2202.07028v3 [cs.Al] 10 Jun 2022

arxXiv

One Step at a Time:
Long-Horizon Vision-and-Language Navigation with Milestones

Chan Hee Song! Jihyung Kil*

Tai-Yu Pan'

Brian M. Sadler? Wei-Lun Chao!

Yu Su'

'The Ohio State University

2U.S. Army Research Laboratory

{song.1855, kil.5, pan.667, chao.209, su.809}Rosu.edu

brian.m.sadler6.civ@army.mil

Abstract

We study the problem of developing autonomous agents
that can follow human instructions to infer and perform a
sequence of actions to complete the underlying task. Sig-
nificant progress has been made in recent years, especially
for tasks with short horizons. However, when it comes
to long-horizon tasks with extended sequences of actions,
an agent can easily ignore some instructions or get stuck
in the middle of the long instructions and eventually fail
the task. To address this challenge, we propose a model-
agnostic milestone-based task tracker (M-TRACK) to guide
the agent and monitor its progress. Specifically, we pro-
pose a milestone builder that tags the instructions with nay-
igation and interaction milestones which the agent needs to
complete step by step, and a milestone checker that system-
ically checks the agent’s progress in its current milestone
and determines when to proceed to the next. On the chal-
lenging ALFRED dataset, our M-TRACK leads to a no-
table 33% and 52% relative improvement in unseen suc-
cess rate over two competitive base models. Check our
code at https://github.com/chanhee—luke/M-
Track.

1. Introduction

As autonomous agents (e.g., robots) become more inte-
grated into our daily life, it is increasingly important to de-
velop autonomous agents that can understand natural lan-
guage commands and carry out the corresponding tasks. To
facilitate such a goal, various benchmarks have been pro-
posed in the realm of robot instruction following such as
vision-and-language navigation (VLN) [1,5,7, 12, 19,41,
42,55,64], together with a number of novel algorithms that
consistently push forward the state of the art [30,31,50,54].
Specifically, to succeed in VLN, an agent must compre-
hend the language instruction, ground it into the partially-

Goal: "Put a hot potato on the counter to the right of the sink"

2 X Interaction: Potato, Fridge 3 JNavigation: Microwave

Navigation: Fridge

"Turn around and face the fridge" "Take a cold potatoe out of the fridge"

o Interaction: Microwave

5 | Navigation: Counter

"Turn left and go to the counter
to the right of the sink"

Figure 1. Illustration of our M-TRACK approach. We show
an ALFRED task [46], which consists of an overall goal (text on
the top) and six subtasks (text below each image). The blue/red
text box within each image is our extracted navigation/interaction
milestones from the subtask instructions. An agent needs to reach
the milestone of the current subtask (e.g., reaching proximity to
the target object for navigation milestones, or having interacted
with the target objects for interaction milestone; green masks for
target objects) before it can proceed to the next subtask.

"Cook the potato in the microwave"”

"Put the cooked potato on the counter”

observable environment with only visual perception, and
plan and perform navigation and interaction actions in the
environment to complete the task.

One critical challenge in VLN arises when the task hori-
zon becomes substantially longer [46]. That is, a task is so
complex that it essentially consists of multiple “subtasks”
that need to be completed sequentially to fulfill the whole
task. For example, in Figure 1 the task “put a hot potato
on the counter to the right of the sink” can be decomposed
into six subtasks. Moreover, the subtask “heat the potato”
must be carried out before the subtask “put the potato on
the counter”; otherwise, the final task is doomed to fail no
matter how accurate the subsequent planning is. Such a se-
quential dependency requires the agent to closely monitor

https://github.com/chanhee-luke/M-Track
https://github.com/chanhee-luke/M-Track

its progress and ensure it is staying on the right track when
carrying out a long-horizon task.

At first glance, this challenge may seem trivial if the lan-
guage instruction is detailed enough (like in Figure 1), such
that it already defines the subtasks and their order. How-
ever, as shown in the literature [4, 20, 30,47, 54, 61] and
our experiments, an agent fed with detailed instructions still
frequently skips subtasks, or wanders around within a sub-
task even when it is already completed. In essence, what an
agent truly struggles with is the lack of awareness of where
it currently is in the long subtask sequence and how much
progress it has made within a subtask.

To address this issue, we propose to equip VLN agents
with an explicit task tracker, which keeps track of the
agent’s progress within a subtask and guides it for when to
move on to the next. Concretely, we propose the concept of
milestone, which renders the necessary condition of com-
pleting a subtask. Namely, for a subtask to be considered as
completed, the milestone must be reached. Take the subtask
“take a cold potato out of the fridge” in Figure 1 as exam-
ple. To complete it, the necessary condition is that the agent
must see the potato and the fridge, be close enough to them,
and perform an interaction action with the potato. We argue
that by explicitly extracting such milestones from the in-
structions and grounding them to the environment state, we
can systematically determine if the agent should continue
working on the current subtask or proceed to the next.

To this end, we propose the milestone-based task tracker
(M-TRACK), which consists of two components: milestone
builder and milestone checker. The milestone builder ex-
tracts the milestone (i.e., the necessary completion condi-
tion) of each subtask from the corresponding language in-
struction. We model it as a named entity recognition prob-
lem and train a BERT-CREF tagger [9, 48] to accurately ex-
tract both the target objects and their action type (i.e., nav-
igation or interaction). The milestone checker then tries to
ground (i.e., identify and localize) the extracted target ob-
jects in the perceived environment using an object detection
model [14] and checks if the agent is close enough to them
and/or is about to interact with them — to decide if the agent
is completing the current subtask and ready to move on. It
is worth noting that our M-TRACK only needs to access the
language instructions, the visual input to the agent, and the
agent’s action, not any internal states of the agent. Thus,
it is model-agnostic and can be easily integrated with any
agent model with minimal changes.

How can M-TRACK interacts with the agent to affect
its action (e.g., to not skip a subtask)? We propose two
simple yet effective ways. First, at any time step, we feed
the agent with only the part of the instructions that corre-
sponds to the current subtask determined by the milestone
tracker. This explicitly guides the agent to focus on the cur-
rent subtask. Second, and more importantly, we apply the

milestone checker proactively — before the agent executes
its predicted action — to reject actions that will lead to sub-
task failures. For instance, we reject the action of taking a
“sponge” if the milestone object is “fork” (Figure 2).

We validate M-TRACK on ALFRED [46], a recently
released large-scale VLN dataset for common household
tasks. The tasks in ALFRED are considered long-horizon
because on average each task needs 50 actions to com-
plete. In contrast, another popular dataset R2R [1] needs
only 5. We integrate M-TRACK into two baseline VLN
models LSTM [46] and VLNOBERT [18], and demonstrate
notable and consistent performance gains. When tested in
seen environments, M-TRACK leads to 16%—57% relative
improvement in success rate. In more challenging unseen
environments, the relative gain increases to 33%-52%. Our
ablation studies and qualitative results further verify that the
improvement indeed comes from agents able to better fol-
low the sequence of subtasks and stay on the right track.

2. Related Work

VLN datasets. Significant efforts have been devoted to cre-
ating simulated environments and datasets for VLN, where
a virtual agent has egocentric perception of the environment
and takes actions to navigate in it [1,5,7,12,19,41,42,55,
]. However, most datasets do not consider interaction
actions with objects, significantly limiting the complexity
of tasks that an agent can perform. The recent ALFRED
dataset [46] is among the first to provide tasks that involve
both navigation and interaction actions, providing a more
challenging benchmark with much longer task horizons.

