
Robust Structured Declarative Classifiers for 3D Point Clouds: Defending
Adversarial Attacks with Implicit Gradients

Kaidong Li1, Ziming Zhang2*, Cuncong Zhong1, Guanghui Wang3

1Department of EECS, University of Kansas, KS, USA
2Department of ECE, Worcester Polytechnic Institute, MA, USA

3Department of CS, Ryerson University, Toronto ON, Canada
{kaidong.li, cczhong}@ku.edu, zzhang15@wpi.edu, wangcs@ryerson.ca

Abstract

Deep neural networks for 3D point cloud classification,
such as PointNet, have been demonstrated to be vulnera-
ble to adversarial attacks. Current adversarial defenders
often learn to denoise the (attacked) point clouds by recon-
struction, and then feed them to the classifiers as input. In
contrast to the literature, we propose a family of robust
structured declarative classifiers for point cloud classifi-
cation, where the internal constrained optimization mech-
anism can effectively defend adversarial attacks through
implicit gradients. Such classifiers can be formulated using
a bilevel optimization framework. We further propose an
effective and efficient instantiation of our approach, namely,
Lattice Point Classifier (LPC), based on structured sparse
coding in the permutohedral lattice and 2D convolutional
neural networks (CNNs) that is end-to-end trainable. We
demonstrate state-of-the-art robust point cloud classifica-
tion performance on ModelNet40 and ScanNet under seven
different attackers. For instance, we achieve 89.51% and
83.16% test accuracy on each dataset under the recent
JGBA attacker that outperforms DUP-Net and IF-Defense
with PointNet by ∼70%. The demo code is available at
https://zhang-vislab.github.io.

1. Introduction
Point clouds are unstructured data which is widely used

in real-world applications such as autonomous driving. To
recognize them using deep neural networks, point clouds
can be represented as points [36], images [30], voxels [61],
or graphs [56]. Recent works [74, 63, 31, 14, 62, 58, 28]
have demonstrated that such deep networks are vulnerable
to (gradient-based) adversarial attacks. Accordingly, several
adversarial defenders [75, 60, 29] have been proposed for
robust point cloud classification. The basic ideas are often to

*Joint first author

Declarative defender
!𝑥 = argmin!∈#𝑓(𝑥, 𝑧; 𝜃)

Network backbone
𝑦 = 𝑔(!𝑥; 𝜔)𝑥 𝑦

Our robust structured declara6ve classifier

𝑧 ∈ 𝑍 is defined in a structural space, e.g., permutohedral lattice space

Figure 1: Illustration of robust structured declarative classi-
fiers, where our defender is optimized in a structural space.

denoise the (attacked) point clouds before feeding them into
the classifiers as input to preserve their prediction accuracy.

Obfuscated gradients. In the white-box adversarial attacks,
the attackers are assumed to have full access to both classi-
fiers and defenders. To defend such attacks, one common
way is to break the gradient over the input data in the back-
propagation (either inadvertently or intentionally, e.g., a de-
fender is non-differentiable or prevents gradient signal from
flowing through the network) so that the attackers fail to be
optimized. Such scenarios are called obfuscated gradients.
In [4] Athalye et al. have discussed the false sense of se-
curity in such defenders and proposed new methods, such
as Backward Pass Differentiable Approximation (BPDA),
to attack them successfully. Take DUP-Net [75] for exam-
ple, where a non-differentiable Statistical Outlier Removal
(SOR) defense strategy was proposed. In [31] Ma et al. pro-
posed Joint Gradient Based Attack (JGBA) that can compute
the gradient with a linear approximation (an instantiation of
BPDA) of the SOR defense to attack DUP-Net successfully.

Implicit gradients. Now let us consider the scenarios where
both defenders and classifiers are differentiable. Then in
order to defend the adversarial attacks, one way is to make
the calculation of the gradient challenging. To this end,
implicit gradients [40] may be more suitable for designing
the defenders. An implicit gradient, ∂y

∂x , is defined by a
differentiable function h that takes x, y as its input, i.e.,
∂y
∂x = h(x, y). Such an equation can be also considered as
a first-order ordinary differential equation (ODE), which is

ar
X

iv
:2

20
3.

15
24

5v
1

 [
cs

.C
V

]
 2

9
M

ar
 2

02
2

https://zhang-vislab.github.io

solvable (approximately) using Euler’s Method [19]. Here
we assume that the gradients through the classifiers can be
easily computed, which often holds empirically. To our best
knowledge, so far there is no work on designing adversarial
defenders for 3D point clouds based on implicit gradients.

Declarative networks. Implicit gradients require equations
that contain both the input and output of a defender. One po-
tential solution for this is to introduce optimization problems
as the defenders, where the first-order optimality conditions
provide such equations. In the literature, there have been
some works [3, 2, 25, 40] that proposed optimization as net-
work layers in deep neural networks. Recently in [12] Gould
et al. generalized these ideas and proposed deep declarative
networks. A declarative network node is introduced where
the exact implementation of the forward processing function
is not defined; rather the input-output relationship (x 7→ x̃)
is defined in terms of behavior specified as the solution to
an optimization problem x̃ ∈ argminz∈Z f(x, z; θ). Here
f is an objective function, θ denotes the node parameters,
and Z is the feasible solution space. In [12] a robust pooling
layer was proposed as a declarative node using unconstrained
minimization with various penalty functions such as Huber
or Welsch, which can be efficiently solved using Newton’s
method or gradient descent. The effectiveness of such pool-
ing layers was demonstrated for point cloud classification.

Our approach. Motivated by the methods above, in this
paper we propose a novel robust structured declarative clas-
sifiers for 3D point clouds by embedding a declarative node
into the networks, as illustrated by Fig. 1. Different from
robust pooling layers in [12], our declarative defender is
designed to reconstruct each point cloud in a (learnable)
structural space as a means of denoising. To this end, we
borrow the idea from structured sparse coding [49, 20, 57]
by representing each point as a linear combination of atoms
in a dictionary. Together with the backbone networks, the
training of our robust classifiers can lead to a bilevel op-
timization problem. Considering the inference efficiency,
one plausible instantiation of our classifiers, as illustrated
in Fig. 2, is to define the structural space using the permu-
tohedral lattice [1, 47, 13], project each point cloud onto
the lattice, generate a 2D image based on the barycentric
weights, and feed the image to a 2D convolutional neural
network (CNN) for classification. We call this instantiation
Lattice Point Classifier (LPC).

