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Abstract

We consider the problem of Vision-and-Language Navi-
gation (VLN). The majority of current methods for VLN are
trained end-to-end using either unstructured memory such
as LSTM, or using cross-modal attention over the egocen-
tric observations of the agent. In contrast to other works,
our key insight is that the association between language
and vision is stronger when it occurs in explicit spatial
representations. In this work, we propose a cross-modal
map learning model for vision-and-language navigation
that first learns to predict the top-down semantics on an
egocentric map for both observed and unobserved regions,
and then predicts a path towards the goal as a set of way-
points. In both cases, the prediction is informed by the lan-
guage through cross-modal attention mechanisms. We ex-
perimentally test the basic hypothesis that language-driven
navigation can be solved given a map, and then show com-
petitive results on the full VLN-CE benchmark.

1. Introduction

For mobile robots to be able to operate together with hu-
mans, they must be able to execute tasks that are defined
not in the form of machine-readable scripts but rather in the
form of human instructions. A very basic but challenging
task is going from A to B. While robots have been quite
successful in executing this task using metric representa-
tions, it has been more challenging for robots to execute
semantic tasks like “go to the kitchen sink” or follow in-
structions that describe a path and associate actions with
natural language, defined as the Vision-and-Language Nav-
igation (VLN) task [4,32,33]. In VLN, the robot is given
instructions and has to reach a goal making use of images
of the environment that it can acquire along the way.

The dominant approach for VLN tasks has been using
end-to-end pipelines from images and instructions to ac-
tions [17,23,31,32]. While they can be attractive due to
their simplicity, they are expected to implicitly learn end-to-
end all navigation components such as mapping, planning,
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Figure 1. We approach the task of vision-and-language navigation
as a two-stage procedure which learns to semantically and spa-
tially ground the instruction on egocentric maps.

and control, and thus often require considerable amounts of
training data. This approach to designing navigation sys-
tems is in direct contrast to research on human spatial nav-
igation, which has shown that humans and other species
build map-like representations of the environment to ac-
complish way-finding [41,52]. However, multiple findings
have shown that the ability to build cognitive maps and ac-
quire spatial knowledge deteriorates when humans exclu-
sively use ready to drive or walk paths to a goal [6]. On
the other hand, studies have shown that humans build bet-
ter spatial representations when presented with landmark-
based navigation instructions rather than full paths [55].
Such spatial representations enable the recall of landmarks
on an egocentric map weeks after the experiment. While
this does not prove that humans build a map during wayfind-
ing when following semantic instructions, it is a strong indi-
cation that they can anchor landmarks and other semantics
to a map that they easily recall. Research in learning of
mapping and planning in computer vision and robotics [22]
has also shown that an end-to-end system encompasses se-
mantic maps that naturally emerge in the learning process.

We propose Cross-modal Map Learning (CM?), a novel
navigation system for the VLN task in continuous environ-
ments, that learns a language-informed representation for
both map and trajectory prediction by applying twice cross-
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modal attention, hence CM2. Our method decomposes the
problem in the two paths of semantic and spatial grounding
as illustrated in Figure 1. First, we use a cross-modal atten-
tion network to semantically ground the instruction through
an egocentric map prediction task that learns to hallucinate
information outside the field-of-view of the agent. This is
followed by another cross-modal attention network that is
responsible for spatially grounding the instruction by learn-
ing to predict the path on the egocentric map. Our analysis
shows that through these two subtasks, the attended repre-
sentations learn to focus on instruction-relevant objects and
locations on the map.

The main difference between our method and existing
image-language attentional mechanisms that generate ac-
tions is that in our approach, the robot is building a cogni-
tive map that encodes the environmental priors and follows
instructions based on this map. The motivation to use this
representation is based on our finding that when the robot
is given a local ground-truth (“correct”) map of the envi-
ronment, then the robot outperforms all approaches on the
VLN task by a large margin. This map is still local, more
like a crop of the blueprint than a global map of the envi-
ronment, but can still hallucinate what is behind the walls so
that it can align better the map with the language instruction.
This differentiates us from approaches such as [12] that first
build a topological map of the environment by exploring the
whole scene and then executing the task having access to a
global map. We further argue that by learning the layout
priors through cross-modal attention, we can leverage the
spatial and semantic descriptions from natural language and
decrease the uncertainty over the hallucinated areas. As op-
posed to recent work [31] that outputs a single waypoint,
we learn to predict the whole trajectory, while our way-
points are determined by the alignment between language
and egocentric maps rather than the distance to the goal.

In summary, our contributions are as follows:

* A novel system for the VLN task that learns maps as

an explicit intermediate representation.

* Semantic grounding of language to those maps by ap-
plying cross-modal attention when learning to predict
semantic maps.

* Spatial grounding of instructions when learning to pre-
dict paths by applying cross-modal attention on se-
mantic maps and language.

* An analysis over the learned representation that
demonstrates the effectiveness of using egocentric
maps for the VLN task.

e Competitive results in the VLN-CE [32] dataset
against current state-of-the-art methods.

