, 22] has been proved to be
the most effective technique against adversarial attacks
[23, 26, 33], receiving considerable attention from the re-
search community. Unlike other defense strategies, adver-
sarial training aims to enhance the robustness of models
intrinsically [1]. This property makes adversarial training
widely used in various fields to improve the robustness of
the model, including image recognition [11,12,34,44], text
classification [9, 21, 24, 25], relation extraction [41] etc. In
3D point clouds classification, adversarial training can also
be effectively used. For example, [18] employs adversarial
training to improve the model robustness to point shifting
perturbation by training on both clean and adversarially per-
turbed point clouds. [36] presents an in-depth study show-
ing how adversarial training behaves in point cloud classi-
fication. However, existing works only focus on improv-
ing the model’s robustness to perturbations of random point
shifting or removing [12, 16, 19, 43, 45, 52].

Recently, [51] designs a rotation attack algorithm for ex-
isting point cloud classifiers. Yet it does not provide de-
tailed strategies to defense the rotation attack. As a compar-
ison, we design a new attack algorithm that enjoys a higher
attack success rate. More importantly, it serves for our ad-
versarial training framework that generates model naturally
defending against both arbitrary and adversarial rotations.

3. Methods
In this section, we first provide a brief review of adver-

sarial training (Sect. 3.1). Then, we reformulate the adver-
sarial training objective under rotation attack of point clouds
(Sect. 3.2). Next, we propose attack (Sect. 3.3) and defense
(Sect. 3.4) algorithms to obtain good solutions to the refor-
mulated objective. Finally, we provide a one-step optimiza-
tion to fast reach a robust model (Sect. 3.5).

3.1. Preliminaries on Adversarial Training

Let us first consider a standard classification task with
an underlying data distribution D over inputs p ∈ Rd and
corresponding labels q ∈ [k]. The goal then is to find model
parameters θ that minimize the risk E(p,q)∼D[L(θ, p, q)],
where L(θ, p, q) is a suitable loss function. To improve the
model robustness, we wish no perturbations are possible to

fool the network, which gives rise to the following formu-
lation:

min
θ
ρ(θ), where ρ(θ) = E(p,q)∼D[L(θ, p+δ, q)], (1)

where p + δ refers to the perturbed samples generated by
introducing perturbations δ ∈ S on input data p. S refers to
the allowed perturbation set. Eq. (1) reflects the basic idea
of data augmentations.

In contrast, adversarial training improves model robust-
ness more efficiently. By the in-depth study of the land-
scape of adversarial samples, [22] finds the concentration
phenomenon of different adversarial samples, which sug-
gests that training on the most aggressive adversary yields
robustness against all other concentrated adversaries. This
gives rise to the formulation of adversarial training which is
a saddle point problem:

min
θ
ρ(θ), where ρ(θ) = E(p,q)∼D[max

δ∈S
L(θ, p+ δ, q)].

(2)
The saddle point problem can be viewed as the composi-
tion of an inner maximization problem and an outer mini-
mization problem, where the inner maximization problem
is finding the worst-case samples for the given model, and
the outer minimization problem is to train a model robust to
adversarial samples. Compared with data augmentation, ad-
versarial training searches for the best solution to the worst-
case optimum and can improve the model robustness to per-
turbations in larger ranges [22].

3.2. Problem Formulation

Our main goal is to improve the robustness of the point
cloud classifiers to rotation attacks through the adversarial
training framework. We reformulate Eq. (2) by specifying
the perturbation to be the point cloud rotation as follows:

min
θ
ρ(θ), where ρ(θ) = E(p,q)∼D[ max

R∈SO(3)
L(θ,Rp, q)],

(3)
where p ∈ Rn×3 refers to an input point cloud of size n
and q ∈ [k] is the corresponding class label. θ is the pa-
rameters of point cloud classifiers such as PointNet [30] or
DGCNN [39]. Rp refers to the adversarial samples gener-
ated by using matrix R to rotate the input p and SO(3) is
the group of all rotations around the origin of R3 Euclidean
space. We set the rotation R ∈ SO(3) to ensure the objec-
tive is to make the model robust to arbitrary rotations.