Our contributions. We summarize our contributions below:
• We propose a family of novel robust structured declarative

classifiers for 3D point clouds where the declarative nodes
defend the adversarial attacks through implicit gradients.
To the best of our knowledge, we are the first to explore
implicit gradients in robust point cloud classification.

• We propose a bilevel optimization framework to learn the
network parameters in an end-to-end fashion.

Point cloud Permutohedral lattice 2D CNN

Figure 2: Illustration of our Lattice Point Classifier (LPC).

• We propose an effective and efficient instantiation of our
robust classifiers based on the structured sparse coding in
the permutohedral lattice and 2D CNNs.

• We demonstrate superior performance of our approach by
comparing with the state-of-the-art adversarial defenders
under the state-of-the-art adversarial attackers.

2. Related Works

Deep learning for 3D point clouds. Based on the point
cloud representations, we simply group some typical deep
networks into four categories. Point-based networks [36, 38,
26, 65, 59] directly take each point cloud as input, extract
point-wise features using multi-layer perceptrons (MLPs),
and fuse them to generate a feature for the point cloud.
Image-based networks [48, 37, 68, 67, 30, 33] often project
a 3D point cloud onto a (or multiple) 2D plane to generate
a (or multiple) 2D image for further process. Voxel-based
networks [32, 61, 41, 55, 24] usually voxelize each point
cloud into a volumetric occupancy grid and further some
classification techniques such as 3D CNNs are used for the
tasks. Graph-based networks [23, 56, 44, 10, 39] often rep-
resent each point cloud as a graph such as KNN or adjacency
graph which are fed to train graph convolutional networks
(GCNs). A nice survey can be found in [15].

Adversarial attacks on point clouds. Such attacks aim to
modify the input point clouds in a way that is not noticeable
but can fool a classifier. Attackers can either have a target
or not. Targeted attackers try to fool the classifier to predict
a specified wrong class, while untargeted ones do not care
about the predicted class as long as it is wrong. Nice surveys
on adversarial attacks can be found in [34, 54, 5]. Below we
summarize some typical attackers for point clouds:
• Point perturbation [27, 66, 62, 21, 31]. Inspired by Fast

Gradient Sign Method (FGSM) [11], they add on each
point a small perturbation constrained by distance metrics
(e.g., Lp norm [62], on the surface of an ε-ball [27]).

• Point addition [62, 58, 66]. Independent point attackers
initially pick some points from target classes, add small
perturbations and finally append these points to the vic-
tim point clouds. Cluster attackers similarly pick most
critical points and then find a specified number of small
point clusters to append to the victim point clouds. Object

attackers attach scaled and rotated foreign object to the
original point clouds.

• Point dropping. Adversarial attackers pick critical points
from each input point cloud, and drop them to fool the
classifier. However, it is a non-differentiable operation.
To address the issue in learning, [73] proposed creating
saliency maps by viewing dropping a point as moving it
to the cloud center. Wicker et al. [58] designed an algo-
rithm to iteratively find the points to drop by minimizing a
predefined objective function, similarly in [66].

• Others. Hamdi et al. [16] proposed a transferable adver-
sarial perturbation attacker based on an adversarial loss
that can learn the data distribution. Zhao et al. [72] pro-
posed a black-box (i.e., no access to the models) attacker
with zero loss in isometry, as well as a white-box (i.e., full
access to the models) attacker based on the spectral norm.
LG-GAN [74] is generative adversarial network (GAN)
based, which learns and incorporates target features into
victim point clouds. A backdoor attacker was proposed in
[63] to trick the 3D models by inserting adversarial point
patterns into the training set so that the victim models learn
to recognize the adversarial patterns during inference.

Adversarial defense on point clouds. Adversarial defenses
aim to denoise the input point clouds to recover the ground-
truth labels from the classifiers. Nice surveys on adversarial
defenses can be found in [34, 54, 5]. Below we summarize
some typical defenders for point clouds:
• Statistical outlier removal (SOR) [43]. SOR can be used

to remove local roughness on the (smooth) surface as a
means of defense. SOR is not differentiable, producing
obfuscated gradients for defenders. DUP-Net [75] uses
SOR and an upsampling network to reconstruct higher
resolution point clouds. Similarly, IF-Defense [60] utilizes
SOR, followed by a geometry-aware model to encourage
evenly distributed points. However, such defenders have
been demonstrated to be attackable in [52, 31]. Dong et
al. [8] proposed replacing SOR by attention mechanism.

• Random sampling. Yang et al. [66] suggested that 3D
models with random sampling are robust to adversarial
attacks. PointGuard [29] proposed majority voting for
point cloud classification by predicting multiple randomly
subsampled point clouds.

• Data augmentation. Tramer et al. [51] demonstrated that
data augmentation can effectively account for adversarial
attacks. Tu et al. [53] proposed generating physically
realizable adversarial examples to train robust Lidar object
detectors. Zhang et al. [70] proposed randomly permuting
training data as a simple data augmentation strategy. Point-
CutMix [69] pairs two training clouds and swaps some
points between the pair to generate new training data.

Permutohedral lattice. Permutohedral lattice is a powerful
operation to project the coordinates from a high dimensional
space onto a hyperplane that defines the lattice. It has been

widely used in high dimensional filtering [1, 18] that consists
of three components, i.e., splat, blur and slice. In particular,
we illustrate the splat in Fig. 2, where each square represents
a projection (i.e., projected point) from a 3D coordinate. The
splat first locates the enclosing lattice simplex for the 3D
point and calculates the vertex coordinates of the simplex.
Then each projection distributes its value to the vertices us-
ing barycentric interpolation with barycentric weights that
are calculated as the normalized triangular areas between the
projection and any pair of its corresponding lattice vertices.
We refer the readers to [1] for more details. Recently permu-
tohedral lattice has been successfully explored in point cloud
segmentation [47, 13, 42] with remarkable performance.

