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Abstract

Neural image caption generation (NICG) models have
received massive attention from the research community
due to their excellent performance in visual understand-
ing. Existing work focuses on improving NICG model ac-
curacy while efficiency is less explored. However, many
real-world applications require real-time feedback, which
highly relies on the efficiency of NICG models. Recent re-
search observed that the efficiency of NICG models could
vary for different inputs. This observation brings in a new
attack surface of NICG models, i.e., An adversary might
be able to slightly change inputs to cause the NICG mod-
els to consume more computational resources. To further
understand such efficiency-oriented threats, we propose a
new attack approach, NICGSlowDown, to evaluate the ef-
ficiency robustness of NICG models. Our experimental re-
sults show that NICGSlowDown can generate images with
human-unnoticeable perturbations that will increase the
NICG model latency up to 483.86%. We hope this research
could raise the community’s concern about the efficiency
robustness of NICG models.

1. Introduction

Neural Image Caption Generation (NICG) models have
received wide attention from both academia and industry in
recent years [1,9,36–38]. NICG model combines computer
vision and natural language processing techniques for im-
age understanding and textual description generation. De-
signing NICG models is a challenging task but could have
a massive impact in the real world [1, 7, 22, 30], such as
helping people with visual impairment to understand visual
inputs, enhancing the accuracy of image search engines, or
transferring images to text/audio in social media, etc.

Real-world applications rely on real-time feedback (e.g.,
transferring image to audio for people with visual im-
pairment, generating context caption of camera feed for

robot). In such application scenarios, the responsiveness
of NICG models is crucial. However, existing NICG tech-
niques mainly focus on improving model accuracy or de-
fending the adversarial accuracy-based attacks [6,9,36–38].
Whether the NICG model can maintain efficiency under ad-
versarial pressure is still a blank domain.

In order to study the efficiency robustness of NICG mod-
els, the first thing we need to do is to figure out what factors
will affect NICG model efficiency. In this paper, we investi-
gate a natural property of NICG models. The NICG model
producing output tokens is a Markov Process; hence the
number of underlying decoder calls is non-deterministic.
Thus, the computational consumption of NICG models is
naturally non-deterministic. This natural property discloses
a potential vulnerability of NICG models. Adversaries may
be able to design specific adversarial inputs to increase com-
putational cost in NICG models significantly. Such effi-
ciency vulnerability could lead to severe outcomes in real-
world scenarios. For example, efficiency-based attacks may
cause a large magnitude of redundant computational re-
sources and affect the user experience, such as increasing
the device battery consumption or extending the response
latency. In this paper, we plan to investigate such potential
vulnerability by answering the following questions:

Can we make unnoticeable modifications to image
inputs to significantly increase the computational
consumption of NICG models and degrade the model
efficiency? If so, how severe the efficiency degrada-
tion can be?

Existing work on adversarial machine learning (ML) [3,
4, 10, 23, 24, 27, 29, 32] can not answer the aforementioned
questions because of the following two reasons: (i) existing
adversarial attacks mainly focus on the classification DNN
model, whose output is a deterministic numeric vector rep-
resenting the likelihood for different categories. In contrast,



our target model is the NICG model, whose output genera-
tion process is a non-deterministic Markov process, and the
output is a sequence of numeric vectors. Existing accuracy-
based adversarial ML techniques can not handle the depen-
dency in the Markov process. Furthermore, (2) the goal of
efficiency robustness evaluation is to increase the compu-
tational cost to detect the possible computational resources
leakage while existing accuracy-based work seeks to maxi-
mize the DNNs errors. The natural difference between these
two goals requires a totally new design of the optimization
function for efficiency robustness evaluation.

In this paper, we propose a new methodology,
NICGSlowDown, to generate efficiency-oriented adversar-
ial inputs for evaluating the NICG model efficiency ro-
bustness. These adversarial inputs contain unnoticeable per-
turbations and consume more computation resources than
original inputs in NICG models. To be specific, NICGSlow-
Down will apply the minimal perturbation on the benign
inputs that could minimize the likelihood of End Of Sen-
tence (EOS) token and delay the appearance of EOS ac-
cordingly.
Evaluation. To evaluate the effectiveness of NICGSlow-
Down, we perform NICGSlowDown on four subject mod-
els with two datasets, Flickr8k [19], and MS-COCO [25].
We compare NICGSlowDown against six baseline tech-
niques, including two accuracy-based attack algorithms and
four natural image corruptions. To represent the efficiency
degradation severity, we define I-Loops and I-Latency met-
rics to measure the increment of the decoder calls of
the target models and CPU/GPU response latency caused
by NICGSlowDown and baselines. The evaluation results
show that NICGSlowDown has achieved performance far
exceeding all baselines on all subjects, increasing the loop
numbers, CPU/GPU latency of NICG model up to 483.86%,
198.76% and 290.40% respectively.
Contribution. Our contributions are formalized as below:

• We state a new vulnerability of NICG models.
The computational consumption of NICG models is
volatile for different inputs, thus the adversaries can
decrease the efficiency of NICG models by increasing
the computational resource consumption.