As discussed in [22], one key element for obtaining a
good solution to Eq. (3) is using the strongest possible ad-
versarial samples to train the networks. Following this prin-
ciple, we first propose a novel rotation attack method that
enjoys satisfactory attack success and thus better serves for
the adversarial training to improve model robustness.
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Figure 1. The general pipeline of our adversarial training approach. In the upper branch, the network takes a clean batch (aligned object) as
inputs and finds the most aggressive attack angles by maximizing the classification loss of the eval model. The attack angles will be stored
by class in the rotation pool. In the lower branch, the network samples angles from the rotation pool to produce adversarial point clouds
for re-training the classifier to obtain the rotation robust model. The red and blue dashed lines respectively indicate routes of the backward
gradient in two optimization tasks and point to the final optimized parameters. In the real implementations, the one-step optimization will
construct the rotation pool by attacking multiple eval models, while the iterative optimization will update the parameter of the eval model
by parameters of the latest re-trained model in each min-max iterations.

3.3. Attack—Inner Maximization

For the inner maximization problem, we expect a strong
rotation attack algorithm that can find the most aggressive
samples inducing high classification loss. A previous study
[51] introduced two rotation attack methods, Thompson
Sampling Isometry (TSI) attack and Combined Targeted
Restricted Isometry (CTRI) attack, for generating adversar-
ial rotations. However, they can hardly be used in adversar-
ial training for the following reasons: (1) the TSI attack is a
black-box attack, which has no direct access to the classifier
parameters and thus can hardly be used to find samples in-
ducing high loss. (2) CTRI attack is a white-box attack and
one can use parameter information to search the most ag-
gressive samples. Yet, in CTRI, there is no strict constraint
for the matrix to be a pure rotation, which leads to adver-
sarial samples with non-rigid deformation. To this end, we
propose a novel white-box attack that can efficiently find the
most aggressive samples while guaranteeing that the attack
is pure rotation.

Gradient Descent on Angles. Firstly, to ensure the at-
tack is pure rotation, we propose to optimize the attack by
gradient descent on rotating angles. Specifically, for an n-
point cloud p = [xi, yi, zi], i = 1...n, we consider vectors
Φ = [φx, φy, φz] with 3 parameters denoting rotation an-
gles along three axes. Rotating points along z axis by δ will
increase the loss L by ∂L

∂φz
δ, which can then be calculated

under the spherical coordinate, by the chain rule as:

∂L

∂φz
=

n∑
i=1

(
∂xi
∂φz

∂L

∂xi
+
∂yi
∂φz

∂L

∂yi
+
∂zi
∂φz

∂L

∂zi
)

=

n∑
i=1

(−yi
∂L

∂xi
+ xi

∂L

∂yi
),

(4)

where, ∂L∂x = ∇xL(θ, p, q) and ∂L
∂y = ∇yL(θ, p, q) are gra-

dients back-propagated on point coordinates. For the rest
of the rotation axes, ∂L

∂φx
and ∂L

∂φy
can also be calculated in

the same way. Based on Eq. (4), we can iteratively op-
timize the angles by gradient descent to obtain adversarial
rotations that induce high loss. Finally, the rotation matrix
is generated from optimized angles as R = RφzRφyRφx ,
where Rφx

corresponds to the rotation matrix that rotates
φx degrees around x axis. More derivations about the gra-
dient calculation and rotation matrix construction will be
provided in the supplementary.

Axis-Wise Attack. In order to efficiently find the most
aggressive rotations, based on the angle gradients, we fur-
ther propose an axis-wise mechanism. Specifically, we sub-
divide a rotation in SO(3) into rotations around three axes
for optimization. By doing so, each time we can choose the
most aggressive axis to rotate, resulting in stronger attacks.
We approximate the loss change ratio of a specific axis by
|∂L∂φ |, which reflects the influence of rotating around a cer-
tain axis on final losses. Next, we select the most influenced
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Algorithm 1 Axis-Wise Rotation Attack

Require: Point cloud input p, label q and model parame-
ters θ, loss function L(θ, p, q), number of iterations T ,
step size α, initial rotation angles Φ = [φx, φy, φz] and
corresponding rotation matrix R = RφxRφyRφz .