3. Robust Structured Declarative Classifiers
3.1. Structured Declarative Defender

Recall that adversarial defenders often aim to denoise the
input point clouds by reconstructing them in certain ways,
and sparse coding [71] is one of the classic approaches for
finding a sparse representation of the input data in the form of
a linear combination of basic elements as well as those basic
elements themselves. Due to its simplicity, we consider using
sparse coding as a means to construct declarative nodes.

Specifically, in the 3D space given a (learnable) dictionary
B ∈ R3×N with N � 3 atoms, (structured) sparse coding
aims to solve the following optimization problem for each
point xi ∈ R3 in a point cloud x = {xi} ⊆ R3:

x̃i ∈ argmin
z∈Z

f(xi, z) =
1

2
‖xi −Bz‖2 + φ(z), (1)

where φ denotes a regularization term, and Z ⊆ RN denotes
a structural feasible solution space.

Obfuscated & implicit gradients in ∂x̃i

∂xi
= ∂z

∂xi

∣∣∣
z=x̃i

. To

see this, we can rewrite Eq. (1) as x̃i ∈ argminz F (xi, z) =
f(xi, z) + φ(z) + δ(z), where δ(z) denotes the Dirac delta
function returning 0 if z ∈ Z holds, otherwise, +∞. There-
fore, F will become non-differentiable when z /∈ Z or φ
is non-differentiable over z ∈ Z , leading to obfuscated
gradients. Otherwise, based on the first-order optimal-
ity condition, we have BTBx̃i − BTxi + φ′(x̃i) = 0,
where (·)T denotes the matrix transpose operator and φ′

denotes the first-order derivative of φ. By taking another
derivative on both sides, we then have a linear system(
BTB+ φ′′(x̃i)

)
· ∂x̃i

∂xi
= BT , if the second-order deriva-

tive, φ′′, exists at z ∈ Z . Clearly, solving this linear system
may be challenging, because φ′′(x̃i) may not be computable
and the matrix BTB+ φ′′(x̃i) may be rank-deficient. Such
phenomenons lead to implicit gradients.

3.2. Parameter Learning via Bilevel Optimization

Fig. 1 illustrates our approach with two components,
i.e., a declarative defender f and a network backbone g that

takes the outputs of the defender as input and then makes
predictions. Equivalently we can formulate the training of
such networks as a bilevel optimization problem as follows:

min
B,ω

∑
(x,y)∈X×Y

`
(
g(x̃;ω), y

)
, (2)

s.t. x̃i ∈ argmin
z∈Z

1

2
‖xi −Bz‖2 + φ(z),∀xi ∈ x,

where (x, y) ∈ X ×Y denotes a training sample with data x
and label y, ` denotes a loss function such as cross-entropy,
and B, ω denote the defender and network parameters, re-
spectively. Same as training deep networks, we can solve this
optimization problem using (stochastic) gradient descent.

Validity of ∂g
∂x̃i

= ∂g
∂z

∣∣∣
z=x̃i

in the structural space. In a

gradient based adversarial attack, the gradient for modifying
an input point xi through backpropagation can be written as
∂g
∂x̃i

∂x̃i

∂xi
. Assuming that ∂x̃i

∂xi
can be computed exactly, then

the gradient in the attack would hold in general only if z was
unconstrained so that ∂g

∂x̃i
is valid. Unfortunately in our case

this is not true as we constrain z ∈ Z . Therefore, the attack
in the declarative node will produce inaccurate gradients, and
such errors will be propagated to the adversarial examples,
leading to failure cases together with ∂x̃i

∂xi
.

3.3. Instantiation: Lattice Point Classifier

So far we have explained the learning principles and
defense philosophy in our approach. The key challenge now
is how to design the structural space Z and the regularizer φ
to achieve robust point cloud classifiers that can be trained
and inferred effectively and efficiently. To address this issue,
we borrow the idea from permutohedral lattice, and propose
an instantiation, namely, Lattice Point Classifier (LPC).

𝐴

𝐵 𝐶

𝑃
𝛼

𝛽
𝛾

Figure 3: Illustration of
barycentric coordinates
and weights.

Geometric view on barycentric
coordinates and their weights.
Barycentric coordinates (

−→
A ,
−→
B ,

−→
C in Fig. 3) can be used to ex-
press the position of any point
(
−→
P) located on the entire triangle

with three scalar weights (α, β, γ).
To compute

−→
P using barycentric

coordinates we can always use the following equation:
−→
P = α

−→
A + β

−→
B + γ

−→
C , ∃α, β, γ ≥ 0, α+ β + γ = 1.

(3)

Note that this equation holds for an arbitrary dimensional
space, including the 3D space. Now given

−→
A,
−→
B,
−→
C ,
−→
P , we

can compute α, β, α using the normalized areas. Taking γ
for example, we can compute it as follows:

γ =
‖
−−→
AB ×

−→
AP‖

‖
−−→
AB ×

−→
AC‖

∝ ‖
−−→
AB ×

−→
AP‖, (4)

where
−−→
AB =

−→
B −

−→
A,
−→
AP =

−→
P −

−→
A,
−→
AC =

−→
C −

−→
A ,

× denotes the cross product operator, and ‖ · ‖ denotes
the `2 norm of a vector measuring its length. Clearly, the
barycentric weights define a nonlinear mapping that can
be computed efficiently using the splat operation for the
permutohedral lattice.
ConstructingZ and φ using barycentric weights. By sub-
stituting Eq. (3) into Eq. (1), we manage to define a struc-
tured sparse coding problem, where the structural space Z
and the regularizer φ can be constructed as follows:

Z def
=
{
z | zTe = 1, z � 0

}
, (5)

φ(z)
def
= λ

N∑
n=1

‖Bz−Bn‖ · 1{zn>0}, (6)

where e denotes a vector of 1’s, � denotes the entry-wise
operator of ≥, Bn ∈ R3 denotes the n-th column in B, 1{·}
denotes a binary indicator returning 1 if the condition holds,
otherwise 0 (i.e., the binarization of barycentric weights),
and λ ≥ 0 is a small constant controlling the contribution of
φ to the objective so that it will not be dominated by φ.

Proposition 1. Supposing that B in Eq. (1) represents the
vertices in a permutohedral lattice that is large enough to
cover all possible projections from points among the data,
then there exists a solution to minimize the reconstruction
loss using three vertices, at most, and the minimum loss is
equal to the projection loss onto the lattice.