• We propose a new methodology to evaluate the effi-
ciency robustness of NICG models. To the best of our
knowledge, NICGSlowDown is the first technique to
measure the efficiency robustness for NICG models.

• We evaluate NICGSlowDown on four subject models
with two popular datasets and compare with six base-
lines. The evaluation results show that it’s necessary to
improve and protect the efficiency robustness of NICG
models.

2. Background
2.1. Neural Image Caption Generation Model
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Figure 1. Working mechanism of neural image caption generator

Neural Image Caption Generation (NICG) [1, 6, 7, 9,
22, 30, 36–38] model calculates the conditional probabil-
ity P (Y |X), where X is the input image and Y =
[y1, y2, · · · , yn] is the target token sequences that will be
used as image captions. As shown in Fig. 1, the input image
is first sent through the encoder Fencoder to produce the hid-
den representation H . After that, starting with a special to-
ken (SOS), the decoder Fdecoder uses H in an iterative way
for an auto-regressive generation of output tokens Y . The
tokens are generated one by one until the process reaches
the end of sequence (EOS) token or a pre-set maximum
length. As the process is iterative, NICG models’ compu-
tational resources consumption is proportional to the length
of generated output sequence. Therefore, a longer output
sequence would make the model less efficient.

2.2. DNNs Efficiency

The accuracy and complexity of DNN models are pos-
itively correlated. Excellent model accuracy often implies
a large number of neural layers and complex model con-
struction, followed by huge inference-time computational
cost and low efficiency. To reduce DNNs inference-time
cost and faster the inference processes for real-time applica-
tions, many related works have been proposed. The related
work can be divided into two types, The first type [21, 43]
prunes DNN models offline by identifying and removing the
unimportant/redundant neurons. The second type [8,11,39]
reduces the number of computations online by dynami-
cally skipping the unnecessary part of DNNs, known as
input-adaptive techniques. Even though the input-adaptive
techniques balance the model accuracy with computational
costs, this balance is not robust. According to the recent
studies [5, 13–15, 20], the input-adaptive DNN models are
not robust against the adversarial attack, i.e., these tech-
niques cannot lower computational costs under adversarial
scenarios.

2.3. Adversarial Attacks

The adversarial example refers to an intentionally mod-
ified version of the benign example (e.g., adding pertur-



bations). With the human-unnoticeable perturbations, the
adversarial example could fool even the state-of-the-art
DNNs [2, 3, 35]. Normally, adversarial examples can be
generated by performing perturbation that follows adver-
sarial gradients [27] or optimizes perturbation with given
loss [4]. The perturbation will be constrained by magnitude,
among which L2-Norm and Linf -Norm are the most com-
monly used ones [3,27]. According to the difference of prior
knowledge on the victim DNN model, the adversarial ex-
ample generation techniques could be categorized into the
white-box attack and black-box attack [3, 4, 10, 23, 24, 27,
29, 32].

3. Preliminary
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Figure 2. Efficiency uncertainty for images from MS-COCO

As we discussed in Sec. 2.1, NICG models will not ter-
minate until the output token reaches EOS or a pre-set maxi-
mum length. In this section, we conduct a preliminary study
to show that the value of the pre-set maximum length is
hard to estimate because of the uncertainty in image caption
tasks. Specifically, we select three images and correspond-
ing captions from the MS-COCO dataset (shown in Fig. 2)
to show the uncertainty.
Variance across Different Images. For different images,
the task complexity of analyzing their contents could be
completely different. In the image caption task, different
image semantics will significantly affect NICG model ef-
ficiency. For example, in Fig. 2 (a), due to the difference in
the scene semantics, the corresponding caption lengths of
these two images have a huge difference.
Uncertainty in Labelling the Same Image. Another chal-
lenge to estimate max-length is the uncertainty from the
training images. For example, in Fig. 2 (b), two different
versions of the caption for the same training image have
different lengths, which will increase the efficiency uncer-
tainty in the NICG models trained with this image.

Because of the significant variance and uncertainty men-

tioned above, estimating an exact maximum length for each
image is challenging. Thus, a common practice is to set a
pretty large value for all images to avoid incomplete cap-
tioning (at least larger than the maximum caption length in
the training dataset).