1: for t = 0 to T do
2: Compute the gradients on coordinates:
3: ∂L

∂p(t)
= [ ∂L

∂x(t) ,
∂L
∂y(t)

, ∂L
∂z(t)

].
4: Compute the gradients on angles by Eq. (4).
5: Determining the target axis by Eq. (5).
6: Attack the target axis by Eq. (7).
7: Update the rotation matrix:
8: R(t+1) = R

φ
(t+1)
x

R
φ
(t+1)
y

R
φ
(t+1)
z

9: Obtain the attacked point clouds: p(t+1) = R(t+1)p
10: end for

Output R(T ), p(T )

axis
ξ∗ = argmaxξ|

∂L

∂φξ
|, ξ ∈ [x, y, z], (5)

and attack the axis by rotating one step in the opposite di-
rection of gradient descent:

φ
(t+1)
ξ∗ = φ

(t)
ξ∗ + αsign(

∂L

∂φξ∗
). (6)

Compared with simultaneously optimizing on all three axes,
the axis-wise attack can specify a gentler change of the ro-
tation angles in each attack step.

Implementation Details. In the real implementations,
we adopt several other general settings to find adversarial
samples. Firstly, we use the Projected Gradient Descent
(PGD) [22] to optimize angles. Compared with the nor-
mal gradient descent, PGD ensures that the optimized an-
gles can be constrained into certain scopes:

φ
(t+1)
ξ∗ = Proj[−π,π](φ

(t)
ξ∗ + αsign(

∂L

∂φξ∗
)). (7)

In our case, we set the projected scope as [−π, π] to
avoid the discontinuity caused by the periodicity of rotation.
Then, instead of cross-entropy, we follow [43, 51] to adopt
CW loss [3] to modify the cross-entropy as a more pow-
erful adversarial objective to generate stronger adversary.
Finally, to make sure that the generated adversary can be
more evenly distributed among [−π, π], we adopt a random
start strategy. For each input point cloud, we will initial-
ize it with a random rotation angle, then continue to attack
along with the initialization angles. The proposed axis-wise
rotation attack algorithm is illustrated in Algorithm (1).

3.4. Defense—Outer Minimization

On the defense side, we use Stochastic Gradient Descent
(SGD) [2] to re-train the model on the adversarial samples.

“Bench” “Bookshelf”“Bench” “Bookshelf”
𝐿𝑜𝑠𝑠 = 10.356𝐿𝑜𝑠𝑠 = 0.023 𝐿𝑜𝑠𝑠 = 0.011 𝐿𝑜𝑠𝑠 = 11.942

Φ Φ

Rotation	Angles

Φ = [0.097,1.530,−1.646]

“Bench” “Bookshelf”
𝐿𝑜𝑠𝑠 = 0.012 𝐿𝑜𝑠𝑠 = 12.785

Figure 2. Transferability of adversarial rotations among samples in
the same categories. The adversarial rotation found on one sample
in “Bench” can be applied to other samples of the same category
to induce high loss and mislead the model to classify them into a
wrong category “Bookshelf”.

During experiments, we find that for the original training set
A and its attacked set B with rotations, directly training on
set B can easily lead to model over-fitting. This behavior is
known as label leaking [15] and stems from the fact that the
gradient-based attack produces a very restricted set of ad-
versarial examples that the network can overfit. The prob-
lem can be even worse on the smaller training set, in our
case, ModelNet40 [42]. To solve the label leaking caused
over-fitting problems, we propose to increase the training
data with more kinds of adversarial rotations. A simple so-
lution is to construct the training set B with multiple at-
tack B = [attack1(A), attack2(A), . . . , attacki(A)]. How-
ever, multiple attacks can be very time-consuming. To this
end, we construct a rotation pool to increase the diversity of
training data in a more efficient manner.

Rotation Pool. As shown in Fig. (4), we observe that the
adversarial rotation found on one sample has a strong trans-
ferability on other samples of the same category. Based on
this observation, instead of saving the rotated samples, we
suggest saving the rotation angles produced on each sample
by class to construct a rotation pool:

R = [{Φi,1}n1
i=1, · · · , {Φi,k}

nk
i=1, · · · , {Φi,K}

nK
i=1] , (8)

where Φi,k is the rotation found on sample i of category k.
We will save the rotations corresponding to all nk samples
in the category k and traverse all K categories to construct
the final rotation pool R. During defense training, we only
need to sample rotations from the rotation pool according to
the category to transform the input into adversaries. Thanks
to the transferability, the adversarial samples generated by
the rotation pool can also induce high classification loss.
Experiments in Sect. 4.5 also confirm that the rotation pool
can effectively solve the over-fitting problem.
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Figure 3. Comparison of different optimizations. For the iterative optimization (a), model with parameters θ will be repeatedly optimized
on the min-max problem T times until converging to a robust parameter θT . In contrast, the proposed one-step optimization (b) constructs
the rotation pool by attacking m different models and requires only one step to obtain robust parameters of the targeted model.