VLN models. Most early VLN models follow an LSTM-
based sequence-to-sequence architecture, taking language
and visual sequences as input and predicting a sequence of
actions [1, 11,23,30,46,50]. Because of the recent success
of the Transformer [51] in vision tasks, Transformer-based
models are increasingly adopted for VLN [18,27,32,40,49].
Our M-TRACK is model-agnostic and is compatible with
models of both types (cf. §4.3).

Natural language instructions. ALFRED provides each
task with both a high-level (i.e., goal) instruction and more
detailed low-level instructions. Most previous studies train
the agent with the whole instruction (i.e., concatenation
of the high-level and low-level instructions) at each time
step [21,40,46,47,49]. However, for long-horizon tasks
like those in ALFRED, the low-level instructions can be
quite long (six sentences on average). An agent fed with
the whole instruction thus could have difficulty digesting
the long instruction and easily lose track of the progress.
M-TRACK helps agents focus their attention on the most
pertinent instruction and reduce distraction.

Step-by-step language guidance. To address the issues
with long instructions, learning low-level instructions step

=10
- L-Ebel: sink k3
; Reachability: False

Predicted Actions MoveAhead —T

MoveAhead

=12 =13

‘ Label: siﬂ“

Reachability: True i

Label: sponge £

Reachabili
cachability: True Label: fork

== Reachability: True &5
€ (Rickupsponge)
(Pickup, fork)

e

Milestone Checking [False | [False |

[True | [False | [True |

Milestones { (navigation, sink)

} { (interaction, fork) J

Low-level Instructions "Turn and go to the sink"

"Pick up fork from sink, to the right of the green sponge"

Figure 2. Overview of the milestone checking process. Milestones are extracted from the current low-level instruction by our milestone
builder (§4.1.1). After an action is predicted, our milestone checker (§4.1.2) examines, based on objects with reachability information (text
in images) from its object detector, if the resultant state satisfies the milestone. Only when the milestone is satisfied, the next low-level
instruction is provided to the agent. The agent is prevented from picking up a wrong object (sponge) by our proactive checking (§4.2).

by step has been explored in several prior studies [8, 17,35,
61,63]. BabyWalk [63] learns the low-level instruction step
by step using curriculum learning. HiITUT [61] decomposes
the whole instruction into hierarchical sub-problems and
learns sequentially with a hierarchical task network. Con-
current to this work, FILM [35] decomposes the instruction
into subtasks and learns them sequentially with the help of a
semantic map. M-TRACK shares a similar rationale. How-
ever, M-TRACK is notably different from existing meth-
ods, especially regarding when to feed the next low-level
instruction during test time. First, M-TRACK explicitly
and systematically checks the agent’s progress, during both
training and test time, by 1) defining the completion con-
dition, i.e., the milestone, of each subtask and 2) verifying
the milestone by grounding it into the environment via a
visual object detector. In contrast, existing methods either
train a binary classifier to determine subtask completion [7],
or simply set an upper bound for the number of actions to
execute within each subtask [61, 63], or only checks if the
agent needs to stop using a separate module [57]. As will
be seen in §5, M-TRACK notably outperforms these meth-
ods in tracking the agent’s progress and feeding the right
instruction. Second, M-TRACK also proactively guides the
agent for better action prediction, creating another gain in
performance (cf. §4.2). Finally, M-TRACK is not embedded
in any specific VLN model; it is model-agnostic and can be
easily integrated into different VLN models (cf. §4.3).

3. VLN Background

A VLN task is generally defined as follows: given a lan-
guage instruction I, an agent needs to infer and perform
a sequence of actions {ag, ay,- - ,a¢,--- } in the environ-
ment F to complete the task. In datasets like ALFRED [46],
the instruction [is composed of a high-level instruction Iz
and a list of low-level instructions Iy, as exemplified in

Figure 1. A VLN task can thus be represented by a tuple
(I, E,G), in which G is the goal test of the task.

For an agent to perform the task, it will be placed in the
environment F and have a certain pose at time step ¢, from
which it can receive a visual input v;. Based on v; and the
instruction [, the agent then predicts an action a;, which
can either be a navigation one that changes the agent’s pose
(e.g., MoveAhead) or an interaction one that interacts with
the environment (e.g., PickupObject). The agent also needs
to predict a binary mask for the target object if it predicts
an interaction action. Both types of actions can potentially
change the visual input v, of the next time step. The agent
will stop when it believes the task has been completed. The
final state of the environment is then compared with the goal
state GG to determine task completion.

Following ALFRED, we discretize an agent’s action
space into 5 navigation action (MoveAhead, RotateRight, Ro-
tateLeft, LookUp, and LookDown), 7 interaction actions (Pick-
upObject, PutObject, OpenObject, CloseObject, ToggleOnObject,
ToggleOffObject, and SliceObject), and 1 stop action (Stop).

Agent model. Without loss of generality, we define an
agent model as a; = f(v¢, Iy, hy), where h; is the mem-
ory from the previous time steps (e.g., the hidden state of
an LSTM). a; is a tuple (action, object mask); the mask is null
for stop and navigation actions. I is the instruction input at
time ¢, which can be the entire I or a portion of it.

4. Milestone-based Task Tracker (M-TRACK)

For long-horizon VLN tasks, an agent needs to complete
multiple subtasks, usually in a specific order, to complete
the whole task. More specifically, each low-level instruction
in I, can be seen as a subtask. Agents then have to decide,
often implicitly, which subtask it is doing at each time step
and when to move on to the next subtask, which itself is

a challenging problem for the agent. To address that, we
introduce an auxiliary module, milestone-based task tracker
(M-TRACK), to explicitly and interactively guide the agent
to make such decisions (see Figure 2 for an overview).
Next, we first introduce the design of M-TRACK (§4.1),
followed by how to integrate it with agent models (§4.2).
We then introduce two base agent models (§4.3) and how to
train the base models with reinforcement learning (§4.4).

4.1. Design of M-TRACK

The core functionality of M-TRACK is to decide when an
agent should move on to the next subtask. On the surface,
this may be done simply by training a (binary) classifier,
which takes all the language/visual signals as input. Do-
ing so, however, does not exploit the fact that the (sub)tasks
are compositional, composed of entities (e.g., objects) that
are identifiable and localizable both in the environment and
in the instruction. Leveraging the compositional nature of
the (sub)tasks has multiple advantages. First, it reduces the
input space for making the decision from the space of lan-
guage/visual signals to that of discrete entities. Second, it
makes the decision rule systematic and explainable: we can
make the decision by directly comparing the entities de-
tected in both modalities. Both of them could improve the
generalizability of the decision function.

We design M-TRACK to explicitly consider the compo-
sitional nature of (sub)tasks. Specifically, we introduce the
concept of milestone, which is the necessary condition for
completing a subtask, i.e., an agent must reach the mile-
stone in order for the corresponding subtask to be consid-
ered as completed. For example, if the subtask is “move to
the mug”, then the agent must navigate to the mug, see it,
and be close enough to the it. If the subtask is “pick up the
mug”, then the agent must see the mug, be close enough
to it so that it can then interact with it. These two exam-
ples render the key ingredients of a milestone, which are
its target entities and its type (navigation or interaction).
Meanwhile, we say an agent has reached a milestone only
when it can perceive (see) the target entities, is already close
to them, and is doing the right type of action with them.