Figure 3. NICG workflow

4. Approach
4.1. Problem Formulation

∆ = argmaxδ LoopF (x+ δ)

s.t. ||δ|| ≤ ϵ ∧ ||x+ δ|| ∈ [0, 1]n
(1)

Our objective is to generate human-unnoticeable perturba-
tions to images to decrease the victim NICG model ef-
ficiency during inference. Specifically, our objective con-
centrates on three factors: (i) the generated adversarial im-
age should increase the victim NICG model computational
complexity; (ii) the generated adversarial image x′ can not
be differentiated by humans from the benign image x; (iii)
the generated adversarial image x′ should be realistic in
the real world. We formulate the mentioned three factors
in Eq.(1). In Eq.(1), x is the benign input, F is the victim
NICG model under attack, ϵ is the maximum adversarial
perturbation allowed, and LoopF (·) measures the number
of decoder calls in the victim NICG model F . Our proposed
approach NICGSlowDown tries to search for an optimal
perturbation ∆ that maximizes the number of decoder calls
while holding the constraints that perturbation is smaller
than the allowed threshold (unnoticeable) and existing in
the real world (realistic).

4.2. Attack Overview

Fig. 3 shows the overview of our proposed attack.
Given a benign input image, NICGSlowDown first ini-
tializes an adversarial perturbation satisfying the realistic
box constraints (§4.3.1). After that, NICGSlowDown com-
putes the efficiency reduction loss (§4.3.2) and the pertur-
bation penalty loss (§4.3.3). The reduction loss aims to
slow down the victim NICG model, and the perturbation



penalty loss seeks to enforce the generated adversarial ex-
amples to satisfy the unnoticeable constraints in Eq.(1). Fi-
nally, NICGSlowDown updates the adversarial perturbation
by jointly optimizing the perturbation penalty loss and the
efficiency reduction loss.

4.3. Detail Design

4.3.1 Realistic Box Constraints

δ =
1

2
(tanh(w) + 1)− x (2)

To ensure the adversarial example is a valid image, we con-
straint the adversarial perturbation δ in Eq.(1): ||x + δ|| ∈
[0, 1]n. Such constraints are known as box constraints in the
optimization theory [3]. To satisfy the constraints, instead
of directly optimizing δ, we introduces a new variable w
and apply a change-of-variables to optimize over w. The
relationship between w and δ is shown in Eq.(2). Because
the range of function tanh(·) is [−1, 1], δ + x will always
satisfy the constraint ||x+ δ|| ∈ [0, 1]n.

4.3.2 Efficiency Reduction Loss
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Figure 4. Distribution of output tokens

As we discussed in §Sec. 2.1, NICG model efficiency
is related to the likelihood of the EOS tokens. Thus, to
degrade the efficiency of NICG model, our intuition is to
decrease the EOS tokens likelihood. Formally, let NICG
model’s output be a sequence of probability distributions,
i.e. F(x) = [p1, p2, · · · , pn] and the output token sequences
are [o1, o2, · · · , on], where oi = argmax(pi). Then we
denote the likelihood of the output tokens and the EOS
tokens as [po11 , po22 , · · · , ponn ] and [peos1 , peos2 , · · · , peosn ] re-
spectively. In the example of Fig. 4, we have

[po11 , po22 , · · · , ponn ] = [0.98, 0.86, 0.56, 0.68, 0.77, 0.91]

[peos1 , peos2 , · · · , peosn ] = [0.00, 0.00, 0.00, 0.00, 0.09, 0.91]

Then our efficiency reduction objective can be divided into
two parts: (i) Delay EOS appearance and (ii) Break output
dependency.
Minimize EOS Probability. To delay the appearance of
EOS tokens, existing work usually applies minimum like-
lihood estimation (MLE) to minimize the likelihood of
EOS tokens. However, as the NICG model vocabulary is

normally pretty large (more than 1,000), MLE becomes
inefficient because MLE requires to compute the cross-
entropy loss, which is inefficient on large vocabulary. To
address the limitation of inefficiency cross-entropy on large
vocabulary, we borrow the idea of noise contrastive esti-
mation (NCE) [12] and design our loss function. Specifi-
cally, we treat the probability distribution pi for the multi-
classification task as a binary classification task i.e., is or not
an EOS token. We then define a new probability distribution
qi = [leosi ,

∑
j l

j
i − leosi ] to represent the logits distribution

of the proposed binary classification task. Finally, our goal
to delay the appearance of the EOS token can be formulated
as Eq.(3).