Iterative Optimization. In order to solve the minimiza-
tion problem, i.e. Eq. (3), in adversarial training to reach
the final robust models, an iterative optimization scheme is
usually adopted. Specifically, in the first iteration, we will
attack the pre-trained classifier to initialize the rotation pool
and then re-train the classifier on adversarial samples gen-
erated from the rotation pool towards a robust model. In the
following iterations, we will attack the latest robust model
to update the rotation pool iteratively:

Φ
(t)
i,qi

= max
Φ

L(θ(t), RΦpi, qi), (9)

where θ(t) refers to the parameters of robust model after t
iterations, Rφ is the rotation matrix of random start angles
φ and qi is the class label corresponding to input sample pi.
Φ

(t)
i,qi

refers to the rotation found on sample i of category qi
in the t-th iteration. We then re-train the classifier on the
adversaries generated from the updated pool R(t) to reach
a more robust model. The process will be repeated until the
model converges to the most robust state.

3.5. One-Step Optimization

The naive implementation above requires multiple iter-
ations on both the attack and defense sides. Though ob-
taining robust models, the whole process is extremely time-
consuming. Inspired by the ensemble adversarial training
(EAT) [38], we further propose an efficient one-step opti-
mization to reach the robust model with lower training cost.

Specifically, instead of iterating multiple times for ob-
taining more aggressive samples, EAT proposes to intro-
duce the adversarial examples crafted on other stronger
static pre-trained models. Intuitively, as adversarial sam-
ples transfer between models, perturbations crafted on the
more robust model are good approximations for the maxi-
mization problem of the target model. We follow this prin-
ciple to solve the minimization problem Eq. (3) in one step.
Concretely, we not only attack the target classifier but attack
more robust classifiers to construct a larger rotation pool:

Φ
(m)
i,qi

= max
Φ

L(θm, RΦpi, qi), (10)

where, θm refers to the parameters of model m and Φ
(m)
i,qi

is the adversarial rotation generated by attacking model m.
By attacking m models, the resulting rotation pool has m
times more aggressive rotations than the iterative optimiza-
tion does. For defense, similar to the iterative optimization,
we use the adversarial rotation sampled from the rotation
pool to re-train the target model. Compared with the itera-
tive manner, the one-step optimization achieves competitive
results with faster training progress. Hence, we select the
one-step optimization as the default implementation of our
ART-Point framework. The comparison between the two
optimization methods is shown in Fig. (6). Detailed imple-
mentations and comparison experiments will be provided in
the supplementary.

4. Experiments

4.1. Experiment Setup

Datasets. We evaluate our methods on two classification
datasets ModelNet40 [42] and ShapeNet16 [46]. Model-
Net40 contains 12,311 meshed CAD models from 40 cat-
egories. ShapeNet16 is a larger dataset which contains
16,881 shapes from 16 categories. For both datasets, we fol-
low the official train and test split scheme and use the same
data pre-processing as in [30, 31, 39] where each model is
uniformly sampled with 1,024 points from the mesh faces
and rescaled to fit into the unit sphere.

Models. We select three point cloud classifiers to evalu-
ate our method, including PointNet [30], a pioneer network
that processes points individually, PointNet++ [31], a hi-
erarchical feature extraction network and DGCNN [39], a
graph-based feature extraction network. These classifiers
lack robustness to rotation. By verifying these classifiers,
we show that ART-Point can be applied to various learning
architectures to improve rotation robustness.

Evaluations. In order to comprehensively compare the
rotation robustness of different models, we design three
evaluation protocols: (1) Attack. The test set is adversar-
ially rotated by the proposed attack algorithm for evaluat-
ing model defense. (2) Random. The test set is randomly
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Method
ModelNet40

Attack Random Clean
PointNet [30] (RA) 55.6 74.4 76.7
PointNet++ [31] (RA) 58.9 80.1 82.3
DGCNN [39] (RA) 65.6 85.7 87.6
ART-PointNet (Ours) 85.6(30.0↑) 84.3(9.9↑) 85.5(8.8↑)
ART-PointNet++ (Ours) 90.1(31.2↑) 87.5(7.4↑) 88.6(6.3↑)
ART-DGCNN (Ours) 91.5(25.9↑) 90.5(4.8↑) 91.3(3.7↑)