To this end, we represent a milestone by a tuple (type,
target), and decompose our M-TRACK into two components:
1) a milestone builder which constructs milestones from the
low-level instructions I, and 2) a milestone checker that
checks if a milestone has been reached by an agent.

4.1.1 Milestone Builder

We generate the milestone of a subtask according to its cor-
responding low-level instruction in [, using named entity
recognition [9]. For example, given an instruction “Turn
to the left and face the toilet”, the milestone builder should
output the tag (navigation, toilet). For the instruction “Pick the

Target Type Val Seen Val Unseen
Navigation 90.16 90.62
Interaction 96.85 97.17

Table 1. F1 score of milestone builder on ALFRED validation.

soap up from the back of the toilet”, the milestone builder
should output (interaction, soap).

For an interaction milestone, it should contain the target
objects that the agent is going to newly interact with in the
current subtask. For instance, if the subtask is “Put down
the potato on the counter” (Figure 1), the agent is supposed
to already be holding a potato (from previous subtasks).
Thus, “potato” is not a milestone target for the current sub-
task but “counter” should be. For a subtask that has multi-
ple objects to be interacted with, the builder is designed to
tag all of them. For instance, in the subtask “Grab a potato
from the fridge” (Figure 1), the agent needs to 1) open the
fridge, 2) pick up the potato, and 3) close the fridge. In
this case, the builder tags both the potato and the fridge as
the targets for an interaction milestone. In cases that the
builder does not extract any target from the current subtask,
it will merge the current subtask with the next one and use
the milestone extracted from the next subtask.

Without loss of generality, we adopt a BERT-CRF model
[9, 48] for the milestone builder, and train it with data de-
rived from the ALFRED training data. Training data is
prepared using the metadata from the ALFRED simulator.
More details are in the supplementary materials. We show
that our milestone builder reaches a fairly high F1 score (see
Table 1). More analysis will be discussed in §5.3.2.

4.1.2 Milestone Checker

We introduce a milestone checker that determines if an
agent has reached a milestone (see Figure 2). Specifically,
we design it to be explicit: we directly estimate the state of
the agent/environment from the visual input and compare
it with the milestone. A navigation milestone is reached if
the target object is detected in the visual input and located
within a reachable distance to the agent (1.5 meters in AL-
FRED). An interaction milestone is reached with an extra
condition: the agent has to interact with the target.

State estimation. We train an object detector using data
from the ALFRED simulator that can not only localize and
identify all 116 ALFRED object classes but also estimate
their reachability (i.e., within 1.5m or not). We build upon
the Mask R-CNN model [14] and introduce an additional
binary classification head for the reachability of each de-
tected object. The ground-truth labels for reachability are
obtained from the ALFRED simulator for training.

Milestone checking. As mentioned earlier, to reach either
a navigation or an interaction milestone, the target objects

must be detected and located within a reachable distance.
To check this, we compare the target object names, which
are extracted from the language instruction (e.g., “kitchen
island”), to the class labels (e.g., countertop) of the objects
detected by Mask R-CNN, essentially a symbol grounding
task. We only consider the detected objects that are esti-
mated to be reachable. We apply an off-the-shelf word sim-
ilarity tool based on Wordnet [10] with WUP [56] similarity
from NLTK [29] to match the target names with the object
labels. The reachable object whose label has the highest
similarity (above a threshold) to a milestone target is con-
sidered as the grounded instance of that target; the target is
then marked as a success.

For interaction milestones, we need to further check if
the agent is interacting/has interacted with the target. As
defined in §3, an interaction action is a tuple of (action, ob-
ject mask); the object mask is simply a binary map over the
input image. To determine if the agent’s action is for the
milestone target, we calculate the intersection-over-union
(IoU) score between the object mask and the milestone tar-
get (provided by Mask R-CNN): if the IoU score is over
a certain threshold (0.5), it is considered matched with the
target object of the milestone. For an interaction milestone
with multiple targets, the agent has to perform multiple
interaction actions to interact with all of them. We keep
a checklist of all the milestone targets. The milestone is
reached after all the targets have been interacted with.

4.2. Planning with M-TRACK

The discussion of M-TRACK so far is detached from the
agent. The next question is, how can M-TRACK affect an
agent’s actions, e.g., to prevent it from skipping a subtask?
We propose two simple yet effective ways. First, at any
time step, we feed the agent with only the instruction of the
current subtask determined by M-TRACK. This explicitly
guides the agent to focus on the current subtask. Specifi-
cally in ALFRED, we feed the concatenation of Iz and the
one sentence in [y, for the current subtask as opposed to the
entire I;,. We do so starting from the beginning of a task,
when the first sentence of I, is guaranteed to be the first
subtask. We then proceed to the next sentence only after
the current subtask is marked as completed by M-TRACK.
The use of M-TRACK frees the agent from solely relying
on its internal mechanism like attention and hidden states to
decide subtask switching.

Second, we apply the milestone checker proactively for
interaction milestones — before the agent executes its pre-
dicted action. This can prevent an agent from interacting
with a wrong object, as opposed to trying to correct the mis-
take after it has happened. For example, if the milestone is
(interaction, fork) but the agent’s predicted binary mask for
interaction does not overlap with the grounded instance of
fork in the image, M-TRACK will reject the agent’s action

[[CLS] Put sliced ... [SEP] Pick up apple]

Panoramic
Observations

State &
Contexts

VLN Model

- ‘: Pointer Network

N =
Updated Object/Scene = ™ ~ Navigation
State & Contexts '
N » MLP (—]Interact\cn S

'
'

'

'

'

'

'

:

b4 ¢ =
A N e e '
'

'

Embedding ; Zt o >/ Act_|0n:

'

Predicted action: (PickupObject, apple)
M-Track

Milestone (interaction, Milestone
Builder apple) Checker

(True, PickupObject, apple)

Figure 3. Architecture of VLNOBERT with M-TRACK.

by asking it to select another (action, object mask) tuple (Fig-
ure 2). This saves the agent from having to generate an
action sequence for recovery, for example, to put the incor-
rectly picked-up object back down.

In our implementation, if the first interaction action is
rejected, we move on to the next action in the agent’s top
N list (e.g., from a softmax classifier). We iterate over the
N actions until we find an interaction action whose mask
matches with the milestone target or we find a navigation
action instead (e.g., when the right object is not in sight).
If none of those happens, the agent will take its top ranked
navigation action. We set IV to be 5 in the experiments.

4.3. Agent Models
4.3.1 VLNOBERT Baseline

Recently, Transformer-based models are becoming increas-
ingly popular for VLN tasks [40,40,49,61]. Following this
line of work, we build upon the VLNOBERT [18] model
which introduces the concept of recurrent state vector into
the Transformer architecture. Since VLNOBERT was de-
signed for the R2R dataset, which contains mostly short-
horizon navigation tasks, we adapt it for ALFRED with a
series of modifications. Input-wise, we utilize a pre-trained
vision encoder! to extract a scene feature from 8 panoramic
views and also object features from each view as our vi-
sual input. For action prediction, unlike VLNOBERT that
only deals with navigation actions, we employ a pointer net-
work [52] to choose between navigation, interaction, and
stop actions: if the pointer network chooses a scene feature,
agent outputs the navigation actions needed to navigate to

IFor simplicity, we use the same Mask R-CNN model that is used in
our milestone checker, but it is not necessary.

that scene; if it chooses an object feature, agent outputs the
mask for that object, and additionally use an MLP to pre-
dict the interaction action type; if it chooses a stop feature
(added to the list of visual features as an all-zero vector),
agent outputs Stop. The MLP takes the concatenation of the
chosen object feature and the updated state embedding as
input. The architecture as well as its integration with M-
TRACK is illustrated in Figure 3, and more implementation
details are provided in the supplementary materials.