Leos =
1

n

n∑
i=1

{
leosi − Ek∼pi

lki
}

(3)

With the help of logits lji , we do not need to compute the
softmax on large vocabulary thus could compute the objec-
tive function more efficiency. Next, we prove that our ob-
jective function Eq.(3) will convergence to MLE method’s
loss function i.e., L = 1

n

∑n
i=1 logpeosi .

Lemma 1. The proposed loss function Leos will finally
convergence to the MLE method’s objective function L =
1
n

∑n
i=1 logpeosi .

Proof. Denote the logits on the ith token as [l1i , l
2
i , · · · , lVi ],

where V is the size of the vocabulary, then we have

pji =
exp(lji )∑V
k=1 exp(lki )

MSE seeks to minimize the likelihood of EOS, then the ob-
jective function is

L =
1

n

n∑
i=1

logpeosi =
1

n

n∑
i=1

{leosi − log
V∑

k=1

exp(lki )}

the gradients of the above objective is

∂L

∂x
=

1

n

n∑
i=1

{
∂leosi

∂x
− exp(lki )∑V

k=1 exp(lki )

V∑
k=1

∂lki
∂x

}

Notice that pji =
exp(lji )∑V

k=1 exp(lki )
, then we have

∂L

∂x
=

1

n

n∑
i=1

{
∂leosi

∂x
−

V∑
k=1

pki
∂lki
∂x

}

=
1

n

n∑
i=1

{
∂leosi

∂x
− Ek∼pi

∂lki
∂x

}
=

∂Leos

∂x

(4)



Because of the convergence of Monte Carlo method, we
prove Lemma 1.
Break output Dependency. Because the token generation
process of NICG models is a Markov process, i.e., NICG
model outputs the probability distribution pi based on the
previous output token oi−1, i.e., pi = Fdecoder(oi−1, h).
Minimize peosi may not change the output tokens at the po-
sitions from 0 to n− 1. Thus minimizing peosn will be chal-
lenging because the previous token on−1 keeps the same.
To accelerate the process of delaying EOS tokens, we seek
to break such output dependency. Similar to the objective in
delaying EOS appearance, we have the objective in Eq.(5).

Ldep =
1

n

n∑
i=1

{
loii − Ek∼pi

lki
}

(5)

Final Efficiency Reduction Objective. Our final efficiency
reduction objective can be formulated as Eq.(6), which aims
to delay the EOS token appearance and break the output
dependency.

Ldeg = Leos + λLdep (6)

4.3.3 Perturbation Penalty Loss

Lper =

{
0; if δ ≤ ϵ

||δ − ϵ||; otherwise
(7)

To ensure that the adversarial example will be unnoticeable
to humans, we constraint the magnitude of the adversarial
perturbation in Eq.(1), i.e., ||δ|| ≤ ϵ. To achieve such goal,
we introduce the perturbation penalty loss in Eq.(7), if the
adversarial perturbation δ is less than the allowed perturba-
tion magnitude, the penalty is zero, otherwise, the penalty
will increase linearly as ||δ − ϵ|| increases.

4.4. Attack Algorithm

The attack algorithm is shown in Algorithm 1. Our attack
algorithm accepts four inputs: a benign input image x, the
victim NICG model F , a pre-defined perturbation threshold
ϵ, and the maximum iteration number T. Our algorithm out-
puts an adversarial example x′ that satisfy Eq.(1). Our algo-
rithm first initializes the adversarial perturbation δ as zero
and compute the corresponding w (line 1 and 2). After that,
we iteratively update the latent variable w. Specifically, we
compute the efficiency reduction loss Ldeg based on Eq.(6)
and the perturbation penalty loss based on Eq.(7). We then
optimize w by minimizing the joint losses. After iteration,
we transform the latent variable w back to image space and
return the adversarial example.

Algorithm 1 NICGSlowDown Attack
Input: Benign input x
Input: Victim NICG model F(·)
Input: Maximum perturbation ϵ
Input: Maximum Iterations T
Output: Adversarial examples x′ that satisfy Eq.(1)

1: δ ⇐ 0 Initialize δ with 0.
2: w ⇐ arctanh(2x− 1) Initialize w based on Eq.(2).
3: for iter in Range(T) do
4: x′ = 1

2 (tanh(w) + 1) Compute x′ based on Eq.(2)
5: δ = x′ − x Compute the perturbation magnitude
6: Ldeg = L1(x

′,F) Compute Lper according to
Eq.(6).

7: Lper = L2(δ, ϵ) Compute Lper according to Eq.(7).
8: Ltotal = Ldeg + λLper Compute joint loss.
9: ▽ = ∂Ltotal

∂w Compute the gradients
10: w = w + lr × ▽ Update the latent variable w.
11: end for
12: Return 1

2 (tanh(w)+1) Return the adversarial example.