Method
ShapeNet16

Attack Random Clean
PointNet [30] (RA) 66.4 87.3 89.5
PointNet++ [31] (RA) 70.5 89.7 92.1
DGCNN [39] (RA) 74.4 90.5 94.3
ART-PointNet (Ours) 96.9(30.5↑) 95.1(7.8↑) 96.2(6.7↑)
ART-PointNet++ (Ours) 97.8(27.3↑) 96.3(6.6↑) 97.5(5.4↑)
ART-DGCNN (Ours) 98.4(24.0↑) 97.7(7.2↑) 98.1(3.8↑)

Table 1. Comparing three evaluation protocols under ModelNet40
[42] and ShapeNet16 [46] for classifiers trained via rotation aug-
mentation (RA) and adversarial rotation (ART).

rotated for evaluating model rotation robustness. (3) Clean.
The test set is unchanged for evaluating the discriminative
ability under aligned data. Moreover, we use the attack suc-
cess rate to evaluate our attack algorithm. The attack suc-
cess rate is calculated as the percentage of correctly pre-
dicted samples in the test set before and after the attack.

4.2. Comparison with Rotation Augmentation

We first compare the effectiveness of the proposed ART-
Point with rotation augmentation (RA) for improving model
rotation robustness. For classifiers using rotation augmen-
tation, we will train them with randomly rotated inputs. In
Tab. (6), we illustrate the comparison results under Mod-
elNet40 [42] and ShapeNet16 [46]. From the table, sev-
eral observations can be obtained. Firstly, compared with
rotation augmentation, the proposed ART-Point results in
models performing better under all protocols. Such perfor-
mance improvements can be consistently observed on all
three classifiers under both datasets. Secondly, under the at-
tacked test set, the classification accuracy of model trained
using ART-point is significantly higher than model trained
with RA. (maximum increase: 31.2%). This is mainly be-
cause that rotation augmentation can hardly defend against
adversarial rotations found using model gradient informa-
tion. In contrast, our method shows stronger defense to ad-
versarial rotations. We will further test the defense ability
of our method under different rotation attacks in Sect. 4.4.
Both observations suggest that the proposed ART-Point is a
more effective method to improve the rotation robustness of
point cloud classifiers than rotation augmentation.

Method ModelNet40
Attack Random Clean

Classifiers Using Invariant Descriptors
SFCNN [32] 90.1 90.1 90.1
RI-Conv [48] 86.5 86.4 86.5
ClusterNet [4] 87.1 87.1 87.1
RI-Framework [17] 89.4 89.3 89.4
Classifiers with Equivariant Architectures
TFN [37] 87.6 87.6 87.6
REQNN [35] 74.4 74.1 74.4
VN-PointNet [7] 77.2 77.2 77.2
VN-DGCNN [7] 90.2 90.2 90.2
EPN [5] 88.3 88.3 88.3
Ours
ART-PointNet 85.6 84.3 85.5
ART-PointNet++ 90.1 87.5 88.6
ART-DGCNN 91.5 90.5 91.3

Table 2. Comparing three evaluation protocols under ModelNet40
[42] for various rotation robust classifiers.

4.3. Comparison with Rotation Robust Classifiers

We further compare robust models trained by ART-
Point with existing rotation robust classifiers, including
[4,17,32,48] that convert point clouds into rotation invariant
descriptors and [5,7,35,37] that design rotation-equivariant
architectures, to further illustrate appealing properties of
our method. Rotation robust classifiers will be trained on
random rotated inputs. The comparison results based on
all protocols under ModelNet40 [42] are shown in Tab.
(2). Firstly, our best model ART-DGCNN outperforms all
equivariant or invariant methods under three evaluation pro-
tocols, which indicates its stronger robustness over rota-
tions. Secondly, both equivariant or invariant methods per-
form similarly under all protocols, which is undesirable,
since the clean test set should more easily be classified by
the model. This is mainly because that these methods obtain
rotation robustness by separating the pose information from
point clouds via modifications on input space or model ar-
chitectures. In contrast, ART-Point uses original classifiers
for training on adversarial samples in 3D space, the result-
ing model not only better inherits the performance of orig-
inal classifiers on clean sets but shows great defense on the
attacked test set.