2. Related Work

Vision-and-Language Navigation. The problem of in-
struction following for navigation has drawn significant

attention in a wide range of domains. These include
Google Street View Panoramas [ 1], simulated environ-
ments for quadcopters [5], multilingual settings [33], in-
teractive vision-dialogue setups [60], real world scenes [3],
and realistic simulations of indoor scenes [4]. More relevant
to our work is the literature on the Vision-and-Language
Navigation (VLN) task initially defined in [4] on navigation
graphs (R2R) in Matterport3D [8] dataset, and then con-
verted for continuous environments in [32] (VLN-CE). Ar-
guably, the biggest challenges in VLN are grounding the
natural language to the visual input while keeping track
which part of the instruction was completed. To address
these issues, many methods rely on unstructured memory
such as LSTM for visual-textual alignment [ 14, 17,28,37],
or have dedicated progress monitor modules [37,38]. Other
approaches formulate instruction following as a Bayesian
tracking problem [2], or learn to decompose and exe-
cute the instructions in short steps [59]. Another line of
works [12,21,23,26,31,39,42,44,46] make use of atten-
tion mechanisms and adapt powerful language models such
as BERT [15] and transformer networks [53] to the VLN
task. For instance, Chen at al. [12] learn the association
between instructions and nodes on a prebuild topological
map of the environment, while Krantz et al. [31] learn to
predict waypoints from panoramic images and investigate
the prediction in different action spaces. In contrast to all
these works, our method learns to associate the language
and egocentric observations at the semantic level with 2D
spatial representations followed by path prediction.

Cross-modal attention. The transformer architecture [53]
has been extremely successful in language [15], speech [16]
vision [30] and multimodal applications [27]. A key fea-
ture of the transformer architecture is the attention mech-
anism. Cross-modal transformers have been widely used
for vision-language tasks such as visual-question answering
and beyond, such as joint video and language understand-
ing [50]. Additionally, there have been investigations into
whether the multimodal transformers learn interpretable re-
lations between the two modalities by analyzing the cross-
modal attention heads, as studied in Visual BERT [34] and
in a cross modal self attention network for referring image
segmentation [56]. Prior works have trained cross-modal
transformers in two ways: 1) single-stream design where
the multimodal inputs (for example, word embeddings and
image regions) are fed into a single transformer architec-
ture. Examples of this are UNITER [13], VLBERT [49], Vi-
sualBERT [34]. 2) multi-stream design where the individ-
ual modalities are encoded separately via self-attention and
then a cross-modal representation is learned by the trans-
former. Examples of this are LXMERT [51], VILBERT
[36], [58]. In this work, we adapt the multi-stream design
for vision language navigation using egocentric maps. We
also investigate the cross-modal attention heads and decoder



representation of the transformer for interpretable patterns.
Map Prediction in Navigation. Modular approaches us-
ing different types of spatial representations have been suc-
cessful in multiple navigation tasks, whether they focused
on occupancy [10, 18,22,29,45] or semantic map predic-
tion [7, 9, 19, 20, 35, 40]. For example, Gupta et al. [22]
learn a differentiable mapper for predicting top-down ego-
centric maps that are trained end-to-end with a differen-
tiable planner, while Cartillier et al. [7] learn to build top-
down allocentric maps from egocentric RGB-D observa-
tions. Several recent works go beyond traditional mapping
and learn to predict information outside the field-of-view of
the agent [19,35,40,45]. The work of [45] learns to halluci-
nate occupancy layouts in indoor environments, while [19]
extends the prediction to semantic classes and uses informa-
tion gain objectives to increase the performance of the pre-
dictor. Our approach expands upon this last set of methods
by presenting a language-informed model that attempts to
hallucinate missing information using cues from both lan-
guage and currently observed regions.

3. Approach
3.1. Problem setup

We address instruction-following navigation in indoor
environments, where natural language instructions implic-
itly describe a specific path and goal location in the environ-
ment that an agent needs to follow. In particular, we con-
sider the setup described in the Vision-and-Language Nav-
igation in Continuous Environments (VLN-CE) [32] that
was adapted from the Room-to-Room (R2R) [4] dataset
from pre-specified navigation graphs to continuous 3D en-
vironments. VLN-CE uses the Habitat [48] simulator in
the Matterport3D [8] scenes and offers more realistic set-
tings and is much more challenging [32] than the original
R2R. During a VLN-CE navigation episode, the agent has
access to egocentric RGB-D observations at a resolution of
256 x 256 with a horizontal field-of-view of 90°. In con-
trast to other recent methods [12,31], we assume the agent
observes a frame with limited field-of-view at each time-
step (not panoramas). The action space is defined over a
discrete set of actions consisting of MOVE_FORWARD by
0.25m, TURN_LEFT and TURN_RIGHT by 15°, and STOP,
without actuation noise. Recently, the work of [31] demon-
strated higher performance when continuous-space actions
are considered, however we kept the action set discrete to
remain consistent with prior work on VLN-CE.

3.2. Overview of our approach

We propose a method for Vision-and-Language Naviga-
tion involving path prediction over predicted semantic ego-
centric 2D maps. Our argument for this approach is three-
fold. First, an egocentric map offers a natural representa-

tion for grounding spatial and semantic concepts from nat-
ural language instructions. Second, a VLN method should
take advantage of the knowledge over semantic and spatial
layouts as they offer a strong prior over possible trajecto-
ries. Third, the language instruction provides a semantic
description of a trajectory through the environment, which
could be leveraged to improve map predictions.

Given the instruction, our method learns to predict the
entire path defined as a set of waypoints on an egocen-
tric local map at every step of the episode (Sec. 3.3). The
agent then localizes itself on the current predicted path and
chooses the following waypoint on the path as a short-term
goal. This goal is then passed to an off-the-shelf local pol-
icy (DD-PPO [54]) which predicts the next navigation ac-
tion. We assume that we have access to ground-truth pose
as provided by the simulator to facilitate DD-PPO. We note
that estimating the pose from noisy sensor readings is out of
the scope of this work, and point to visual odometry meth-
ods [57] that can adapt DD-PPO agents to such a setting.