This is because Eq. (3) defines a lossless representation
using a linear combination of three vertices. The only loss
occurs when projecting a point to the permutohedral lattice.

𝑥!

𝑥!"

"𝑥! "𝑥!"

𝐴

𝐵 𝐶

Figure 4: Illustration of
our defense mechanism.

Defense mechanism in LPC.
Fig. 4 illustrates how our declar-
ative defender works with the per-
mutohedral lattice, where the tri-
angle, circles and squares rep-
resent a lattice cell, 3D points
and their projections on the cell,
respectively. In the adversarial
point cloud, the attacker modifies
a point from xi to x′i. Then dur-
ing the inference, our defender
projects x′i to x̃′i on the lattice.

Proposition 2. Supposing x̃i = α
−→
A + β

−→
B + γ

−→
C where

α, β, γ are the barycentric weights, then in order to guaran-
tee that x̃i, x̃

′
i lie in different cells, the distance between xi

and x′i should be bigger than the shortest distance between
x̃′i and the boundary of the triangle, that is:

‖xi − x′i‖ > min

{
α

‖
−−→
BC‖

,
β

‖
−→
AC‖

,
γ

‖
−−→
AB‖

}
· s, (7)

Figure 5: Illustration of (left) a point cloud, (middle) its
lattice representation, (right) its image for classification.

where s denotes the area of the triangle. In particular, if the
triangle is equilateral, then ‖xi−x′i‖ >

√
3
2 l ·min{α, β, γ}

where l denotes the side length.

It will be more intuitive to understand this result if we
binarize the barycentric weights before feeding them into
the backbone network for classification, because different
projections lying in the same lattice cell will lead to the same
representation. This could be an effective way to remove the
adversarial noise in the data. Also, this result indicates that
(1) the points whose projections are closer to the boundary
are easier to change their sparse representations, (2) the
movements that make such changes are proportional to the
scale of the lattice cell. In general, larger cells will be more
tolerant to the adversarial noise, but they may sacrifice the
generalization of the classifiers.
Workflow of LPC. To summarize, it is operated as follows:
1. Given a point cloud, the barycentric weights of each point

are computed using the splat for permutohedral lattice;
2. Generate an image for the point cloud by averaging the

barycentric weights over all the points (after binariza-
tion if applied) and aligning the lattice with the image
representation (see Fig. 5 for illustration);

3. Apply a 2D CNN as the backbone network to classify the
image produced by the point cloud.

Implementation. The key challenge in our implementation
of LPC is how to determine the projection matrix for the
hyperplane and the scale of each permutohedral lattice cell.
• Projection matrix: By referring to [1], we initialize the

projection matrix as

[
2 −1 −1
−1 2 −1
−1 −1 2

]
and train the network

in an end-to-end fashion. However, we observe that a big
update of this matrix will make the training crash, and
to avoid this issue, the update per iteration has to be tiny,
leading to almost unnoticeable change eventually. The
reason for this phenomenon is that this matrix has to satisfy
certain requirements (see [1]), and thus the unconstrained
update in backpropagation cannot work here. Therefore, in
our experiments we initialize and fix the projection matrix.
We refer to [13] for the lattice transformation.

• Scale of lattice cell: The parameter is simply not dif-
ferentiable in backpropagation, and thus we tune it as a
predefined hyper-parameter using cross-validation with
grid search, same for the other hyper-parameters such as

(a) ModelNet40 (b) ScanNet

Figure 6: Training loss comparison on both datasets using
EfficientNet-B5 as the backbone.

learning rate. Such scales have a significant impact on the
image resolution used in 2D CNNs for classification.
Specifically, we evaluate our LPC comprehensively based

on three different CNNs, i.e., VGG16 [45], ResNet50 [17],
and EfficientNet-B5 [50] as the backbone network with
randomly initialization. By default, the image resolution
for each backbone network is 512 × 512, 128 × 128 and
456× 456, respectively. On ModelNet40 [61] we train the
three models using a learning rate of 10−4, but on ScanNet
[6] we only train our best model, i.e., EfficientNet-B5, using
a learning rate of 5× 10−5. We use Adam [22] as our opti-
mizer in all of our experiments with weight decay of 10−4

and learning rate decay of 0.7 for every 20 epochs. Dropout
[46] and data augmentation are applied as well when needed.

4. Experiments

Datasets. We conduct our experiments on ModelNet40 [61]
and ScanNet [6]. ModelNet40 has a collection of 12,311 3D
CAD objects from 40 common categories. It is split into
9,843 training and 2,468 test samples. Following [36, 62],
we uniformly sample 1,024 points from the surface of the
original point cloud per object and scale them into a unit ball.
ScanNet contains 1,513 RGB-D scans from over 707 real
indoor scenes with 2.5 million views. Following [26], we
generate 12,445 training and 3,528 test point clouds from 17
categories, with 1,024 points for each point cloud as well.

Baselines. We compare our Lattice Point Classifier (LPC)
with different adversarial defenders for point clouds that
work with PointNet [36], including DUP-Net [75] (with
SOR and the upsampling network), IF-Defense [60] (with
ConvONet [35]), and robust pooling layer (RPL) [12]. We
utilize public code [64] to train PointNet using the default
setting and evaluate DUP-Net and IF-Defense based on the
implementation in [60]. We report the best performance for
each defender after fine-tuning. Specifically, we set k = 2
(the number of neighbor points) in KNN and α = 1.1 (the
percentage of outliers) for SOR, use 2 for the upsampling
rate in DUP-Net, and choose the Welsch penalty function [7]
for RPL [12] to replace the max pooling layer in PointNet.
The model with RPL is trained with adversarial point clouds

where 10% of input points are replaced by random outliers.

Adversarial attackers. Eight attackers are utilized to eval-
uate the robustness of different point cloud classifiers, in-
cluding untargeted attackers (FGSM [11] and JGBA [31]),
targeted attackers (perturbation, add, cluster and object at-
tackers [62]), isometry transformation based attackers [72]
(the untargeted black-box TSI attack and the targeted white-
box CTRI attack), and GAN based LG-GAN attacker [74].