4.4. Attack and Defense

Beyond rotation robustness, our method provides a com-
plete set of tools for attack and defense on point cloud clas-
sifiers. To verify the proposed attack algorithm, we com-
pare the attack success rate of our method with other rota-
tion attacks proposed in [51]. Meanwhile, we also show the
defense ability of classifiers trained with ART-Point. The
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Models Rotation Attack Algorithm
TSI [51] CTRI [51] Ours

PointNet [30] 96.92 99.44 99.54
PointNet++ [31] 91.31 97.93 98.96
DGCNN [39] 89.81 97.99 98.51
ART-PointNet (Ours) 9.71 11.13 12.78
ART-PointNet++ (Ours) 4.31 6.60 7.92
ART-DGCNN (Ours) 3.14 5.33 6.62

Table 3. Comparing attack success rate (%) of several attack algo-
rithms on different classifiers under ModelNet40 [42].

Methods Loss Acc. Methods Loss Acc.
Random 5.13 74.4 w/o RP 12.72 55.8
TSI [51] 7.35 79.5 RP(pn1) 10.19 82.9
CTRI [51] 8.87 82.1 RP(pn1,pn2) 12.01 82.6
Ours (step=1) 7.65 81.5 RP(pn1,dg) 12.55 83.1
Ours (step=5) 9.57 82.8 RP(pn2,dg) 13.03 84.0
Ours (step=10) 13.49 84.3 RP(pn1,pn2,dg) 13.49 84.3

Table 4. The average loss of adversarial samples generated by dif-
ferent methods and accuracy of corresponding adversarial training.
RP(pn1) refers to the rotation pool generated by attacking Point-
Net [30]. pn2 and dg refer to PointNet++ [31] and DGCNN [39].

results are illustrated in Tab. (3). In the first three rows,
we report the attack success rate of different attack algo-
rithms on classifiers trained using clean samples. As can be
seen, compared with the other two rotation attacks, our at-
tack achieves the highest success rate on all three classifiers.
In the last three rows, we further report the attack success
rate on classifiers trained using ART-Point. As can be seen,
ART-Point improves model defense against rotation attacks.

4.5. Ablation Study

Finally, we conduct ablation studies to prove the effec-
tiveness of our designs in ART-Point. All ablation exper-
iments are conducted on the PointNet [30] classifier and
evaluated under randomly rotated test sets1.

Different Attacks. We use adversarial samples gener-
ated by different rotation attacks for adversarial training
and investigate the impact on the robustness of the result-
ing models. We adopt several attacks to generate adver-
sarial samples that induce different loss values, including
the random rotation attack, attacks in [51] and our attacks
with different steps. In the left column of Tab. (4), we il-
lustrate the average classification loss of samples produced
by different attacks and results of adversarial training using
corresponding samples. Compared with other attacks, the
proposed axis-wise rotation attack with 10 steps gradient
descent induces the highest loss value.

Rotation Pool. We verify the necessity of constructing

1More ablation studies on descent step, rotation angle, and attack step
size can be found in the supplementary material.

Figure 4. Averaged loss values of attacked samples produced by
standard attack and axis-wise attack under different attack steps.

the rotation pool. We compare the results of adversarial
training with and without rotation pools. Moreover, we also
investigate the impacts of constructing rotation pools from
different models. As shown in the right column of Tab. (4),
although adversarial training without rotation pool gener-
ates samples inducing high loss values, the final result is
worse than training with rotation pool due to the over-fitting
caused by label leaking [15].

Axis-Wise Attack. We compare our proposed axis-wise
rotation attack with the standard attack algorithm, which
simultaneously optimizes three angles in one gradient de-
scent. We mainly follow [22] to show the average loss value
of attacked samples in each step. We restart the attack 20
times with random angle initialization. The comparison re-
sults are shown in Fig. (4). As can be seen, the axis-wise
mechanism enables the attack algorithm to find more ag-
gressive rotated samples.

4.6. Discussions of Limitations and Society Impact

Since our method is mainly based on adversarial train-
ing, one limitation is that we need to obtain a fully trained
model with accessible parameters in the first place. Mean-
while, since our method involves a rotating attack algo-
rithm, it may be exploited for attacking point cloud based
3D object detection systems, which is a potential negative
societal impact.