To obtain the egocentric map we define a language-
informed two-stage semantic map predictor that learns to
hallucinate the semantics in the unobserved areas (Sec. 3.4).
An overview of our method is shown in Figure 2. In the fol-
lowing two paragraphs we briefly describe the common in-
put encoding procedures between different components of
our method.

Instruction Encoding. We use a pretrained Bidirectional
Encoder Representations from Transformers (BERT) [15]
model, which is a multi-layer transformer [53], to extract a
feature vector for each word in the instruction. The over-
all feature representation for the instruction X’/ € RMxd'
is passed through a fully-connected layer to obtain the fi-
nal representation X € RM>4 where M is the number of
words in the instruction, d’ = 768 is the default feature di-
mension of BERT, and d = 128 is the feature dimension
we use throughout our method. During training we only
finetune the last layer of BERT.

Egocentric Map Encoding. Our network encodes an in-
put egocentric semantic map s € RM *w'*¢ with a truncated
ResNet18 [24], where h/, w’, ¢ are height, width, and the
number of semantic classes, respectively as Y = Enc(s).
The ResNetl8 initially produces a feature representation
Y’ € Rhxwxd (p = %, w = ’1"—(;), which is then reshaped
toY € RV*4 (N = h x w). One of these modules encodes
the ground projected RGB-D observations for the map pre-
dictor (Sec. 3.4) and a separate module is used to encode the
predicted semantic map for the path predictor (Sec. 3.3).

3.3. Cross-modal attention for path prediction

The cross-modal attention for path prediction module
takes as input the instruction representation X and the ego-
centric map encoding Y and formulates the path prediction
problem as a waypoint localization task. In order to learn
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Figure 2. We propose an approach to predict egocentric semantic maps and paths described by natural language instructions. At the core
of our method are two cross-modal attention modules that learn language-informed representations to facilitate both the hallucination of
semantics over unobserved areas as well as the prediction of a set of waypoints that the agent needs to follow to reach the goal. The
components colored in blue refer to the map prediction part (Sec. 3.4) of our model, the ones in orange correspond to the path prediction

(Sec. 3.3), and the yellow boxes are the losses.

a grounded representation of the natural language instruc-
tion on the egocentric map, we define a cross-modal atten-
tion module following the architecture of the self-attention
transformer model [53]. While it is common to concatenate
the representations of the two modalities and then use self-
attention (such as VisualBERT [34]) we follow the example
of LXMERT [51] and treat the egocentric map separately
as the query and the instruction as the key and value. The
idea is that during an episode the language instruction re-
mains the same while the egocentric map changes at each
time-step and is used to query the model for the path.

Specifically, given the egocentric map feature represen-
tation Y;° = Enc (s;) at time ¢ during a VLN episode, and
the instruction features X, we use the scaled dot-product
attention:

Q=YWy, K=XW,,V=XW, (1
T
H} = Softmax <Q\§(E> 1% 2)

where W, Wy, and W, € R?*d are learned parameter ma-
trices, and Hy € RV *? s the attended representation over
the egocentric semantic map regions. In practice, this ar-
chitecture [53] first applies self-attention to each modality
followed by the cross-modal attention.

We define the path as a set of 2D waypoints {pi}¥_; sit-
uated on the egocentric map. The first and last waypoints
always represent the starting position and the final goal po-
sition respectively. During training we sample the remain-
ing waypoints from the ground-truth path with respect to

the instruction. These are used to construct ground-truth
heatmaps P; € R¥*“X? based on a 2D Gaussian centered
at each waypoint with ¢ = 1, where u, v are the height
and width of the heatmap. We predict the entire path at ev-
ery time-step given the entire instruction. This can cause
ambiguity with regards to the waypoint placements towards
the agent’s current pose, since the agent has no knowledge
of the amount of the path covered at a given time-step. In
other words, if the agent is half-way through the path then
the model should learn to predict both backward and for-
ward waypoints along the path, as opposed to predicting
only forward waypoints at the beginning of the episode. We
mitigate this issue in two ways. First, the path prediction
is conditioned on the starting position heatmap P} relative
to the current agent’s pose. Second, we add an auxiliary
loss that trains the model to predict a probability &/ for each
waypoint whether it has already been traversed. We empir-
ically found this auxiliary loss to help the learning process.

The waypoint predictor model is defined as an encoder-
decoder UNet [47] f, that takes as inputs the instruction
attended representation of the egocentric map regions H;
and the starting position Py:

Pe.b =1 (H; . PY). (3)
We train the waypoint prediction with the following loss:
k
Lup =Y _UilIP; = PilI3 — Aebilogéi 4
i=1
where b! is a binary indicator whether the particular way-
point ¢ is visible on the egocentric map at time ¢, and A¢



weighs the auxiliary loss.
3.4. Cross-modal attention for map prediction

We design a language-informed semantic map predictor
for obtaining the egocentric semantic map s; from RGB-D
observations. Given the often limited field-of-view of em-
bodied agents, we are interested in hallucinating the seman-
tic information in regions where the agent cannot directly
observe. While different versions of this procedure were at-
tempted in the past [18, 19,45], our key contribution is to
learn the layout priors by leveraging the spatial and seman-
tic descriptions from the instructions.