Table 1. Experimental Subjects

Dataset Subject Model Train Valid TestEncoder Decoder

Flickr8k A ResNext
Attention
+ LSTM 6000 1000 1000

B GoogLeNet
Attention
+ RNN 6000 1000 1000

MS-COCO C MobileNets
Attention
+ LSTM 82783 40504 40775

D ResNet
Attention
+ RNN 82783 40504 40775

5. Evaluation

5.1. Experimental Setup

Models and Datasets. We evaluate our proposed tech-
nique 1 on two public datasets, Flickr8k [19], and MS-
COCO [25]. Table 1 shows the detail of NICG models for
each corresponding dataset. Flickr8k dataset contains 8,000
images (including 6,000 training images, 1,000 validation
images and 1,000 test images). We apply two encoder-
decoder models for the Flickr8k dataset. The first one ap-
plies ResNext [40] as encoder and LSTM module as de-
coder [18]. The second one applies GoogLeNet [34] as en-
coder and RNN as decoder [33]. MS-COCO dataset con-
tains 123,287 images (including 82,783 training images,
40,504 validation images and 40,775 testing images). We
also apply two encoder-decoder models for the MS-COCO
dataset. The first one is MobileNets [21] + LSTM and the

1Our code is available at https://github.com/NICGSlowDown

https://github.com/SeekingDream/NICGSlowDown


latter one is ResNet [16] + RNN.

I-Loop =
Loop(x′)− Loop(x)

Loop(x)
× 100%

I-Latency =
Latency(x′)− Latency(x)

Latency(x)
× 100%

(8)

Metrics. We select two metrics, the number of decoder calls
and response latency, to represent the efficiency of NICG
models. As we discussed in §2.1, higher decoder calls in-
dicate that the NICG model cast more floating-point op-
erations (FLOPs) to handle the input image, which leads
to less efficiency [39, 43]. Response latency is a hardware-
dependent metric used to measure NICG model runtime ef-
ficiency. High response latency indicates worse real-time
caption quality and higher battery consumption. We mea-
sure the response latency on two hardware platforms: In-
tel Xeon E5-2660v3 CPU and Nvidia1080Ti GPU. Specif-
ically, we define two metrics, I-Loop and I-Latency, to
show the effectiveness of NICGSlowDown in degrading the
NICG model efficiency. The formal definition of I-Loop and
I-Latency are shown in (8), where x and x′ denotes the be-
nign example and the generated adversarial example respec-
tively, Loop(·) and Latency(·) are the functions to calculate
the decoder calls and response latency respectively. Higher
I-Loop and I-Latency refer to more severe efficiency slow-
down caused by the adversarial example.
Comparison Baselines. To the best of our knowledge, we
are the first to study the efficiency robustness of NICG
models; therefore, no existing efficiency attacks can be ap-
plied as our baselines. To show that existing accuracy-based
methods can not be applied to evaluate the NICG model’s
efficiency robustness, we compare NICGSlowDown against
two accuracy-based attack algorithms and four natural im-
age corruptions. Specifically, we choose PGD [28] and
CW [3]) as the accuracy-based attack algorithms and image
quantization [17, 42], Gaussian noise [17, 42], JPEG com-
pression [26] and feature squeezing [42] as the corruptions.
Implementation Details. We follow [41] to implement the
four neural image caption generation models. We set the
NICG model’s maximum caption length as 60 as the max-
imum caption length in the training dataset is 53. We filter
out the tokens with frequencies less than 5. Finally, our vo-
cabulary sizes are 2,633 and 11,569 for Flick8k and MS-
COCO datasets. We implement NICGSlowDown with Py-
torch and set the maximum perturbation ϵ as 40 and 0.03 for
L2 and Linf adversarial examples. We set maximum itera-
tion T as 1,000 and the hyper-parameter λ as 1.0× 104.