4.3.2 LSTM Baseline

To further show the model-agnostic nature of our M-
TRACK, we use the LSTM baseline introduced in ALFRED
[46], and extend the architecture with the same pre-trained
vision encoder used in VLNOBERT. Furthermore, to lever-
age the power of the pre-trained vision encoder, we follow
[40,47] and ask our agent to select an object from the de-
tected objects instead of directly predicting a binary mask.
The corresponding pixel mask is retrieved from the selected
object. Refer to supplementary materials for details.

4.4. Learning

As shown in the ALFRED paper [46], base models like
the LSTM performs rather poorly on ALFRED when sim-
ply trained with behavior cloning. Prior studies on other
VLN tasks have demonstrated the importance of reinforce-
ment learning (RL) [18,50,63], but its effectiveness has not
been validated on ALFRED. We train the models with a
combination of behavior cloning (using the cross-entropy
loss between the predicted action sequence and the ground
truth), object feature selection loss (for interaction actions),
and RL. We apply the A2C algorithm [37] which, at time
t, samples an action a; according to agent’s predicted log
probability distribution log(p¢), and measures the advan-
tage for that action adv; with a critic network and a re-
ward. We consider four different types of reward: 1) the
straight line distance between the agent and the current nav-
igation/interaction target, 2) the interaction action match-
ing with the ground-truth interaction action which we can
compute from the environment state, 3) the visibility of the
target, i.e., whether the target is reachable (within 1.5m in
ALFRED) and is in sight by the agent, and 4) the final task
success. Following VLNBERT [18], we combine behav-
ior cloning loss, cross-entropy loss for object selection and
A2C.

5. Evaluation

5.1. Experimental Setup

ALFRED. We validate our approach on the ALFRED [46]
dataset which evaluates an agent’s language-guided nav-
igation and interaction abilities for common household

tasks. ALFRED consists of 8,055 expert demonstra-
tions annotated with 25,743 natural language instruc-
tions. The standard training/validation/test splits contain
21,023/1,641/3,062 examples, respectively. The validation
and test sets are further split into 1) a seen set where the en-
vironments have been seen during training and 2) an unseen
set that contains new environments. The validation/test sets
include 820/1,533 seen and 821/1,529 unseen examples.

Evaluation metrics. We report the three main metrics used
by the ALFRED leaderboard. Success Rate (SR): a binary
indicator of whether all subtasks were completed. Path-
Length Weighted Success Rate (PLWSR): SR weighted
by (expert demonstration path length)/(agent path length).
Goal-Condition Success Rate (GC): ratio of completed
goal-conditions.” We note that success rate on the unseen
test set is considered the primary metric for ranking because
models are prone to memorizing the seen environments and
often fail to generalize to unseen environments.

Models for comparison. We denote the base models de-
scribed in §4.3.1 and §4.3.2 as VLNOBERT and LSTM, re-
spectively. To improve their competence on ALFRED, we
further augment them with 1) pre-training their vision en-
coder on ALFRED images, and 2) reinforcement learning
(§4.4). We denote the enhanced models as VLNOBERT-L
and LSTM-L, indicating their improved capability for long-
horizon tasks. Finally, we integrate each of them with M-
TRACK. Even though the focus of our evaluation is to test
the effectiveness of M-TRACK on improving different base
models, we still compare our results with other methods that
are already published. Please refer to the supplementary
materials for implementation details.

5.2. Main Results

We summarize the main results on the ALFRED test set
in Table 2. First of all, the results show that both of our
base models are highly competitive, performing on par or
better than many recent VLN models such as E.T., LWIT,
and HiTUT. On top of that, M-TRACK is highly effective
in improving both base models: it improves the unseen SR
of LSTM-L and VLNOBERT-L by 4.6% and 4.1% abso-
lute (53 % and 33 % relative). Finally, VLNOBERT-L + M-
TRACK performed as much as the best published method,
HLSM, on unseen SR (main metric), better on PLWSR for
both seen and unseen, similarly on seen SR. The higher seen
and unseen PLWSR indicate that our method successfully
reduced the path length by focusing on the current subtask
to complete the task.

2For example in Fig. 1, there are 3 goal conditions: a potato is heated,
a potato is on the counterop, and a heated potato is on the counter.

Test Unseen Test Seen

Model

SR PLWSR GC SR PLWSR GC
MOCA [47] 5.30 2.72 14.28 22.05 15.10 28.29
LAV [39] 6.38 3.12 17.27 13.35 6.31 23.21
EmBERT [49] 7.52 3.58 16.33 31.77 23.41 39.27
E.T. [40] 8.57 4.10 18.56 38.42 27.78 45.44
LWIT [38] 9.42 5.60 2091 30.92 25.90 40.53
HiTUT [61] 13.87 5.86 20.31 21.27 11.10 29.97
ABP [21] 15.43 1.08 24.76 44.55 3.88 51.13
HLSM [4] 16.29 4.34 27.24 25.11 6.69 35.79
LSTM-L 8.70 4.05 16.97 14.04 7.20 21.73
LSTM-L + M-TRACK 13.28 6.25 20.20 22.05 12.83 30.48

" VLNOBERT-L ~ ~ ~ ~ ~ ~ 7 1223~ = " 5360 ~ ~ 19.64 ~ 2146 ~ 1156 ~ 28.99

VLNOBERT-L + M-TRACK 16.29 7.66 22.60 24.79 13.88 33.35

Table 2. Performance on the ALFRED test set. We evaluate M-TRACK on LSTM-L and VLNOBERT-L. M-TRACK
notably improves all evaluation metrics on both test unseen and seen splits. Note that M-TRACK using VLNOBERT-
L (or LSTM-L) achieves comparable gains to other existing methods. Bold refers to the highest score and underline

refers to the second highest score.

LSTM-L VLNOBERT-L

Train/Test — + — —+
— 9.37 10.48 10.35 13.29
+ 12.20 15.83 13.17 17.29

Table 3. Unseen SR on ALFRED validation set with (4+) or
without (—) M-TRACK during training and/or test. For ex-
ample, the 17.29 cell indicates when M-TRACK is integrated into
VLNOBERT-L during both training and test.

5.3. Fine-grained Analyses

5.3.1 When to Apply M-TRACK?

The flexibility of M-TRACK makes it possible to be applied
at training time, test time, or both. In Table 3, we show that
M-TRACK is already beneficial when applied only during
training or test time, but the gain is most significant when it
is applied during both training and test, suggesting that M-
TRACK may be helping the base models in different ways
during different phases.

5.3.2 Ablation Studies

Table 4 shows the effectiveness of different components.

Reinforcement learning. We show that RL, with our re-
ward design, dramatically improves the performance of
both base models, especially in unseen environments. This
clearly demonstrates the importance of RL for long-horizon
VLN tasks. While similar findings have been discussed for
tasks with shorter horizons like R2R [18, 50, 63], we are
among the first to validate its importance on ALFRED.

Pre-training object detector on ALFRED. The default
Mask R-CNN model is pre-trained on COCO [28]. We con-
tinue pre-training it on ALFRED (ALFRED-OD), which
further improves the performance.