5. Conclusion
In this paper, we propose ART-Point to improve the ro-

tation robustness of point cloud classifiers via adversarial
training. ART-Point consists of an axis-wise rotation attack
and a defense method with the rotation pool mechanism. It
can be adopted on most existing classifiers with fast one-
step optimization to obtain rotation robust models. Exper-
iments show that the novel rotation attack achieves a high
attack success rate on most point cloud classifiers. More-
over, our best model ART-DGCNN shows great robustness
to arbitrary and adversarial rotations and outperforms exist-
ing state-of-the-art rotation robust classifiers.
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A. Overview

This document provides technical details, additional
quantitative results, and more qualitative test examples to
the main paper. In Sect. B we provide derivations about the
gradients back-propagated on three rotation angles and il-
lustrate the construction of rotation matrices. In Sect. C we
show more implementation details on our network architec-
tures and training parameters. Then Sect. D illustrates com-
parison experiments between different optimization skills,
while Sect. E shows more analysis experiments on our at-
tack algorithm. At last, we show some visualization results
in Sect. F.

B. Gradient Derivation and Rotation matrix
Construction (Sect. 3.3)

Gradient Derivation. As illustrated in the main paper,
rotating points along z axis by δ will increase the loss L by
∂L
∂φz

δ, where ∂L
∂φz

can be calculated by the chain rule as:

∂L

∂φz
=

n∑
i=1

(
∂xi
∂φz

∂L

∂xi
+
∂yi
∂φz

∂L

∂yi
+
∂zi
∂φz

∂L

∂zi
). (11)

Here, φz refers to the rotation angle around z axis, which is
the same as the azimuthal angle φ in the following spherical
coordinate system (r, θ, φ):

x = r cosφ sin θ,

y = r sinφ sin θ,

z = r cos θ.

(12)

Then, based on Eq. (12), we can write Eq. (11) as follows:

∂L

∂φz
=

n∑
i=1

(
∂xi
∂φ

∂L

∂xi
+
∂yi
∂φ

∂L

∂yi
+
∂zi
∂φ

∂L

∂zi
)

=

n∑
i=1

(−r sinφ sin θ ∗ ∂L
∂xi

+ r cosφ sin θ ∗ ∂L
∂yi

)

=

n∑
i=1

(−yi
∂L

∂xi
+ xi

∂L

∂yi
).

(13)
Similarly, for the remaining rotation axes φx and φy , we

can calculate the gradients simply by rolling the coordinate
system in Eq. (13) as follows:

∂L

∂φx
=

n∑
i=1

(−zi
∂L

∂yi
+ yi

∂L

∂zi
),

∂L

∂φy
=

n∑
i=1

(−xi
∂L

∂zi
+ zi

∂L

∂xi
).

(14)

Rotation Matrix Construction. Given the optimized
rotation angle Φ = [φx, φy, φz], we construct the corre-
sponding rotation matrices as follows:

Rφx
=

 1 0 0
0 cosφx − sinφx
0 sinφx cosφx

 , (15)

Rφy
=

 cosφy 0 sinφy
0 1 0

− sinφy 0 cosφy

 , (16)

Rφz =

 cosφz − sinφz 0
sinφz cosφz 0

0 0 1

 . (17)

Based on above equations, we compute the final rotation
matrix R = Rφz

·Rφy
·Rφx

, where “·” refers to the matrix
multiplication.

C. Implementation Details
We implement ART-Point using PyTorch [27]. In detail,

during attack, we set the step size of angle gradient descent
α = 0.01, a batch size B = 17 and adopt ten steps de-
scent to obtain the adversarial rotation. During defense, we
mainly use SGD to train existing point cloud classifiers fol-
lowing the same optimizer and learning rate schedules as
used in their papers. We experiment with two optimization
methods: iterative optimization and one-step optimization.

For the iterative optimization, we alternate the min-max
process until the model converges. Specifically, to train a
robust PointNet, in each iteration we use 10 epochs gra-
dient descent on angles for maximization to find the most
aggressive rotation angles and 50 epochs for minimization
to train on adversarial datasets. We perform 10 iterations in
total to obtain the final robust model.

For the one-step optimization, we construct the rotation
pool by attacking multiple classifiers and reach the robust
model in a single min-max iteration. Concretely, suppose
that our target model is the PointNet classifier [30]. We
not only attack PointNet but attack more robust classifiers
such as PointNet++ [31] and DGCNN [39] to construct the
rotation pool. We use 10 epochs gradient descent for max-
imization to find adversarial samples and 200 epochs for
minimization to train on adversarial samples.