5.2. Effectiveness and Severity

Effectiveness of Attack. Fig. 5 shows the distribution of
efficiency metrics for Subject A (more results are shown in

Appendix). The first and second rows represent the Prob-
ability Density Function (PDF) and Cumulative Distribu-
tion Function (CDF) results. For convenience, we reverse
the CDF from one to zero. The area under the CDF curve
indicates the efficiency of the NICG model, and a larger
area indicates the NICG model is less efficient. The green
area denotes the distribution of benign examples, and the
red represents the distribution of adversarial examples gen-
erated by NICGSlowDown. From Fig. 5, we could observe
that adversarial examples significantly change the number
of decoder calls and latency distribution in the NICG model.
This observation indicates that our attack could effectively
slow down the NICG model.
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Figure 5. Efficiency distribution of benign and adversarial exam-
ples (More results can be found in appendix)

Impact of Attack. To evaluate the severity of our proposed
attack on reducing the model efficiency, we measure the I-
LOOP and I-Latency for the four subjects we mentioned
above. Table 2 shows the results of the adversarial attack
on the targeted model. From the table, we could have the
following observations: (i) Compared to other baselines,
NICGSlowDown achieves the best performance on slowing
down the targeted NICG model in all subjects. For exam-
ple, adversarial examples generated by NICGSlowDown in-
crease the number of decoder calls, CPU latency, and GPU
latency on Subject A up to 483.86%, 198.76%, 290.40% re-
spectively; (ii) Unlike NICGSlowDown, all baseline meth-
ods can not ensure degrading efficiency of the NICG model.
In some cases, baselines would even speed up the NICG
model processing instead. This observation proves that the
existing baseline techniques are not suitable for evaluat-
ing the efficiency robustness of NICG models; (iii) For
all subjects, NICGSlowDown with L2-Norm achieves bet-
ter performance compared with Linf-Norm. We infer that
because the perturbation size of L2-Norm is more suit-
able for NICGSlowDown to apply efficiency attack; (iv)
For all subjects, the GPU latency increased by NICGSlow-
Down is more effective than the CPU delay, implying that
NICGSlowDown is more effective for efficiency attacks on
GPU than CPU.



Table 2. Resutls of efficiency reduction

Subject Norm Metric PGD CW Quantize Gaussian JPEG TVM Ours

A

I-Loop 87.30 7.26 3.97 0.47 -5.25 -0.12 483.86
L2 I-Latency(CPU) 36.33 2.59 3.00 1.44 -3.28 -1.51 198.76

I-Latency(GPU) 75.47 18.93 11.81 13.35 8.47 15.60 290.40
I-Loop 7.42 44.88 6.37 0.79 -5.25 -0.12 354.11

Linf I-Latency(CPU) 3.86 16.68 2.43 1.82 -15.45 9.06 202.81
I-Latency(GPU) 34.62 38.18 18.96 10.14 14.75 21.64 241.90

B

I-Loop 18.62 6.66 11.94 5.40 2.14 0.45 481.32
L2 I-Latency(CPU) 2.77 3.73 24.65 -14.78 1.65 5.80 87.37

I-Latency(GPU) 26.16 15.31 14.55 1.65 2.47 6.12 223.38
I-Loop 8.22 36.74 10.33 0.04 2.14 0.45 271.19

Linf I-Latency(CPU) 1.86 6.32 -0.74 3.28 2.55 2.53 8.32
I-Latency(GPU) 6.94 20.99 22.55 12.56 3.20 14.11 71.77

C

I-Loop 48.48 2.76 -0.08 7.96 -5.69 -0.96 433.58
L2 I-Latency(CPU) 33.07 3.94 -0.17 3.32 -2.19 -11.01 155.61

I-Latency(GPU) 32.14 14.51 13.75 19.19 2.34 9.98 297.37
I-Loop -5.97 62.89 3.49 -2.32 -5.69 -0.96 379.81

Linf I-Latency(CPU) -9.33 20.48 1.54 -1.21 -3.60 8.19 90.73
I-Latency(GPU) 6.23 29.24 16.97 13.08 20.19 21.06 211.41

D

I-Loop 19.07 11.17 -7.33 0.24 -3.53 0.17 408.90
L2 I-Latency(CPU) 8.14 7.07 -4.62 -1.97 3.26 -2.45 155.49

I-Latency(GPU) 31.95 17.32 8.08 31.16 21.59 15.87 192.58
I-Loop 7.82 74.09 -8.35 1.51 -3.53 0.17 115.02

Linf I-Latency(CPU) -1.13 29.04 -4.17 2.53 -3.53 -3.16 21.45
I-Latency(GPU) 23.29 43.41 10.27 3.25 3.85 7.63 55.36

Table 3. The size of the adversarial perturbations

Norm Approach A B C D Avg

L2

PGD 39.98 39.98 39.98 39.98 39.98
CW 0.04 0.04 0.04 0.04 0.04

Quantize 160.19 160.22 161.76 161.78 160.99
Gaussian 38.25 38.25 38.08 38.08 38.16

JPEG 160.85 160.85 161.06 161.06 160.96
TVM 0.52 0.52 0.51 0.51 0.51
Ours 4.25 4.30 4.82 5.18 4.64