Different milestone checking strategies. For milestone

checking, we compare the passive checking and proac-
tive checking strategies discussed in §4.1.2. As shown
in Table 4, proactive checking performs better than pas-
sive checking, suggesting that preventing a wrong action
from happening is more preferable than correcting the mis-
take afterwards. In contrast to our milestone checking,
prior work [7] has proposed a binary classifier to check
the completeness of current instruction. To compare with
that, we implement a binary classifier using an MLP condi-
tioned on the hidden state (LSTM-L) or the state encoding
(VLNOBERT-L) that predicts if the current milestone has
been reached. While it also helps, our milestone checking
strategy is still advantageous by a large margin. Finally, we
also estimate an upper bound for M-TRACK using ground-
truth milestones from the environment instead of our mile-
stone builder. While the results still show a decent room for
improvement, the gap is not dramatic, indicating that our
milestone builder is reasonably accurate, echoing Table 1.

5.4. Case Studies

We compares VLNOBERT-L (top) with VLNOBERT-
L + M-TRACK (bottom) on two validation examples (left
and right) to show the importance of M-TRACK (see Fig-
ure 4). First, VLNOBERT-L (top-left) skips the current in-
struction without completing it (“take the egg out from the
fridge”), showing its limitation on the long-horizon task. In
contrast, VLNOBERT-L + M-TRACK (bottom-left) com-
pletes all subtasks and eventually completes the whole task.
Second, VLNOBERT-L (top-right) chooses the wrong ob-
ject pencil instead of the correct object pen. The agent may
be confused between the two objects since “pencil” also
appears in the current instruction and indeed is semanti-
cally/visually similar to a pen. In contrast, VLNOBERT-L
+ M-TRACK (bottom-right) correctly performs the interac-
tion task because of proactive milestone checking.

Model Component Val Unseen Val Seen
RL ALFRED-OD Binary Passive Proactive GT SR GC SR GC
LSTM 1.82 3.09 9.26 11.09
v 8.03 9.83 11.88 17.75
LSTM-L v v 937 1256 15.00 18.37
v v v 10.83 1339 17.68 20.46
v v v 1522 18.88 20.97 24.73
LSTM-L + M-TRACK v v v 15.83 20.34 21.70 2545
777777777777777 v v /2036 3079 2512 3141
VLNOBERT 366 7.19 1451 20.11
v 937 1642 16.83 23.12
VLNOBERT-L v v 1035 1894 2132 25.67
v v v 1485 22,13 2292 28.90
v v v 17.05 27.37 2548 32.07
VLNOBERT-L + M-TRACK v v v 17.29 28.98 26.70 33.21
777777777777777 v v T/ 2438 3934 3195 4627

Table 4. Ablation studies on the validation set. RL: Reinforcement learning. ALFRED-OD: Mask R-CNN object detector pre-
trained on ALFRED training images. Binary: Binary milestone classifier. Passive: Milestone checking after an action is executed.
Proactive: Milestone checking before an action is executed. GT: M-TRACK with ground-truth milestones (an upper bound).

Goal: "Heat an egg up and
put it back in the fridge"

Goal: "Put a mug with a pen in it
on the desk"

No M-Track

Picks up pencil

Skips picking up egg and

moves to the microwave

instead of pen

[(navigation, fridge) | [(interaction, {cge, fridge}) |

"Open the fridge and take the egg out
and then close the door"

(interaction, pen)

"Pick up the pen on the desk, between
the clock and the pencil"

Figure 4. Case studies for M-TRACK.

6. Discussion and Conclusions

We introduce a novel milestone-based task tracker (M-
TRACK) for vision-and-language navigation (VLN) and
show that explicit milestone detection and checking signifi-
cantly benefits long-horizon VLN tasks such as those in AL-
FRED [46]. Our empirical results show the effectiveness of
M-TRACK with two strong baseline models. In summary,
this work clearly demonstrates the importance of explicit
progress monitoring (as opposed to, e.g., resorting to a sin-
gle policy network for both planning and implicit progress
monitoring), especially for long-horizon tasks. To make the
point, we propose one instantiation with reference to the
conditions in ALFRED, and different (or more generic) in-
stantiations for different conditions can be explored in the
future. We note the following limitations of the current de-
sign that warrant further development:

Assumptions in milestone builder. Our current instantia-

tion assumes divisible language instructions corresponding
to subtasks. It is worth mentioning that prior work (e.g.,
BabyWalk [63]) does try a similar task decomposition idea
on the R2R dataset and shows promising results, and we
believe M-Track could be adapted similarly, though it is a
less interesting setting for our purpose because of the short
horizons. Nonetheless, in more general, realistic settings,
accurate milestone building will likely be more challenging,
especially when milestones are implicit (e.g., “fetch a cold
beer”). One interesting direction is to discover milestones
by inductive reasoning over training instances instead of
solely from language instructions. Event process mining
techniques [60] could potentially be leveraged to discover
that “fetch a cold X” generally entails going to a fridge and
fetching X (e.g., “beer”) from it.

Assumptions in milestone checker. To date, most VLN
tasks are declarative. Milestone/goal checking thus can
be done by checking solely against the environment state.
For procedural instructions (e.g., “turn around twice”) the
milestone checker may need to check against the agent’s
action history, though such instructions are rare in existing
datasets.

Non-unique golden trajectories. Though uncommon in
ALFRED, in more complex tasks and/or environments,
there could exist multiple viable trajectories (e.g., different
execution orders of subtasks leading to the same goal state)
to complete a task. Currently milestones are assumed to be
hard constraints that an agent has to achieve in order to pro-
ceed. It may be helpful to (learn to) soften the constraints
imposed by milestones to provide more flexibility.

Acknowledgement

The authors would like to thank the colleagues from the
OSU NLP group for their thoughtful comments. This re-

search was supported in part by NSF OAC 2118240 and
NSF OAC 2112606. 1. Kil, T. Pan, and W. Chao are also
partially supported by NSF IIS 2107077 and the OSU GI
Development funds.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Siinderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real
environments. In CVPR, 2018. 1,2, 12, 15

Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A
Knepper, and Yoav Artzi. Following high-level navigation
instructions on a simulated quadcopter with imitation learn-
ing. arXiv preprint arXiv:1806.00047, 2018. 12

Valts Blukis, Ross A Knepper, and Yoav Artzi. Few-shot
object grounding and mapping for natural language robot in-
struction following. arXiv preprint arXiv:2011.07384, 2020.
12

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and
Yoav Artzi. A persistent spatial semantic representation
for high-level natural language instruction execution. arXiv
preprint arXiv:2107.05612,2021. 2,7, 12

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely,
and Yoav Artzi. Touchdown: Natural language navigation
and spatial reasoning in visual street environments. In CVPR,
2019. 1,2

Kevin Chen, Juan Pablo de Vicente, Gabriel Sepulveda, Fei
Xia, Alvaro Soto, Marynel Vazquez, and Silvio Savarese. A
behavioral approach to visual navigation with graph local-
ization networks. arXiv preprint arXiv:1903.00445, 2019.
12

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,
Devi Parikh, and Dhruv Batra. Embodied question answer-
ing. In CVPR, 2018. 1,2,3,7

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh,
and Dhruv Batra. Neural modular control for embodied
question answering. In Conference on Robot Learning, 2018.
3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805,2018. 2,4, 12, 14