The map prediction is defined as a semantic segmenta-
tion task over the top-down egocentric map. Our model
first takes as input the depth observation which is ground-
projected to an egocentric grid o; € RM *w'>3 contain-
ing the classes occupied, free, and void. For the ground-
projection we first unproject the depth to a 3D point cloud
using the camera intrinsic parameters and then map each 3D
point to an A’ x w’ grid following the procedure described
here [25]. Note that o, is an incomplete representation of
the occupancy map around the agent, where all areas out-
side the field-of-view are considered unknown.

We define a cross-modal attention module similar to the
one in Sec. 3.3, where the feature representation Y,° =
Enc (o) is determined as the query, while the instruction
features X are used as key and value. Following Eq. | and 2
(where Y;® is replaced by Y,°) we get the attended repre-
sentation H{ over the incomplete egocentric map o¢. The
prediction model includes two encoder-decoder UNet [47]
models ¢g°, ¢g° stacked together:

0¢ = g° (04, HY) 5p=9° (01, HY, X¢) ()

where {; € R *®'*¢ is a ground-projected semantic seg-
mentation of the RGB frame. Note that H; is concatenated
at the bottlenecks of both ¢g°, ¢° models. The model is
trained with a pixel-wise cross-entropy loss on the occu-
pancy and the semantic classes:

==Y > > arelogdn. 6)

q€(s,0) k

where £ iterates over the number of pixels in the map and
gk,c 1s the ground-truth label for pixel k. The ground-truth
semantic maps are created from the available 3D semantic
information in Matterport3D. The network that produces
is another UNet which is pre-trained separately from the
rest of the model.

Overall learning objective. During training we add up all
the losses from the path and map prediction modules:

L= /\prwp + /\mLm (7)

where the As denote the corresponding loss weights, and
perform a single backward pass through the entire model.

3.5. Controller

The method described so far outputs the path as a set of
2D waypoints {pi}*_, on an egocentric map from an RGB-
D observation. In order to follow this path towards the goal,
at each time-step we designate a waypoint as a short-term
goal, following:

¢ =1+ argmin A(p}, or) (8)

where A is the euclidean distance, [)i corresponds to the
mode of the predicted waypoint heatmap 75Z , and g, is the
agent’s pose at time ¢. This effectively determines the clos-
est predicted waypoint to the agent and selects the next one
in the sequence as the short-term goal pf . In order to reach
the short-term goal, we use the off-the-shelf deep reinforce-
ment learning model DD-PPO [54] that is trained for the
PointNav [ 1] task. DD-PPO receives the current depth ob-
servation and pf and outputs the next navigation action for
the agent. Finally, at any time during the episode the agent
may decide on the STOP action when it’s within a certain
radius 7 (m) of the final goal (last predicted waypoint) and
the confidence of the goal in the predicted heatmap is above
a threshold ~.

4. Experiments

We conduct our experiments in the VLN-CE [32]
dataset, which offers 16, 844 path-instruction pairs over 90
visually realistic scenes in the Matterport3D [8] dataset. We
follow the typical evaluation scenario and report results in
scenes which were observed (val-seen) and not observed
(val-unseen) during training. An episode is considered suc-
cessful if the STOP decision is taken within 3m of the goal
position, and the agent has a fixed-time budget of 500 steps
to complete an episode. As mentioned before, the agent has
access to egocentric RGB-D observations with a horizontal
field-of-view of 90°. We perform three sets of experiments.
First, we compare against other methods on the VLN-CE
dataset including the held-out test set of the VLN-CE chal-
lenge (Sec. 4.1), followed by an ablation study (Sec. 4.2).
Finally, we provide visual examples of the learned represen-
tation (Sec. 4.3). We use two main variations of our method.
CM? refers to our full pipeline that predicts both the ego-
centric map and path from RGB-D inputs, while CM?-GT
refers to using the ground-truth egocentric map as input, ef-
fectively only performing path prediction. All egocentric
maps used are local 192 x 192 with each pixel correspond-
ing to b5em x 5ecm. The map covers a square 9.6 meters
on a side, leaving most of the scene unobserved. We pro-
vide code, trained models and instructions to reproduce our
results: https://github.com/ggeorgakll/CM2.
Implementation details along with additional experimental
results are included in the appendix.
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Figure 3. Navigation example using our method CM? on a scene from val-unseen. The top row shows the RGB observations of the agent,
while bottom shows the path prediction on the egocentric maps (the agent is in the middle looking upwards shown as the green circle). The
red waypoints represent our path prediction at the particular time-step. Observe that the goal, shown as an orange star, is neither visible
nor within the egocentric map at the beginning of the episode. The ground-truth map and path are depicted in the bottom left corner.

Val-Seen Val-Unseen
TL, NEJ] OStT SRt SPLtT TL] NEJ| OStT SRt SPL*?
Seq2Seq+PM+DA+Aug [32] 9.37  7.02 460 33.0 31.0 932 777 37.0 250 220
AG-CMTP* [12] - 6.60 56.2 359 30.5 - 7.9 39.2 231 19.1
R2R-CMTP* [12] - 7.10 454  36.1 31.2 - 7.9 380 264 227
CMA+PM+DA+Aug [32] 926 7.12 46.0 37.0 350 8.64 7.37 40.0 320 30.0
WPN-DD* [31] 9.11 6.57 440 350 320 823 748 350 28.0 260
LAW [46] 934 635 49.0 40.0 37.0 8.89 6.83 440 350 31.0
CM?2 (Ours) 1205 6.10 507 429 348 1154 7.02 415 343 27.6
WPN-CC* [31] 1029 6.05 51.0 40.0 350 1062 6.62 430 360 30.0
HPN-C* [31] 871 517 53.0 470 450 771 6.02 42.0 38.0 36.0
CMZ-GT (Ours) 1260 4.81 583 528 418 1068 623 413 370 30.6

Table 1. Evaluation on VLN-CE dataset. All methods marked with * use panoramic images. CM?-GT is the same as CM?, but uses ground
truth local maps, rather than predicting them. HPN-C and WPN-CC use a more expressive action space than the rest of the methods.
AG-CMTP and R2R-CMPT allow the agent to explore each scene before the experiment begins. Our method is the most successful on

val-seen while it is competitive on val-unseen.