D. Comparison of Different Optimizations
We compare the training progress of the naive iterative

optimization with the proposed one-step optimization. The
experiments are conducted under ModelNet40 [42] and re-
sulting classifiers are tested under randomly rotated datasets
for evaluating the rotation robustness. We record the perfor-
mance of three classifiers in each iteration and compare the
final results with classifiers trained via the one-step method.
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Figure 5. Adversarial training results of three classifiers under
ModelNet40 [42] with different optimizations.

Descent s = 9 s = 10 s = 11 s = 12
Steps 83.9 84.3 84.3 84.2
Rotation [− 1

4π,
1
4π] [− 1

2π,
1
2π] [− 3

4π,
3
4π] [−π, π]

Angles 87.2 86.4 85.5 84.3

Table 5. Adversarial training results under different settings.

Specifically, we follow the detailed implementations for
both optimizations in Sect. C to reach robust models. It
can be seen from Fig. (5) that for the iterative optimiza-
tion it usually takes 8-10 iterations to reach the most robust
model. In contrast, the one-step method obtains the robust
model with competitive performance in one iteration. Note
that, for different classifiers in one-step optimizations, the
rotating pools are all constructed by attacking three models,
i.e. PointNet [30], PointNet++ [31] and DGCNN [39].

E. More Ablation Studies
Here, we provide more control experiments to verify our

rotation attack algorithm. We mainly conduct studies based
on ModelNet40 [42] with PointNet classifiers [30].

Attack Step Size. We further illustrate experiments to
select the appropriate step size in angle attacks. The re-
sults are shown in Tab. (6), where we record the aver-
age loss value of attacked samples under different step size
α (rad). Our attack algorithm finds the most aggressive at-
tacked samples that induce the highest loss with α = 0.01.

Descent Steps and Rotation Angles. Finally, we verify
the effect of different hyper-parameters on adversarial train-
ing. We adopt different descent steps during attacking and
we also study the performance of our method under limited
rotation ranges. The final results are shown in Tab. (5).

The adversarial training results tend to be saturated when
the gradient descent step is large than 10, so we set the

α = 0.1 α = 0.08 α = 0.06 α = 0.04 α = 0.02
5.3 7.4 9.5 8.9 11.3

α = 0.01 α = 0.008 α = 0.006 α = 0.004 α = 0.002
13.5 12.4 11.7 10.2 9.5

Table 6. Averaged loss values of attacked samples produced by
attacks with different step sizes.

attack algorithm with 10 steps descent by defaults. Our
method obtains better results under smaller rotation ranges,
which demonstrates that by specifying the range of rotation
angles, ART-Point can further increase the model robust-
ness.

F. Visualization
Finally, we compare the classification loss of different

models under the the randomly rotated test set of Model-
Net40 [42] (Fig. 6) and ShapeNet16 [46] (Fig. 7). We illus-
trate the corresponding loss value under each rotated sample
and compare them between the original DGCNN [39] and
our best model ART-DGCNN. As can be seen, our method
generally shows lower classification loss under both ran-
domly rotated datasets.
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8.7 9.5 10.3 9.3 8.2 10.5 11.7

1.2 1.5 1.7 1.3 0.8 2.1 2.7

9.6 8.3 10.5 10.1 8.2 10.6 11.7

1.2 0.6 1.7 1.3 0.5 1.9 2.3

5.4 5.5 8.3 9.5 8.2 6.5 4.3

0.4 0.6 1.2 1.7 1.0 0.8 0.2

Figure 6. In every two rows, we compare the classification loss of DGCNN [39] (top row) and ART-DGCNN (bottom row) on the same
arbitrarily rotated point clouds, which are randomly sampled from test sets of ModelNet40 [42]. From top to bottom, the categories of
point clouds are “table”, “desk” and “car”.
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8.7 6.9 3.2 6.2 5.1 6.5 5.7

1.7 1.2 0.1 0.7 0.5 0.8 0.6

4.5 4.8 4.9 5.3 6.1 3.6 5.2

0.3 0.4 0.4 0.6 1.1 0.1 0.6

2.5 4.5 3.6 3.8 2.9 5.2 4.3

0.1 0.7 0.4 0.4 0.3 0.8 0.7

Figure 7. In every two rows, we compare the classification loss of DGCNN [39] (top row) and ART-DGCNN (bottom row) on the same
arbitrarily rotated point clouds, which are randomly sampled from test sets of ShapeNet16 [46]. From top to bottom, the categories of point
clouds are “bag”, “cap” and “mug”.
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