Christiane Fellbaum. WordNet:
Database. Bradford Books, 1998. 5
Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language naviga-
tion. arXiv preprint arXiv:1806.02724,2018. 2, 12, 14
Daniel Gordon, Aniruddha Kembhavi, Mohammad Raste-
gari, Joseph Redmon, Dieter Fox, and Ali Farhadi. Iqa:
Visual question answering in interactive environments. In
CVPR,2018. 1,2

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and
Jianfeng Gao. Towards learning a generic agent for vision-

An Electronic Lexical

(14]

[15]

[16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

and-language navigation via pre-training. In CVPR, 2020.
12

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 2,4, 12, 14, 15
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 12, 14

Yicong Hong, Cristian Rodriguez-Opazo, Yuankai Qi, Qi
Wu, and Stephen Gould. Language and visual entity
relationship graph for agent navigation. arXiv preprint
arXiv:2010.09304, 2020. 12

Yicong Hong, Cristian Rodriguez-Opazo, Qi Wu, and
Stephen Gould. Sub-instruction aware vision-and-language
navigation. arXiv preprint arXiv:2004.02707, 2020. 3, 12
Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-
Opazo, and Stephen Gould. A recurrent vision-and-language
bert for navigation. In CVPR, 2021. 2,5, 6,7, 12, 13, 15
Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. Stay on the path:
Instruction fidelity in vision-and-language navigation. arXiv
preprint arXiv:1905.12255, 2019. 1,2, 12

Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtzman, Zhe
Gan, JJ (Jingjing) Liu, Jianfeng Gao, Yejin Choi, and Sid-
dhartha Srinivasa. Tactical rewind: Self-correction via back-
tracking in vision-and-language navigation. In CVPR, 2019.
2

Byeonghwi Kim, Suvaansh Bhambri, Kunal Pratap Singh,
Roozbeh Mottaghi, and Jonghyun Choi. Agent with the big
picture: Perceiving surroundings for interactive instruction
following. In Embodied Al Workshop CVPR, 2021. 2,7, 12
Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual Al. arXiv, 2017. 15

Shuhei Kurita and Kyunghyun Cho. Generative language-
grounded policy in vision-and-language navigation with
bayes’ rule. arXiv preprint arXiv:2009.07783, 2020. 2, 12
John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of
the Eighteenth International Conference on Machine Learn-
ing, ICML °01, page 282-289, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc. 12

Jialu Li, Hao Tan, and Mohit Bansal. Improving cross-modal
alignment in vision language navigation via syntactic infor-
mation. arXiv preprint arXiv:2104.09580, 2021. 12
Juncheng Li, Xin Wang, Siliang Tang, Haizhou Shi, Fei Wu,
Yueting Zhuang, and William Yang Wang. Unsupervised re-
inforcement learning of transferable meta-skills for embod-
ied navigation. In CVPR, 2020. 12

Xiujun Li, Chunyuan Li, Qiaolin Xia, Yonatan Bisk, Asli
Celikyilmaz, Jianfeng Gao, Noah Smith, and Yejin Choi.
Robust navigation with language pretraining and stochastic
sampling. arXiv preprint arXiv:1909.02244, 2019. 2, 12
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV,2014. 7

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

Edward Loper and Steven Bird. NItk: The natural lan-
guage toolkit. In Proceedings of the ACL Workshop on Ef-
fective Tools and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguistics. Philadel-
phia: Association for Computational Linguistics, 2002. 5
Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,
Zsolt Kira, Richard Socher, and Caiming Xiong. Self-
monitoring navigation agent via auxiliary progress estima-
tion. arXiv preprint arXiv:1901.03035, 2019. 1, 2
Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming
Xiong, and Zsolt Kira. The regretful agent: Heuristic-aided
navigation through progress estimation. In CVPR, 2019. 1
Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter An-
derson, Devi Parikh, and Dhruv Batra. Improving vision-
and-language navigation with image-text pairs from the web.
In ECCV, 2020. 2, 12

Bar Mayo, Tamir Hazan, and Ayellet Tal. Visual navigation
with spatial attention. In CVPR, 2021. 12

Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A.
Knoblock, Ashwin Ram, Manuela M. Veloso, Daniel S.
Weld, and David E. Wilkins. Pddl-the planning domain def-
inition language. 1998. 12

So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar,
Yonatan Bisk, and Ruslan Salakhutdinov. Film: Follow-
ing instructions in language with modular methods. arXiv
preprint arXiv:2110.07342,2021. 3,12

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. Mapping instruc-
tions to actions in 3d environments with visual goal predic-
tion. arXiv preprint arXiv:1809.00786, 2018. 12
Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, 2016. 6

Van-Quang Nguyen, Masanori Suganuma, and Takayuki
Okatani. Look wide and interpret twice: Improving per-
formance on interactive instruction-following tasks. arXiv
preprint arXiv:2106.00596, 2021. 7, 12

Kolby Nottingham, Litian Liang, Daeyun Shin, Charless C
Fowlkes, Roy Fox, and Sameer Singh. Modular frame-
work for visuomotor language grounding. arXiv preprint
arXiv:2109.02161,2021. 7

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
Episodic transformer for vision-and-language navigation.
arXiv preprint arXiv:2105.06453, 2021. 2,5, 6,7, 12, 14
Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu
Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In CVPR,
2018. 1,2

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel,
Stefan Thater, Bernt Schiele, and Manfred Pinkal. Ground-
ing action descriptions in videos. In TACL, 2013. 1, 2
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NeurIPS, 2015. 12, 14

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

10

[45]

[46]

[47]

(48]

[49]

(501

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. IJCV, 2015. 15

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
Semi-parametric topological memory for navigation. arXiv
preprint arXiv:1803.00653, 2018. 12

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. ALFRED: A Benchmark for Interpreting
Grounded Instructions for Everyday Tasks. In CVPR, 2020.
1,2,3,6,8,12, 14

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi Kim,
Roozbeh Mottaghi, and Jonghyun Choi. Factorizing per-
ception and policy for interactive instruction following. In
CVPR, 2021. 2,6,7, 12, 14

Fébio Souza, Rodrigo Nogueira, and Roberto de Alen-
car Lotufo. Portuguese named entity recognition using bert-
crf. ArXiv, abs/1909.10649, 2019. 2, 4, 12

Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind
Thattai, and Gaurav Sukhatme. Embodied bert: A trans-
former model for embodied, language-guided visual task
completion. arXiv preprint arXiv:2108.04927, 2021. 2, 5,
7,12

Hao Tan, Licheng Yu, and Mohit Bansal. Learning to nav-
igate unseen environments: Back translation with environ-
mental dropout. arXiv preprint arXiv:1904.04195, 2019. 1,
2,6,7,12, 14,15

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2
Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. In NeurIPS, 2015. 5, 13

Hanging Wang, Wenguan Wang, Wei Liang, Caiming Xiong,
and Jianbing Shen. Structured scene memory for vision-
language navigation. In CVPR, 2021. 12, 14

Hanging Wang, Wenguan Wang, Tianmin Shu, Wei Liang,
and Jianbing Shen. Active visual information gathering for
vision-language navigation. In ECCV, 2020. 1, 2, 12

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Ab-
hishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi
Parikh, and Dhruv Batra. Embodied question answering in
photorealistic environments with point cloud perception. In
CVPR, 2019. 1,2

Zhibiao Wu and Martha Palmer. Verb semantics and lexical
selection. In ACL, 1994. 5

Jiannan Xiang, Xin Wang, and William Yang Wang. Learn-
ing to stop: A simple yet effective approach to urban vision-
language navigation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 699-707, On-
line, Nov. 2020. Association for Computational Linguistics.
3