4.1. VLN-CE Evaluation

Here we evaluate the performance of our method on
the continuous vision-and-language navigation task against
current state-of-the-art methods. The metrics reported are
the following: Trajectory length TL (m), navigation error
from goal NE (m), oracle success rate OS (%), success rate
SR (%), and success weighted by path length SPL (%).
More details on these metrics can be found in [1,4].

We compare our method against the following works:

Krantz et al. [32]: Two baselines are used from here.
First, Seq2Seq+PM+DA+Aug is a simple sequence-to-
sequence baseline that uses a recurrent policy to predict
the action directly from the visual observations. Sec-
ond, CMA+PM+DA+Aug utilizes cross-modal attention
between instruction and RGB-D observations. Both meth-
ods use off-the-shelf techniques for Progress Monitor (PM),

DAgger (DA), and synthetic data augmentation.

Chen et al. [12]: This work uses cross-modal attention be-
tween the instruction and a topological map to compute a
global navigation plan. To construct the topological map,
the authors assume the agent can explore the environment
before the execution of the navigation episode. Each node
in the topological map corresponds to a panoramic im-
age. We compare against AG-CMTP and R2R-CMTP which
use the method’s generated map and the maps from the
Room2Room [1] dataset respectively.

Raychaudhuri et al. [46]: This method (LAW) updates the
training setup of CMA+PM+DA+Aug [32] by adjusting the
supervision to use the nearest waypoint on the path rather
than the goal location.

Krantz et al. [31]: We compare against the Waypoint Pre-
diction Network (WPN) and the Heading Prediction Net-
work (HPN) which are end-to-end models that predict rel-



ative waypoints directly from natural language instructions
and panoramic RGB-D inputs. The models differ with re-
spect to the waypoint prediction space. WPN-CC considers
continuous values for distance and direction, WPN-DD con-
siders discrete values, and HPN-C uses a constant value for
distance and continuous for direction. Our method is anal-
ogous to WPN-DD, since our waypoint prediction is on the
discrete 2D space of maps. Investigating more expressive
waypoint prediction spaces is out of the scope of our work.

Quantitative results are shown in Table 1 and a navi-
gation example can be seen in Figure 3. On val-seen our
method CM? outperforms all other baselines except WPN-
CC and HPN-C (which use more expressive waypoint pre-
diction spaces) on navigation error and success rate, while it
is competitive on SPL. In particular, we show better results
than WPN-DD which uses panoramic images (4x larger
field-of-view), and was trained on 200M steps of experience
(285x more data) [31]. This is a characteristic of end-to-
end methods that need to learn all navigation components
such as mapping, planning, and control in a single network
and thus require large amounts of data. In contrast, aligning
language to egocentric maps proves to be much more sam-
ple efficient, as our model was trained with only 0.7M train-
ing samples. Regarding our comparison to [12], AG-CMPT
performs better only on oracle success rate, while our CM?
method has a noticeably higher success rate. However, this
baseline has a prior scene exploration phase, which is not
counted in the task step limit, that acquires knowledge of
scene topology to use during the navigation episode. In
comparison, our CM?-GT, which also has knowledge over
the map, performs better on all metrics. We are also compet-
itive against CMA+PM+DA+Aug and LAW that use cross-
modal attention mechanisms between the instruction and
the RGB-D frames. The latter also employs a more sophis-
ticated reward function that forces the agent to stay on the
path and trains on an augmented dataset with over ten times
as many trajectories. We outperform both in success rate
on val-seen and we have almost the same performance with
LAW on val-unseen. Finally, when the input to our method
is the ground-truth egocentric semantic map (CM?-GT) we
observe a significant increase in success rate in val-seen.
Although the map is local and the goal location is usu-
ally not visible, this performance gain further justifies our
choice of using cross-modal attention on egocentric maps.

VLN-CE Leaderboard We submitted our CM? on the
held-out test-unseen set containing 3.4K episodes in un-
seen environments used for the VLN-CE challenge. Ta-
ble 2 shows the leaderboard as accessed on Mar 8th 2022.
Our method is leading in terms of OS, SR, and NE among
those that use standard observation (no panoramas) and ac-
tion spaces (discrete), and is 4th overall on OS SR, and NE.

Team Name TL NE OS SR SPL
CWP-VLNBERT* 133 59 51 42 36

CWP-CMA* 119 63 49 38 33
WaypointTeam* 80 6.6 37 32 30
CcM? 139 77 39 31 24
TIA* 104 81 42 29 27
VIRL_Team 89 79 36 28 25

Table 2. Results on the VLN-CE challenge leaderboard. Methods
marked with * use either panoramic images and/or a non-standard
action space.

IoU (%) FI (%) PCW (%)
CM2-w/o-MapAttn ~ 21.2 332 71.1
M2 28.3 42.2 76.5

Table 3. Effect of map attention on map and waypoint prediction.

Val-Seen TL NE OS SR SPL
CM2-GT, 7 =15 10.18 501 53.6 495 45.1
CM2-GT, 7 =1.0 1148 494 564 519 438
CM2-GT, 7= 0.5 12.60 4.81 583 528 418

CM?-GT-384,7 =0.5 12.89 4.52 66.4 584 46.7

Table 4. Effect of map size and stop distance threshold on VLN.