Linf

PGD 0.03 0.03 0.03 0.03 0.03
CW 0.04 0.04 0.04 0.04 0.04

Quantize 0.98 0.98 0.99 0.99 0.98
Gaussian 0.03 0.03 0.03 0.03 0.03

JPEG 0.92 0.92 0.93 0.93 0.93
TVM 0.00 0.00 0.00 0.00 0.00
Ours 0.04 0.04 0.04 0.02 0.04

5.3. Quality of Generated Images

5.3.1 Quantitative Evaluation

In this section, we measure the sizes of the generated
adversarial examples. The results are shown in Table 3.
The results show that NICGSlowDown generates adver-
sarial examples with minimal perturbation sizes. Specifi-
cally, NICGSlowDown generates adversarial examples with
the average perturbation size 4.64 for L2 norm and 0.04
for Linf norm. The results imply NICGSlowDown gener-

ates adversarial examples that are unnoticeable to humans.
Some baselines also generate adversarial examples with im-
perceptible perturbations, but they cannot affect the NICG
model efficiency as expected, making the “unnoticeable”
meaningless.

5.3.2 Qualitative Evaluation

Original

Perturbation

Adversarial

L2 Linf

Figure 6. The generated adversarial examples

In this section, we discuss the quality of the generated
adversarial inputs based on human perception. For that pur-
pose, we randomly select six adversarial images and show
the selected images in Fig. 6 (all generated adversarial im-
ages can be found on our website). The first column shows
the benign images, the second column shows the adversar-



ial perturbations used against each benign image, and the
third column shows the resultant adversarial images. From
the results in the first and the third rows, we observe that the
added perturbation is not perceptible to humans.

5.4. More Studies

5.4.1 Accuracy VS. Efficiency

In this section, we evaluate the relationship between ac-
curacy attack and efficiency attack. The results in Table 2
show that accuracy-based adversarial examples may not af-
fect NICG model efficiency. In this section, we evaluate
whether efficiency-based adversarial examples will affect
NICG model accuracy. Specifically, we measure the BLEU
scores [31] of the adversarial examples and the benign ex-
amples. Table 4 shows the BLEU scores of benign examples
and adversarial examples generated by NICGSlowDown.
From the results, we can observe that our attack signifi-
cantly reduces the accuracy of the victim NICG model, de-
creasing the BLEU scores up to 100%. This observation
indicates that the accuracy-based attack can impact only
the NICG model accuracy without reducing efficiency. In
contrast, our efficiency-based attack, NICGSlowDown, can
effectively reduce the model efficiency and significantly
lower the accuracy.

Table 4. BLEU scores of benign and adversarial examples

Subjects benign adversarial decreasae

A
L2 0.17 0.00 100.00

Linf 0.17 0.01 93.08

B
L2 0.20 0.00 99.02

Linf 0.20 0.02 90.94

C
L2 0.10 0.00 98.77

Linf 0.10 0.01 90.95

D
L2 0.11 0.01 91.43

Linf 0.11 0.03 69.15

5.4.2 Hyper-Parameter Sensitively

In this section, we evaluate the effectiveness of the ad-
versarial examples under different hyper-parameter set-
tings. Specifically, we set the hyper-parameter λ = [1.0 ×
103, 1.0× 104, 1.0× 105] and run NICGSlowDown to gen-
erate adversarial examples. From the results in Table 5, we
observe that the adversarial examples generated under dif-
ferent hyper-parameter settings show a stable performance,
which implies NICGSlowDown is not sensitive to hyper-
parameter settings.

6. Discussion
Application. Recently, NICG models have been widely de-
ployed on resource-constrained devices; thus, the need for
efficiency robustness evaluation is essential. For example,