Jiannan Xiang, Xin Eric Wang, and William Yang
Wang. Learning to stop: A simple yet effective ap-
proach to urban vision-language navigation. arXiv preprint
arXiv:2009.13112,2020. 12

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual semantic navigation using scene
priors. arXiv preprint arXiv:1810.06543, 2018. 12

[60]

[61]

[62]

[63]

[64]

Hongming Zhang and et al. Analogous process structure in-
duction for sub-event sequence prediction. In EMNLP, 2020.
8

Yichi Zhang and Joyce Chai. Hierarchical task learning
from language instructions with unified transformers and
self-monitoring. arXiv preprint arXiv:2106.03427, 2021. 2,
3,5,7,12

Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang.
Vision-language navigation with self-supervised auxiliary
reasoning tasks. In CVPR, 2020. 12

Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng, Vihan
Jain, Eugene Ie, and Fei Sha. Babywalk: Going farther in
vision-and-language navigation by taking baby steps. arXiv
preprint arXiv:2005.04625, 2020. 3,6, 7, 8, 12

Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-
Fei, Abhinav Gupta, Roozbeh Mottaghi, and Ali Farhadi. Vi-
sual semantic planning using deep successor representations.
In ICCV,2017. 1,2

11

Appendices

In this supplementary material, we provide details omit-
ted in the main text.

* Appendix A: More related work
* Appendix B: M-TRACK implementation details
» Appendix C: Model implementation details

* Appendix D: Additional experiments

A. More Related Work

Due to the space constraint, we only include the most
related works in the main text. Here, we add some extra
related works to show recent trends in VLN.

Auxiliary information in VLN. M-TRACK can be viewed
as an auxiliary information to the agent. A variety of aux-
iliary information has indeed been explored to improve the
VLN models [2-4,6,25,26,33,35,45,53,58,59,62]. Several
prior works proposed to build a semantic map that encodes
the spatial semantic information to bridge the gap between

instructions and visual observations [2, 4, 33, 35]. Other
studies suggested a topological map that memorizes previ-
ous actions and locations to facilitate planning [6, 45, 53].

M-TRACK is different from them by its simplicity, func-
tionality, and compatibility — it is completely detached
from VLN models and thus model-agnostic.

Data Augmentation in VLN. A number of prior studies in-
vestigate data augmentation to increase generalizability in
unseen environments. One stream of works focuses on gen-
erating synthetic language instructions [11, 17,32,40, 54].
E.T. [40] constructs synthetic instructions using the expert
path planner in ALFRED. Speaker-Follower [11] gener-
ates human-like textual instructions based on a VLN model
trained on ground-truth routes. The other stream considers
augmenting visual observations. Most of these works in-
clude surrounding views to enlarge an agent’s field of view
and thus enhance its navigation ability [4, 13, 16,21,38,49].
In line with these studies, we augment visual observations
using panoramic views with different angles and headings.

Learning Strategies in VLN. Several studies train VLN
models with imitation learning [1,23,27,40,46,47,58] while
some other works apply reinforcement learning [26,36,59].
To balance exploration and exploitation in navigation, some
recent works leverage both imitation learning and reinforce-
ment learning [16, 18, 19,25,50,63]. Following the recent
studies, M-TRACK exploits both of them and shows notable
improvement on ALFRED.

Visual Input. There has been significant recent progress
in learning visual representations of views. Several stud-
ies take image features encoded by ResNet [15] as visual

12

input [1, I'1,46,63]. VLNOBERT [
ject features from Faster R-CNN [43] to encode objects’
semantic information. Some other studies leverage both
image and object features to learn better visual represen-
tations [16, 18]. Recently, several papers use a pre-trained
segmentation model (e.g., Mask R-CNN [14]) to obtain
more accurate object information [21,35,40,47,49,61]. Fol-
lowing the recent trend in VLN, M-TRACK exploits Mask
R-CNN to detect objects for milestone checking and encode
their visual representations to facilitate interaction tasks.

] take as input ob-

B. M-TRACK Implementation Details
B.1. Milestone Builder

To estimate an upper bound of M-TRACK, we first build
a ground-truth dataset using ground-truth tags derived from
the ALFRED [46] expert demonstrations. The ALFRED
expert demonstrations are encoded in Planning Domain
Definition Language (PDDL) [34] rules. PDDL annotations
include task-specific goal conditions for each low-level in-
struction. Each low-level instruction in PDDL language is
defined by (d, i, p), where d = (action, argument) is a discrete
action tuple containing the description of the action and its
argument (object), i is the index of the low-level instruction,
p = (action, location/ObjectID) is a planner action which is an
action tuple directly applicable to the simulator. We use the
discrete action tuple to tag the low-level instruction with the
ground-truth object labels. For example, “Go to the trash
can on the far side of the kitchen”, is labeled with the dis-
crete action (GotoLocation, trashcan), based on which we au-
tomatically tag the instruction as (O, O, O, B-Nav, |-Nav, O, O,
0,0, 0, 0, 0). We apply BIO tagging format® to turn the ob-
ject labels into tags. Every ALFRED low-level instruction
has annotated labels, enabling us to build the ground-truth
milestone training data easily. After tagging the ALFRED
training and validation data with the ground truth object la-
bels in this way, we train a BERT-CRF [9,48] tagger on the
training data to predict the milestone tags in the instruction.
We choose BERT to utilize its powerful context encoding
capability and add a CRF [24] layer on top of BERT to bet-
ter model the interdependence of tag predictions. BERT-
CRF is trained end to end with training data generated from
the training split of ALFRED and validated with validation
set generated with validation seen and unseen annotations
for ALFRED. The model that has the highest F1 on the val-
idation set is chosen.

During the main model (e.g., VLNOBERT-L + M-
TRACK) execution, BERT-CRF outputs tags for a given
low-level instruction. For instance, in the instruction, “Turn
and go to the sink”, BERT-CRF outputs (O, O, O, O, O, B-

3B- prefix indicates the tag is the beginning of an object label, I- prefix
indicates the tag is inside/end of the object label, and O refers to all non-
tagged words.

Label: trashcan
Reachability: False

/2 ah F LA
Go to the trashcan across the room
next to the counter
Milestone: (navigation, trashcan)

‘Walk around the island to the sink.
Milestone: (navigation, sink)

Label: fridge
Reachability: True

Pick up the tomato at the front of the table.
Milestone: (interaction, tomato)

Place the egg in the fiidge
Milestone: (interaction, {fridge, egg})

Figure 5. Examples of milestones.

Nav). The (tag, word) pair is our predicted milestone for the
instruction. We freeze BERT-CRF during the main model
training.

B.2. Milestone Checking

Here we elaborate on the design decisions for some cor-
ner cases during milestone checking.

* What if an instruction contains multiple mile-
stones?

1. Navigation + Navigation: Navigate to the first
milestone then to the next.

2. Navigation + Interaction: Navigate to the naviga-
tion milestone first and navigate/interact with the
interaction milestone.

3. Interaction + Interaction: Interact with both ob-
jects without specifying a fixed order.

¢ What if an instruction contains no milestone? There
are only less than 1% of such cases in the validation
unseen environments in ALFRED (i.e., 40 out of 5,140
instructions). For those cases, we concatenate the cur-
rent instruction with the next instruction that has mile-
stones detected.