4.2. Ablation Study

In this experiment we provide an analysis over our model
and aim to answer the following questions:
How important is the cross-modal map attention? The
cross-modal map attention, shown in Figure 2, is the at-
tention module that learns the semantic grounding and in-
fluences the semantic map prediction. We are interested
in quantifying its contribution towards the map and path
prediction and define the baseline CM?-w/o-MapAttn that
does not include the cross-modal map attention module and
therefore is not aware of the language instruction. We com-
pare against our method CM? on the popular semantic seg-
mentation metrics of Intersection over Union (IoU) and F1
score, and on the Percentage of Correct Waypoints (PCW)
that evaluates the quality of the path prediction. PCW
counts a predicted waypoint as correct if it is within 1.92m
(on the 192 x 192 maps) of the ground-truth waypoint. Re-
sults are reported in Table 3. CM? has higher performance
on IoU, F1, and PCW by 7.1%, 9.0%, and 5.4% respec-
tively. These results show that the cross-modal map at-
tention extracts useful information from language that im-
proves the prediction of the semantic map and the path. Ex-
amples over map predictions are shown in Figure 4.
What is the effect of the stop decision threshold? We vary
the stop decision distance threshold 7 (m) used by the con-
troller and observe the performance on the VLN-CE metrics
in Table 4. This experiment is carried out on val-seen using
CM?-GT. When 7 = 1.5, success rate drops by 3.3% be-
cause the agent chooses to stop more aggressively thus it is
more likely to choose STOP outside the goal radius. On the



CMZ—w/o»MapAttn

Walk behind couch towards
the fireplace. Turn left and
proceed past fireplace and
coffee table. Continue slightly|
left and wait directly in front
of wall with pictures of
children and a puppy on it.

‘Walk out of the bathroom
and to the right. Walk past
the dresser and out of the
bedroom. Walk to the right
and stop just inside the
doorway by the stairs.

=

floor  cushion  bed sofa bathtub shower other wall table  chair counter cabinet fireplace door
Figure 4. Semantic map predictions with and without cross-modal
map attention.

other hand, SPL gained 3.3% since stopping earlier reduces
the path length. This result signifies a trade-off between
success rate (SR) and SPL based on the value of 7 that can
adjust the agent’s behavior.

What is the effect of egocentric map size? All experimen-
tal evaluation of our work (CM?, CM?-GT) uses 192 x 192
egocentric maps. Given that each cell in the map corre-
sponds to S5cm X Scm, this translates to a distance from
the center of the map (where the agent is situated) to each
side of 4.8m. With the mean euclidean distance between the
start position and goal being around 8m across val-seen and
val-unseen episodes, this means that for the majority of the
episodes the goal is not located within the egocentric map at
the beginning. In order to see how much this affects perfor-
mance, we train our path predictor again CM?-GT-384 with
maps of size 384 x 384 (9.6m between the agent and the
sides of the map) and compare to our original method in Ta-
ble 4. Doubling the map size increases SR by 5.6%, OS by
8.1%, and SPL by 4.9% demonstrating that the larger maps
have significant impact on the navigation performance.

4.3. Validation of Semantic and Spatial Grounding

Finally, we provide evidence that the learned represen-
tations can be semantically and spatially grounded on the
egocentric maps. Specifically, we visualize (Figure 5) two
feature representations from the cross-modal path attention
module: 1) The attention decoder output H € RN*d
which we max-pool over the feature dimension d and re-
shape IV back to its encoded map dimensions of h X w to
get a spatial heatmap. This representation is shown to fo-
cus around goal locations and along paths. 2) The cross-

QKT

modal attention (Softmazx (W)) between the map re-

gions and the words in the instruction with dimensionality
N x M from which we can visualize the attention heatmap
for a specific word token over the map. This demonstrates
that the cross-modal attention learns to associate instruction
tokens to semantic objects on the map.

Walk past curved sofa.
Walk past bed. Wait at
bathroom door threshold.

Walk straight through
doorway, turn right, turn

left before you reach the
dining table, walk through
doorway to home gym
and stop.

Walk past the end
table and stop in
the doorway of
the bedroom..

Token: "table"

Walk past the left
side of the bed
and stop in the
doorway.

Token: "bed"

sofa bathtub shower other

floor cushion bed

wall table chair counter cabinet fireplace door

Figure 5. Top: Visualization of attention decoder output H; which
tends to focus on areas corresponding to goal locations. The
agent’s location is denoted with a green circle and the goal with
an orange star. Bottom: Cross-modal attention between map and
specific word tokens.

5. Conclusion

We presented a new method for the Language-and-
Navigation task that solves the problem by first predicting
the egocentric semantic map and then estimating the tra-
jectory, defined by the instruction, on the 2D map. This is
facilitated by two cross-modal attention modules that learn
to semantically and spatially ground the natural language
on the egocentric map. We showcased the effectiveness of
our method with competitive results on the VLN-CE dataset
and demonstrated that grounding the language on the maps
allows for good VLN performance with a fraction of the
data that the end-to-end methods require. Furthermore, we
qualitatively show that our method learns meaningful inter-
mediate representations.
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A. Appendix
Here we provide the following additional material:
1. Discussion on societal impact and limitations.
2. Implementation details.