We apply both FGSM and JGBA to the full test set of
both datasets. We slightly modify FGSM for attacking DUP-
Net and IF-Defense under the white-box setting as both
defenders are non-differentiable. To do so, during an attack
we simulate the SOR process and obtain the indices of the
remaining points based on which the gradient is passed to
the remaining points. By default, the parameter ε in FGSM
is set to 0.1, and the perturbation norm constraint ε, number
of iterations n and step size α in JGBA are set to 0.1, 40,
0.01, respectively. Such parameters work well in practice.

For the targeted attackers, by following [62] we pick 10
large classes from ModelNet40, where a batch of 6 point
clouds per class is randomly selected and attacked using the
other 9 classes as the targets, leading to 10× 9× 6 = 540
victim-target pairs. Similarly, from ScanNet we randomly
select a batch of 6 point clouds as well from the 7 classes
that contain more than 100 point clouds in test data. The
learning rate of all the targeted attackers is set to 0.01. For
DUP-Net and IF-Defense, we first attack clean PointNet
to obtain adversarial point clouds, and then feed them into
DUP-Net and IF-Defense for prediction. The perturbation
attack first introduces small random perturbations on all
original points, and uses L2 norm to constrain the adversarial
shifts. Using the add attacker, we add 60 points to each
cloud and use Chamfer distance as the metric. Cluster and
object attackers generate the initial clusters with parameter
ε = 0.11 in DBSCAN [9]. Using the cluster attacker, we
add 3 clusters of 32 points to the original clouds. Using
the object attacker, three 64-point adversarial objects are
attached to each original point cloud.

For the TSI/CTRI attacker in [72], we evaluate the per-
formance of LPC on ModelNet40 using EfficientNet-B5. By
following [72] we use this attacker with the default settings
to attack 2,000 randomly selected point clouds. The attacker
applies the black-box TSI attacker first to trick the models,
and then the white-box CTRI attacker if TSI fails.

We implemented a vanilla version of LPC in Tensor-
Flow with binarized weights, ResNet50 as the backbone
and 128× 128 as the 2D image size. On ModelNet40, we
trained a TensorFlow LPC model and integrated it into LG-
GAN to generate adversarial samples. For the benchmark
models, we trained a TensorFlow PointNet [36] model and
generates adversarial samples with it since all other bench-
mark defenses are PointNet based. We followed the setups
in [74] and set weight factor α = 100.

Table 1: Our learning choice comparison in terms of test
accuracy (%) with learning rate 10−4.

T-Net [36] X X
Binarized weights X X X
Random rotation X X

ResNet-50 on ModelNet40 88.2 87.3 88.9 60.0 88.2 75.2

EfficientNet-B5 on ModelNet40 - - 89.5 83.3 - 84.8

EfficientNet-B5 on ScanNet 80.5 - 80.0 82.6 - -

Table 2: Inference Time (ms) on an NVIDIA V100S GPU
with batch size 1 (clean PointNet [36] takes 8.6 ms)

DUP-Net
[75]

IF-Defense
[60]

RPL
[12]

LPC w/
VGG

LPC w/
ResNet

LPC w/
EfficientNet

808.1 1793.6 62.0 21.4 25.1 59.0

4.1. Ablation Study

Learning choices. In Table 1 we list three learning choices
that we would like to evaluate for improving the perfor-
mance of vanilla LPC, i.e., T-Net used in PointNet, binarized
barycentric weights, and random rotation in data augmen-
tation (together with point cloud random shifting and drop-
ping [36]). We can see that: (1) T-Net seems to deteriorate
the performance always. (2) Binarized weights work bet-
ter on ModelNet40 than ScanNet, but compared with using
barycentric weights the difference is <1%. (3) Random rota-
tion improves the performance on ScanNet, but worsens it on
ModelNet40. This phenomenon can be partially explained
from the training loss curves as shown in Fig. 6, where
on ScanNet the overfitting occurs clearly without random
rotation while on ModelNet40 random rotation makes the
convergence slower and unstable.

Running time. Overall LPC achieves the fastest inference
speed among all competing defenses as shown in Table 2.
Our deepest model (17fps) is over 13 times faster than SOR
based defenses. We can also improve the running time us-
ing shallower networks such as VGG16 (45fps) by slightly
sacrificing the performance. We also tested the running time
for each key component (declarative node and backbone
2D networks). With EfficientNet-B5 as the backbone, the
declarative node and 2D network take 17.1 and 41.9 ms
respectively during inference, and 15.5 and 165.3 ms dur-
ing backpropagation. Clearly, the gradient passing through
the declarative node takes relatively constant time in both
feedforward and backpropagation. Considering the depth
of EfficientNet-B5, the time spent on the declarative node
is actually pretty long (recall that there is no learnable pa-
rameter inside), especially during inference. This partially
validates our intuition of defending the adversarial attacks
using implicit gradients.

Table 3: Test accuracy (%) comparison (higher is better) on the full test datasets, where “-” indicates no result.

PointNet PointNet w/
DUP-Net [75]

PointNet w/
IF-Defense [60]

PointNet w/
RPL [12]

LPC w/
VGG16

LPC w/
ResNet50

LPC w/
EfficientNet

ModelNet40
No attack 90.15 89.30 87.60 84.76 88.65 88.90 89.51

FGSM [11] 45.99 61.63 38.75 0.04 88.65 88.90 89.51
JGBA [31] 0.00 1.14 5.37 0.00 88.65 88.90 89.51

ScanNet
No attack 84.61 83.62 80.19 76.02 - - 83.16

FGSM [11] 45.66 73.67 71.14 1.70 - - 83.16
JGBA [31] 0.00 7.77 13.45 0.00 - - 83.16

Table 4: Attack success rate (%) comparison (lower is better), where “-” indicates no result. The standard deviations of our
LPC range from 0% to 0.28% in success rate on ModelNet40.