Table 5. Effectiveness under different hyper-parameters

Subject ID Norm Metric 10 100 1000

A

I-Loop 483.86 483.86 483.86
L2 I-Latency(CPU) 189.76 198.76 198.35

I-Latency(GPU) 288.43 290.40 300.32
I-Loop 360.21 354.11 344.11

Linf I-Latency(CPU) 190.32 202.81 190.43
I-Latency(GPU) 250.32 241.90 227.32

B

I-Loop 479.32 481.32 481.32
L2 I-Latency(CPU) 89.31 87.37 85.42

I-Latency(GPU) 225.43 223.38 220.43
I-Loop 283.24 271.19 271.19

Linf I-Latency(CPU) 10.21 8.32 8.11
I-Latency(GPU) 75.43 71.77 69.31

C

I-Loop 435.56 433.58 433.58
L2 I-Latency(CPU) 166.42 155.61 148.31

I-Latency(GPU) 300.32 297.37 297.32
I-Loop 388.31 379.81 370.54

Linf I-Latency(CPU) 91.31 90.73 89.31
I-Latency(GPU) 222.32 211.41 210.32

D

I-Loop 410.23 408.90 408.90
L2 I-Latency(CPU) 156.42 155.49 154.43

I-Latency(GPU) 199.32 192.58 178.31
I-Loop 117.23 115.02 113.13

Linf I-Latency(CPU) 22.12 21.45 18.23
I-Latency(GPU) 56.43 55.36 50.13

many mobile applications are developed to help visually im-
paired persons; most of those applications rely on the NICG
model to provide image explanations to a person. In a situa-
tion like crossing a road, the response time should be mini-
mum. Otherwise, fatal accidents can happen. Therefore, the
evaluation of efficiency robustness is needed to avoid these
scenarios.
Limitation. NICGSlowDown is a white-box approach, i.e.,
NICGSlowDown needs to access the victim NICG model
parameters to generate adversarial examples. As we have
not evaluated the transferability of the attack, we can not
conclude that our attack can also be used in the black-box
setting. However, as NICGSlowDown is designed for eval-
uating robustness instead of attacking, the white-box as-
sumption is valid for NICGSlowDown. We leave the black-
box evaluation for future work.

7. Conclusion

In this paper, our objective is to evaluate the efficiency
robustness of NICG models. For this purpose, we propose
NICGSlowDown that generates adversarial efficiency de-
creasing inputs explores a potential vulnerability of NICG
models, i.e., the efficiency of NICG models is inversely pro-
portional to the length of NICG output sequences. Based
on the extensive evaluation, we can notice that NICGSlow-
Down can generate inputs that significantly decrease NICG
models’ efficiency. To the best of our knowledge, this is the
first adversarial attack exploring the efficiency robustness of
NICG models.
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[32] Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Is-
mail Ben Ayed, Robert Sabourin, and Eric Granger. De-
coupling Direction and Norm for Efficient Gradient-Based
L2 Adversarial Attacks and Defenses. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 4322–4330,
2019. 1, 3

[33] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning Representations by Back-propagating
Errors. Nature, 323:533–536, 1986. 5

[34] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going Deeper with

Convolutions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-
12, 2015, pages 1–9, 2015. 5

[35] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing Properties of Neural Networks. In 2nd Interna-
tional Conference on Learning, 2014. 3

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Advances in Neu-
ral Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.
1, 2

[37] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and Tell: A Neural Image Caption Gen-
erator. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015, pages 3156–3164, 2015. 1, 2

[38] Jing Wang, Jinhui Tang, and Jiebo Luo. Multimodal Atten-
tion with Image Text Spatial Relationship for OCR-Based
Image Captioning. In MM ’20: The 28th ACM International
Conference on Multimedia, Virtual Event / Seattle, WA, USA,
October 12-16, 2020, pages 4337–4345, 2020. 1, 2

[39] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. SkipNet: Learning Dynamic Routing in
Convolutional Networks. In Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-
14, 2018, Proceedings, Part XIII, volume 11217, pages 420–
436, 2018. 2, 6

[40] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated Residual Transformations for
Deep Neural Networks. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 5987–5995, 2017.
5

[41] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, Attend and Tell: Neural Image Caption Gen-
eration with Visual Attention. In International conference on
machine learning, pages 2048–2057, 2015. 6

[42] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeez-
ing: Detecting Adversarial Examples in Deep Neural Net-
works. In 25th Annual Network and Distributed System Se-
curity Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018. 6

[43] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An Extremely Efficient Convolutional Neural
Network for Mobile Devices. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 6848–6856,
2018. 2, 6



Appendix

A. More Evaluation Results
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Figure 7. Efficiency Distribution
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Figure 8. Efficiency Distribution

Figure 7, 8, 9, 10 show the efficiency distribution of be-
nign images and the generated adversarial images.

The first and second rows represent the Probability Den-
sity Function (PDF) and Cumulative Distribution Func-
tion (CDF) results respectively. The area under the CDF
curve indicates the efficiency of the NICG model, a larger
area indicates the NICG model is less efficiency. The green
area denotes the distribution of benign examples, and the
red areas represent the distribution of adversarial exam-
ples generated by NICGSlowDown. From the results, we
could observe that adversarial examples extremely change
the FLOPs and latency distribution of NICG model. This
observation is consistent with the results in Fig. 5.
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Figure 9. Efficiency Distribution
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Figure 10. Efficiency Distribution

B. More Adversarial Examples
Fig. 11 shows more generated adversarial examples, we

provide more adversarial examples on the zip files.



Figure 11. Generated adversarial examples
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