3. Analysis of path prediction learning with regards to
auxiliary loss and start position input.

4. Analytical results over semantic map prediction to as-
sess the contribution of cross-modal map prediction.

5. Additional results on the effect of stop decision thresh-
old.

6. Additional qualitative navigation results and visualiza-
tions of the learned attention representations.

A.1. Societal Impact and Limitations

Potential negative societal impact. Our current method
is trained on scenes from Matterport3D which contains
scans of homes from North America and Europe. Since
we do not model out-of-distribution scenarios, deploying
our method in safety critical situations such as rescue op-
erations or hospitals could have negative outcomes. Fur-
thermore, house layouts strongly correlate with regions of
the world and with socio-economic factors, making it likely
that agents using our algorithm will underperform when de-
ployed in other parts of the world or in poor or minority
houses which are frequently underrepresented in datasets.
Limitations. While our approach achieves results compa-
rable with the state of the art, we acknowledge that there
is much room for improvement.We would like to point out
three limitations of our method. First, since we predict
the path from the semantic map, we are not utilizing infor-
mation from the instructions that describe object attributes
such as color, (i.e., “brown table”, “red table). This can
be important in situations where we need to distinguish
between two instances of the same category. Second, we
depend on the pretrained BERT representation, after fine-
tuning its final layer, to provide all relevant information
about the instruction. We do not use any explicit language
representation, which could allow for better decomposition
of instructions. Third, our method is limited by size of the
local egocentric map. We cannot spatially ground informa-
tion to locations outside of the local map, and while increas-
ing the size of the local map can significantly improve per-
formance, it is also computationally expensive.

A.2. Implementation details

Our method is implemented in PyTorch [43]. The
UNet [47] models used in our method have four encoder and
four decoder convolutional blocks with skip connections.
The entire model is trained with the Adam optimizer and
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Figure 6. Per-class semantic map predictions with and without cross-modal map attention. Performance gains are more noticeable for

object categories over floor and wall.

TL NE OS SR SPL
CMZ-GT,wlo P0, \c =0 937 680 329 293 222
CM2-GT, wio P? 1062 6.18 384 343 265
CM2-GT, \¢ = 0 1261 504 543 49.1 39.0
CM2-GT 1260 481 583 528 418

Table 5. Analysis of our path prediction strategy demonstrating the
contributions of ¢ and the auxiliary loss using navigation metrics
on val-seen set.
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Figure 7. Per-waypoint path prediction results with and without
cross-modal map attention. Waypoint 9 corresponds to the goal,
while waypoint 0 is used as input to our method.

a learning rate of 0.0002. During training all As are equal
to 1. The training data for both the map and waypoint pre-
diction were sampled from the ground-truth paths provided
in VLN-CE train split. We used around 700K examples to
train CM? and around 500K to train CM?-GT. The seman-
tic segmentation that produces x is another UNet which we
pre-trained separately from the rest of the model on RGB
observations from the Matterport3D scenes. The egocentric
map and waypoint heatmap dimensions are b’ = w’ = 192

12

and u = v = 24 respectively. Each pixel in the egocentric
map corresponds to physical dimensions of 5em X 5em. We
use £ = 10 waypoints and ¢ = 27 semantic classes from the
original 40 categories of Matterport3D. For the controller
we define stop distance threshold 7 = 0.5 and goal confi-
dence threshold v = 0.6. Our method does not use any re-
currence or an implicit state representation so the map and
path predictions are temporally independent. However, dur-
ing a navigation episode we maintain a global occupancy
map using the ground-projected depth o; that is registered
using Bayesian updates. The input to the model is an ego-
centric crop from this global map, so the agent is aware of
previously observed occupancy.

A.3. Analysis of path prediction learning

We investigate the contribution of certain choices we
made to mitigate the ambiguity over waypoint placements
during path prediction learning as discussed in section 3.3
of the main paper. In particular, we train the following
variants of our CM?-GT model: 1) without using the start-
ing position heatmap P} as input, 2) without the auxiliary
loss for predicting whether a waypoint has been traversed
(Ae = 0), and 3) without PP and A¢ = 0. The variants are
evaluated against our proposed approach on val-seen using
the navigation metrics from section 4.1 of the main paper
(Table 5). We observe that without the auxiliary loss suc-
cess rate drops by 3.7%, while not using the starting po-
sition further decreases success rate by 18.5%. The worst
performance by far is recorded when both are not utilized.
The results justify our choices and suggest the importance
of anchoring the prediction of the entire path to a starting
location in the egocentric map, complemented by an aux-
iliary objective that forces the model to predict its current
position on the path.



Val-Seen Val-Unseen
TL NE OS SR SPL TL NE OS SR  SPL
CM2,7=15 954 606 424 388 346 9.07 7.01 352 313 277
CM2,7=10 1072 588 492 426 359 10.04 7.09 39.0 333 279
CM2,7=05 1205 6.10 50.7 429 348 1153 7.02 415 343 276

Table 6. Additional results on the effect of stop distance threshold on VLN.