PointNet PointNet w/
DUP-Net [75]

PointNet w/
IF-Defense [60]

PointNet w/
RPL [12]

LPC w/
VGG16

LPC w/
ResNet50

LPC w/
EfficientNet

ModelNet40

FGSM [11] 48.99 30.77 55.78 99.95 0.00 0.00 0.00
JGBA [31] 100.00 98.73 93.85 100.00 0.00 0.00 0.00

Perturbation [62] 100.00 0.095 0.095 3.95 0.56 0.37 0.38
Add [62] 99.72 0.095 0.095 3.33 0.56 0.19 0.19

Cluster [62] 98.34 6.76 6.30 17.04 1.11 0.93 1.21
Object [62] 98.43 1.02 1.11 74.07 0.93 1.11 0.75

ScanNet

FGSM [11] 46.03 10.29 11.28 97.76 - - 0.00
JGBA [31] 100.00 90.55 83.21 100.00 - - 0.00

Perturbation [62] 100.00 3.17 2.38 3.03 - - 12.70
Add [62] 100.00 1.98 2.38 18.65 - - 2.78

Cluster [62] 100.00 30.16 23.81 40.87 - - 9.92
Object [62] 100.00 7.14 7.54 85.71 - - 5.95

Table 5: Performance comparisons under LG-GAN [74]
attacks. Attack success rate (Succ., %) on different models
and their classification accuracy (Accu., %) under attack

PointNet
[36]

DUP-Net
[75]

IF-Defense
[60]

RPL
[12]

LPC w/
ResNet

Accu. 0.6 31.6 37.2 56.8 76.7
Succ. 97.0 13.9 10.4 2.6 0.8

4.2. State-of-the-art Performance Comparison

We measure the robustness of classifiers using two met-
rics, i.e., classification accuracy, and attack success rate.
Classification accuracy under attacks is measured by feeding
the entire adversarial attacked test set to the victim models.
It is only calculated for untargeted attackers. The attack
success rate is the ratio between the number of successful
attacks to the number of all attempt attacks. For untargeted
attacks, tricking the model to predict a wrong class is con-
sidered a success, while for targeted attacks it will have to
trick the victim model to a specific class to be considered as
successful. Untargeted attackers will only attack the point
clouds that are correctly classified by the victim models, and
targeted attackers will attack victim-target pairs.

4.2.1 Classification Accuracy

We summarize our comparison in Table 3. On ScanNet, we
only show the performance of LPC with EfficientNet-B5,
because it achieves the best accuracy on ModelNet40. We
can see that: (1) On the clean test data with no attack, Point-
Net outperforms all the robust classifiers by small margins.
(2) Using both attackers, our LPC variants work consistently
and significantly better than the other defender-based robust
classifiers as well as vanilla PointNet by large margins. For
instance, compared with PointNet with IF-Defense under
the JGBA attacks, the performance gaps are 84.14% and
69.71% on ModelNet40 and ScanNet, respectively. (3) For
the backbone networks in LPC, it seems that the difference in
performance is small among different CNNs. Though more
evaluations are needed to confirm this, it also demonstrates
the robustness of our approach.

4.2.2 Attack Success Rate

Performance summary. We list our comparison in Table 4
and Table 5. We can see that: (1) Our LPC variants achieve
perfect results under both FGSM and JGBA attacks. Notice
that compared with the other attackers, these two attackers

0 20 40 60 80 100

Iterations

0

0.1

0.2

0.3

0.4

0.5

P
e

rc
e

n
ta

g
e

LPC (lr=0.01)
LPC (lr=0.1)
LPC (lr=1)
PointNet

Figure 7: Distribution comparison of successful perturbation
attacks on ModelNet40. To avoid the sparsity, LPC statistics
are collected based on the cases from all the three models.

Attack lr = 0.01 Attack lr = 0.1 Attack lr = 1

O
ri

g
in

al
A

d
v

er
sa

ri
al

Figure 8: Successful adversarial perturbation examples on
ModelNet40 for LPC with EfficientNet-B5.

aim to find adversarial examples fully based on gradients
with no sampling. Their failure again strongly demonstrates
the power of implicit gradients in defending gradient based
adversarial attacks. (2) The SOR defense mechanism seems
to work better for the perturbation and add attackers, but
worse for the cluster and object attackers, compared with our
LPC. However, overall LPC still achieves the best perfor-
mance. (3) Our LPC also outperforms other defenses under
GAN based attacks. Interestingly RPL [12] outperforms
SOR defenses under LG-GAN attack, while under gradient
based attacks the SOR methods are better. It implies LG-
GAN has better transferability. The two SOR based defenses
are gray-box attacks (partial access to the model). Gradient
based adversarial samples suffer significant success rate drop
as shown in Table 4. But LG-GAN transfers well to SOR
based defenses, maintaining over 10% attack success rate.

Using the TSI/CTRI attacker [72], our LPC with
EfficientNet-B5 achieves the same success rate for both TSI
and CTRI attackers on ModelNet40. Without random ro-
tation, the result is 99.54%, but with random rotation, the
performance decreases to 67.33% which is significantly bet-
ter than PointNet (99.50% and 99.55% for TSI and CTRI,
respectively). Such results also demonstrate that random
rotation to point clouds as a means of data augmentation
improves not only accuracy but also model robustness.

Importance of gradients in finding successful adversar-
ial examples for LPC. To attack each point cloud, the four

targeted attackers in [62] conduct 10 random searches where
500 iterations are done to find the optimal adversarial sam-
ples. We notice that for PointNet, the best attacks could
occur at any time within these 500 iterations, but for our
LPC most optimal attacks happen at the first few iterations,
as shown in Fig. 7 with different learning rates for the per-
turbation attacker. This behavior indicates that, in order to
attack LPC, random search (a sampling based method) has
contributed more to most of the successful attacks, rather
than gradient-based iterations. With the increase of the learn-
ing rate, the gradients start to find more optimal adversarial
samples. However, as we illustrate in Fig. 8, with larger
learning rates, the adversarial samples will not look similar
to the original point clouds. For instance, with learning rate
of 1, the point cloud of airplane has been totally changed
to a mixture of smaller airplane point clouds, which is not
an adversarial attack anymore. To sum up, such analysis
again demonstrates the great potential of implicit gradients
in defending adversarial attacks.

5. Conclusion
In this paper, we aim to address the problem of robust

3D point cloud classification by proposing a family of novel
robust structured declarative classifiers, where a declarative
node is defined by a constrained optimization problem such
as the reconstruction of point clouds. The key insight in our
approach is that the implicit gradients through the declara-
tive node can help defend the adversarial attacks by leading
them to wrong updating directions for inputs. We formulate
the learning of our classifiers based on bilevel optimization,
and further propose an effective and efficient instantiation,
namely, Lattice Point Classifier (LPC). The declarative node
in LPC is defined as structured sparse coding in the permu-
tohedral lattice, whose outputs, i.e., barycentric weights, are
further transformed into images for classification using 2D
CNNs. LPC is end-to-end trainable, and achieves state-of-
the-art performance on robust classification on ModelNet40
and ScanNet using seven different adversarial attackers.