A.4. Analytical results for cross-modal map atten-
tion

In section 4.2 of the main paper we investigated the im-
portance of the cross-modal map attention component by
comparing our approach to the baseline CM?-w/o-MapAttn
that is unaware of the language instruction during map
prediction. Here, we show additional per-class and per-
waypoint results over F1 score (Figure 6) and PCW (Fig-
ure 7) respectively. First, in Figure 6 we observe that the
model trained with the cross-modal map attention (CM?)
performs better on all semantic categories against the base-
line. Furthermore, the performance gain is more pro-
nounced over object categories (e.g., toilet 12.4%, sink
12.6%) as opposed to semantic classes referring to the struc-
ture of the scene (e.g., floor 5.6%, wall 5.1%). This rein-
forces our initial hypothesis that the attention component is
able to pick semantic cues from the instruction and improve
the map prediction. Additionally, in Figure 7 we demon-
strate path prediction results over individual waypoints (1-
9). Waypoint 0 is omitted since it is used as input to our
method, while waypoint 9 corresponds to the goal location.
As expected, waypoints earlier in the path have larger PCW.
However, an interesting observation is that the gain in per-
formance increases for waypoints closer to the goal rather
than in the beginning of the path, thus demonstrating that
improved map prediction is crucial for predicting waypoints
far from the starting position.

For additional qualitative comparisons of semantic map
predictions between the baseline and our approach see Fig-
ure 11.

A.5. Additional results on effect of stop distance
threshold.

We repeat the experiment presented in section 4.2 of the
main paper regarding the effect of the stop distance thresh-
old on the VLN task using our CM? (no GT map) agent on
both val-seen and val-unseen splits. In Table 6 we observe
a similar trend as that shown in Table 4 of the main paper.
Success rate is higher when 7 is low, because the agent takes
the stop action more cautiously, while trajectory length is
best when 7 is high.
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A.6. Additional visualizations

Finally, we share additional visualizations of navigation
episodes (Figure 10) and more examples of spatial and
semantic grounding of the learned representations. Fig-
ure 8 shows the attention decoder output H; and Figure 9
presents more examples of the cross-modal attention. See
section 4.3 of the main paper for more details.



Walk through the
dinning room and

to the dark framed door
on the left side of an
alcove. Walk to the
entrance of the dark
framed door that opens
to a gold seating area.

Walk forward through
the door and go out

of the bathroom,
through the door on
the left. Walk down the
hallway and stop at the
first door on the left.

Walk out of the
laundry room and
turn left. Walk into
the bedroom and
turn left. Stop just
inside the closet.

Walk out of the room
and through the hallway.
Turn right at the end

of the hall way and

walk into the bedroom.
Turn left into the closet.
Stop in the closet.

Walk into the hardwood
floored room, heading
towards the fireplace
at the opposite end.
Once you're at the
fireplace, turn right
and go into the

room ahead of you.

Walk past the mirror
on your right, and
continue to walk
down the hallway.
Walk into the room
directly right of the
doorway in front of you,
and stop once you walk in.

/alk down the hallway
with the washer and dryer
on your right, walk all the
way to the end. Walk through
the doorway that is to the left
of the sink, Stop immediatly

once reach the doorway on
the left that leads into the

room with the table.

floor cushion  bed sofa bathtub shower other

wall table chair  counter cabinet fireplace door

Figure 8. Visualization of attention decoder output H; that fo-
cuses on areas around goal locations and along paths. The agent’s
location is denoted with a green circle and the goal with an orange
star.
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Go out the door
on the left then
turn left and go
straight through

the arch into the
room with the red
couches and wait
by the red couches.

Token: "couches"

Walk past the end
table and stop in
the doorway of
the bedroom.

Token: "table"

Go out the door

on the left then
turn left and go
straight through
the arch into the
room with the red
couches and wait
by the red couches.

Token: "door"

Walk past the stairs
and down the hall.
Walk into the right
bedroom at the end
of the hall and stop.

Token: "stairs"

Walk past staircase,
turn left at dining

table and stop in
front of desk.

Token: "table"

floor cushion  bed sofa bathtub shower other
wall table chair  counter cabinet fireplace door

Figure 9. Visualization of the cross-modal attention representation
between map and specific word tokens. The representation tends
to focus on semantic areas of the map that correspond to the ob-
ject referred to by the token. Note that in the example on the 4th
row the representation focuses on the area where stairs are located,
even though we do not use a specific semantic label for stairs in
the map.



Exit bedroom into
hallway. Turn right
and then walk into
doorway on the left.
Stop in the middle

of the bathroom next
to bathroom sink.

Walk past the

two beds and the
bathroom doorway.
Walk down the open
hallway and stop by
the wooden armoire.

Turn right and
walk straight until
you are standing
in a bedroom door,
then stop.

Go past a display
case, through a
hallway with an
eye chart, into the
waiting area, and
stop in front of a
light beige couch
with six pillows.

floor cushion bed sofa bathtub shower other wall table chair counter cabinet  fireplace door

Figure 10. Navigation examples using our method CM? on val-seen (first from top) and val-unseen (last three). The top row of each
example shows the RGB observations of the agent, while bottom shows the path prediction on the egocentric maps (the agent is in the
middle looking upwards shown as the green circle). The red waypoints represent our path prediction at the particular time-step. Observe
that the goal, shown as an orange star, is neither visible nor within the egocentric map at the beginning of the episodes. The ground-truth
map and path are depicted in the bottom left corner.
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Head past the counter
and turn right at the
stoves. Stop just inside
the dining area next to
the brown chair.

Exit the bathroom.
Turn right and exit
the room using the
door on the right.

Turn left. Turn right
into the room. Wait
near the sink.

Go right around the
dinning table towards
the exit. turn right in
the hallway. take a
step and take another
right and stop in front
of the bathroom.

Walk past the bathtub
then go into the walk

in closet then stand

in the middle of the room.

Walk through the office
area out through the
sliding barn door. Turn

and walk into the
kids bedroom next
to the bathroom.

floor cushion bed

sofa bathtub shower other

wall

table

chair

counter cabinet fireplace door

Figure 11. Semantic map predictions with and without cross-modal map attention.
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