Limitations. Currently the projection in the permutohedral
lattice transformation in LPC is not learned but simply fixed
as initialization. Also more evaluations for demonstrating
the robustness of our approach across different backbone
networks and datasets are desirable. Therefore, in our future
work we will investigate more on how to properly learn the
projection with its physical conditions and conduct more
experiments to further demonstrate our robustness.

Acknowledgement
K. Li and C. Zhong were supported in part by USDA

NIFA under the award no. 2019-67021-28996. Z. Zhang
was supported in part by NSF grant CCF-2006738. G. Wang
was partly supported by NSERC grant RGPIN-2021-04244.

References
[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis.

Fast high-dimensional filtering using the permutohedral lat-
tice. In Computer graphics forum, volume 29, pages 753–762.
Wiley Online Library, 2010. 2, 3, 5

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen
Boyd, Steven Diamond, and J Zico Kolter. Differentiable
convex optimization layers. Advances in Neural Information
Processing Systems, 32:9562–9574, 2019. 2

[3] Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In International
Conference on Machine Learning, pages 136–145. PMLR,
2017. 2

[4] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International conference
on machine learning, pages 274–283. PMLR, 2018. 1

[5] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam
Chattopadhyay, and Debdeep Mukhopadhyay. A survey on
adversarial attacks and defences. CAAI Transactions on Intel-
ligence Technology, 6(1):25–45, 2021. 2, 3

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proc. Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2017.
5

[7] John E Dennis Jr and Roy E Welsch. Techniques for nonlin-
ear least squares and robust regression. Communications in
Statistics-simulation and Computation, 7(4):345–359, 1978.
5

[8] Xiaoyi Dong, Dongdong Chen, Hang Zhou, Gang Hua, Weim-
ing Zhang, and Nenghai Yu. Self-robust 3d point recognition
via gather-vector guidance. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11513–11521. IEEE, 2020. 3

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In kdd, volume 96, pages
226–231, 1996. 6

[10] Kexue Fu, Shaolei Liu, Xiaoyuan Luo, and Manning Wang.
Robust point cloud registration framework based on deep
graph matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8893–
8902, 2021. 2

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 2, 6, 7

[12] Stephen Gould, Richard Hartley, and Dylan John Campbell.
Deep declarative networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 2, 5, 6, 7, 8

[13] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3254–3263, 2019. 2,
3, 5

[14] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon
Wilson, and Kilian Weinberger. Simple black-box adversarial
attacks. In International Conference on Machine Learning,

pages 2484–2493. PMLR, 2019. 1
[15] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep learning for 3d point
clouds: A survey. IEEE transactions on pattern analysis and
machine intelligence, 2020. 2

[16] Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard
Ghanem. Advpc: Transferable adversarial perturbations on
3d point clouds. In European Conference on Computer Vision,
pages 241–257. Springer, 2020. 3

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[18] Varun Jampani, Martin Kiefel, and Peter V Gehler. Learning
sparse high dimensional filters: Image filtering, dense crfs
and bilateral neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4452–4461, 2016. 3

[19] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. Rnns in-
crementally evolving on an equilibrium manifold: A panacea
for vanishing and exploding gradients? In International
Conference on Learning Representations, 2019. 2

[20] Sofia Karygianni and Pascal Frossard. Structured sparse
coding for image denoising or pattern detection. In 2014
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3533–3537. IEEE, 2014.
2

[21] Jaeyeon Kim, Binh-Son Hua, Thanh Nguyen, and Sai-Kit
Yeung. Minimal adversarial examples for deep learning on 3d
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7797–7806, 2021. 2

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[23] Loic Landrieu and Mohamed Boussaha. Point cloud over-
segmentation with graph-structured deep metric learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7440–7449, 2019. 2

[24] Truc Le and Ye Duan. Pointgrid: A deep network for 3d shape
understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9204–9214,
2018. 2

[25] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex
optimization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10657–
10665, 2019. 2

[26] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. Advances in neural information processing systems,
31:820–830, 2018. 2, 5

[27] Daniel Liu, Ronald Yu, and Hao Su. Extending adversarial
attacks and defenses to deep 3d point cloud classifiers. In
2019 IEEE International Conference on Image Processing
(ICIP), pages 2279–2283. IEEE, 2019. 2

[28] Daniel Liu, Ronald Yu, and Hao Su. Adversarial shape per-
turbations on 3d point clouds. In European Conference on
Computer Vision, pages 88–104. Springer, 2020. 1

[29] Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong. Point-

guard: Provably robust 3d point cloud classification. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6186–6195, 2021. 1, 3

[30] Yecheng Lyu, Xinming Huang, and Ziming Zhang. Learning
to segment 3d point clouds in 2d image space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12255–12264, 2020. 1, 2

[31] Chengcheng Ma, Weiliang Meng, Baoyuan Wu, Shibiao Xu,
and Xiaopeng Zhang. Efficient joint gradient based attack
against sor defense for 3d point cloud classification. In Pro-
ceedings of the 28th ACM International Conference on Multi-
media, pages 1819–1827, 2020. 1, 2, 3, 6, 7

[32] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015. 2

[33] Xi Mo, Usman Sajid, and Guanghui Wang. Stereo frustums: a
siamese pipeline for 3d object detection. Journal of Intelligent
& Robotic Systems, 101(1):1–15, 2021. 2

[34] Mesut Ozdag. Adversarial attacks and defenses against deep
neural networks: a survey. Procedia Computer Science,
140:152–161, 2018. 2, 3

[35] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 523–540. Springer, 2020. 5

[36] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1, 2, 5, 6, 7

[37] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view cnns for object classification on 3d data. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 5648–5656, 2016. 2

[38] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 2

[39] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali
Thabet, and Bernard Ghanem. Pu-gcn: Point cloud upsam-
pling using graph convolutional networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11683–11692, 2021. 2

[40] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and
Sergey Levine. Meta-learning with implicit gradients. In Ad-
vances in Neural Information Processing Systems, volume 32,
pages 113–124, 2019. 1, 2

[41] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Oct-
net: Learning deep 3d representations at high resolutions. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3577–3586, 2017. 2

[42] Radu Alexandru Rosu, Peer Schütt, Jan Quenzel, and Sven
Behnke. Latticenet: fast spatio-temporal point cloud seg-
mentation using permutohedral lattices. Autonomous Robots,
pages 1–16, 2021. 3

[43] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow,
Mihai Dolha, and Michael Beetz. Towards 3d point cloud
based object maps for household environments. Robotics and

Autonomous Systems, 56(11):927–941, 2008. 3
[44] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural net-

work for 3d object detection in a point cloud. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1711–1719, 2020. 2

[45] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 5

[47] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evan-
gelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz. Splat-
net: Sparse lattice networks for point cloud processing. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2530–2539, 2018. 2, 3

[48] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 945–953, 2015.
2

[49] Arthur Szlam, Karol Gregor, and Yann LeCun. Fast approxi-
mations to structured sparse coding and applications to object
classification. In European Conference on Computer Vision,
pages 200–213. Springer, 2012. 2

[50] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 5

[51] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Good-
fellow, Dan Boneh, and Patrick McDaniel. Ensemble ad-
versarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017. 3

[52] Tzungyu Tsai, Kaichen Yang, Tsung-Yi Ho, and Yier Jin.
Robust adversarial objects against deep learning models. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 954–962, 2020. 3

[53] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang,
Bin Yang, Richard Du, Frank Cheng, and Raquel Urtasun.
Physically realizable adversarial examples for lidar object de-
tection. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13716–13725,
2020. 3

[54] Chengyu Wang, Jia Wang, and Qiuzhen Lin. Adversarial
attacks and defenses in deep learning: A survey. In Interna-
tional Conference on Intelligent Computing, pages 450–461.
Springer, 2021. 2, 3

[55] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn: Octree-based convolutional neural net-
works for 3d shape analysis. ACM Transactions On Graphics
(TOG), 36(4):1–11, 2017. 2

[56] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1–12, 2019. 1, 2

[57] Wei Wei, Lei Zhang, Chunna Tian, Antonio Plaza, and Yan-
ning Zhang. Structured sparse coding-based hyperspectral
imagery denoising with intracluster filtering. IEEE Transac-

tions on Geoscience and Remote Sensing, 55(12):6860–6876,
2017. 2

[58] Matthew Wicker and Marta Kwiatkowska. Robustness of 3d
deep learning in an adversarial setting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11767–11775, 2019. 1, 2, 3

[59] Yuanwei Wu, Tim Marks, Anoop Cherian, Siheng Chen,
Chen Feng, Guanghui Wang, and Alan Sullivan. Unsuper-
vised joint 3d object model learning and 6d pose estimation
for depth-based instance segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
Workshops, pages 1–10, 2019. 2

[60] Ziyi Wu, Yueqi Duan, He Wang, Qingnan Fan, and Leonidas J
Guibas. If-defense: 3d adversarial point cloud defense
via implicit function based restoration. arXiv preprint
arXiv:2010.05272, 2020. 1, 3, 5, 6, 7

[61] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:
A deep representation for volumetric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 1912–1920, 2015. 1, 2, 5

[62] Chong Xiang, Charles R Qi, and Bo Li. Generating 3d ad-
versarial point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9136–9144, 2019. 1, 2, 5, 6, 7, 8

[63] Zhen Xiang, David J. Miller, Siheng Chen, Xi Li, and George
Kesidis. A backdoor attack against 3d point cloud classifiers.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7597–7607, October 2021. 1,
3

[64] Xu Yan. Pointnet/pointnet++ pytorch. https://github.com/
yanx27/Pointnet_Pointnet2_pytorch, 2019. 5

[65] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang
Cui. Pointasnl: Robust point clouds processing using nonlocal
neural networks with adaptive sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5589–5598, 2020. 2

[66] Jiancheng Yang, Qiang Zhang, Rongyao Fang, Bingbing Ni,
Jinxian Liu, and Qi Tian. Adversarial attack and defense on
point sets. arXiv preprint arXiv:1902.10899, 2019. 2, 3

[67] Ze Yang and Liwei Wang. Learning relationships for multi-
view 3d object recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7505–
7514, 2019. 2

[68] Tan Yu, Jingjing Meng, and Junsong Yuan. Multi-view har-
monized bilinear network for 3d object recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 186–194, 2018. 2

[69] Jinlai Zhang, Lyujie Chen, Bo Ouyang, Binbin Liu, Jihong
Zhu, Yujing Chen, Yanmei Meng, and Danfeng Wu. Point-
cutmix: Regularization strategy for point cloud classification.
arXiv preprint arXiv:2101.01461, 2021. 3

[70] Jinlai Zhang, Binbin Liu, Lyvjie Chen, Bo Ouyang, Jihong
Zhu, Minchi Kuang, Houqing Wang, and Yanmei Meng. The
art of defense: letting networks fool the attacker. arXiv
preprint arXiv:2104.02963, 2021. 3

[71] Zheng Zhang, Yong Xu, Jian Yang, Xuelong Li, and David
Zhang. A survey of sparse representation: algorithms and
applications. IEEE access, 3:490–530, 2015. 3

[72] Yue Zhao, Yuwei Wu, Caihua Chen, and Andrew Lim. On
isometry robustness of deep 3d point cloud models under
adversarial attacks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1201–1210, 2020. 3, 6, 8

[73] Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and
Kui Ren. Pointcloud saliency maps. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1598–1606, 2019. 3

[74] Hang Zhou, Dongdong Chen, Jing Liao, Kejiang Chen, Xi-
aoyi Dong, Kunlin Liu, Weiming Zhang, Gang Hua, and
Nenghai Yu. Lg-gan: Label guided adversarial network for
flexible targeted attack of point cloud based deep networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10356–10365, 2020.
1, 3, 6, 7

[75] Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang,
Wenbo Zhou, and Nenghai Yu. Dup-net: Denoiser and up-
sampler network for 3d adversarial point clouds defense. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1961–1970, 2019. 1, 3, 5, 6, 7