* What happens if the milestone builder makes a mis-
take, e.g., missing a milestone / extracting an unnec-
essary milestone / detecting a wrong object? Gener-
ally the milestone builder is pretty accurate (c.f. Table 1
in the main paper), so mistakes are not common. How-
ever, in the cases when a mistake does occur, we cur-
rently have the agent skip the milestone if the checking
fails 15 consecutive times. On the other hand, if the ob-
ject detector fails to detect the object, usually the fail-

13

ure is recovered later when the agent is in a different
pose to take a new view of the object.

C. Model Implementation Details
C.1. VLNOBERT

Our modified VLNOBERT [18] consists of four mod-
ules: a language encoder, a vision encoder, an action de-
coder, and a pointer network with a multi-layer percep-
tron. Given a time step ¢, the language encoder takes cur-
rent instruction (i.e., the concatenation of the high-level in-
struction and the current low-level instruction) as input and
outputs the contextualized token embeddings. Following
VLNOBERT, we consider the [CLS] embedding as a state
embedding s; representing an agent’s current state and de-
notes other textual token embedding as z;*. For the vision
encoder, we leverage Mask R-CNN to obtain two types of
visual features: 1) a scene feature v; representing a view,
and 2) an object feature o, indicating an object in the view.
In total, we extract 8 scene features from panoramic views
(4 headings of 90° and 2 elevation angles of +30°) and 20
highest scoring object features from all scenes. The ac-
tion decoder then performs a grounded language learning
by taking four inputs: a previous state embedding s;_1, a
sequence of textual embeddings {z;}, a sequence of scene
features {v, }, and a sequence of object features {0y }.

St {l‘;}, {’U;}, {O;c} =

VLNOBERT(s;—1,{:}, {v;}, {ox})
Unlike VLNOBERT, we employ a pointer network [52] to
let the agent choose between navigation and interaction ac-
tion. The pointer network predicts an action for the time

step t by (2), (3), and (4).

Uy, = thanh(Wlen + Wasy),

én € {’U;}U{O;},TLE (]—) 3J+K)
where z, Wy, W5 are learnable parameters, e,, is either the

scene feature or the object feature, and s; is the updated
state embedding.

ey

2

n= argmax o(u), 3)

ne(l,-,J+K)
where o is the softmax normalizing the vector u. If 7 repre-
sents a scene, the agent should navigate to the scene 7 at the
time step ¢. In contrast, if n indicates an object, the agent
should interact with the object n at the time step ¢ by the
corresponding interaction action &

“4)

a = argmax o(W3[ss;05])a
a€lA

where W3 is the learnable parameter, o’ﬁ is the feature of
object n, and IA is the set of 7 interaction actions.

4We omit ¢ on other variables (e.g., textual token embeddings,
scene/object features, etc.) for simplicity except for the state embedding.

[Egocentric]

Observation [[CLS] Put sliced ... [SEP] Pick up apple]

hZ
. Prev Prev ~
.~ Mask R-CNN Hidden BERT Action s
! J State Embeddmg
Object
Feature | H .
oo H
~ -.Concatenatlon ~==

VLN Model

]
[
[l
1
1
]
]
]
]
1
1
]
]
]
]
1
1
1
]
]
]
]
1
1
]
]
]
]
[l
\

\
]
'
1
]
1
]
]
]
1
1
1
]
]

.

]
]
[l
]
1
]
]
]
[l
1
1
]
]
]
]
1

Predicted action:

M-Track
Milestone
Checker

(True, PickupObject, apple)
Figure 6. Architecture of LSTM-L with M-TRACK.

(PickupObiect, apple)

Milestone
Builder

(interaction,
apple)

C.2.LSTM

We modify the CNN-LSTM model presented in AL-
FRED [46] with support for a pre-trained object encoder
inspired by common VLN models’ approach [, 50, 53]
in choosing between multiple scene features. Given a high
level goal instruction G and step-by-step instructions S =
{51, 82, - 8} of n instruction sentences, we concatenate
the goal instruction with only the relevant step-by-step in-
struction such as L = {G, <SEP>, s,,} with <SEP> token
indicating the difference between the goal and step-by-step
instruction. Then we perform a soft-attention on the lan-
guage feature generated from BERT [9] to compute the at-
tention distribution conditioned on the previous hidden state
of the LSTM:

softmax ((Whs—1) "),

(Jé;rflit

Qy =

®)

Ty =
where W, is the learnable parameter, h,_; is the previ-
ous LSTM hidden state, x; is the current language fea-
ture, and ; is the weighted sum of x; over the attention
distribution ;. Furthermore, each visual observation of
the agent’s view is encoded with a pre-trained Mask R-
CNN [14], where we take the scene feature from its ResNet-
50-FPN backbone. At each time step ¢, the LSTM takes
in the object feature {o; ,}, which are 20 highest-scoring
object features from the vision encoder concatenated with

14

spatial and reachability encoding as in VLNOBERT, scene
feature v;, language feature z;, previous action embedding
at—1, and outputs a new hidden state h;:

he = LSTM([{Ot,z};Ut;ft;(lt—l]aht—l) (6)

The agent interacts with the environment by choosing
an action and providing a binary mask (if the action is an
interaction). To leverage the power of the pre-trained vision
encoder, we follow [40, 47] and ask our agent to choose
an object o, .. The corresponding pixel mask is retrieved
from the predicted object. We formulate object choosing in
a same fashion as choosing navigable directions in common
VLN models [11,50,53]. Action and object are generated
from two different networks:
ay = argmax (W, [he; ut))
p(0y,,) = softmax (o; , Wohy)

0, = argmax p(oy,)
z

(M

where W, and W, are learnable parameters, and u; =
[vs; Et; ar—1]. Action prediction is trained with the ground-
truth expert actions and reinforcement learning. The object
feature is learned end-to-end with the ground-truth object
information.

C.3. Vision Encoder

For the vision encoder for M-TRACK, we train an in-
stance segmentation model, Mask R-CNN [14], as our vi-
sion encoder with training data generated from the expert
demonstration images from ALFRED and ground-truth seg-
mentation information from Ai2Thor simulator. Mask R-
CNN is a two-stage detector, which the first stage pro-
poses region of interests (Rol) by Region Proposal Network
(RPN) [43] and the second stage extracts Rol features from
the feature map by Rol Align [14] and makes predictions
with three heads, box classification, box regression, and
mask head. The box heads share the same Rol features ex-
tracted with proposals, while the mask head extracts with
the predictions by the box regression head.

In the milestone checking, we not only are interested in
objects and their locations but also care about whether they
are reachable by the agent. Following the idea, we further
implement the fourth head, using the same manner as the
mask head, to predict availability for each object. We sim-
ply define objects within 1.5 meters as available for the bi-
nary classification by using the distance information from
Ai2Thor simulator. Finally, the overall loss of pre-training
our vision encoder is the summation of losses from four

heads,
L= ['cls + Ereg + ‘Cmask' + Accwail- (8)

With a pre-trained vision encoder, we use its ResNet [15]
backbone to encode scene features from environments and

top-k Rol features from the mask head as object features to
attend with the language model. For milestone checking, it
also provides object labels and their reachability informa-
tion.

C.4. Learning
C.4.1 Reward Shaping

In addition to the progress (navigation) and stop rewards
defined in VLNOBERT [18], we apply the interaction ac-
tion matching as an additional reward to guide the agent to
perform interaction action when needed. Furthermore, we
introduce a visibility reward to make the agent learn to face
the correct direction during the interaction.

Navigation Reward. Following VLNOBERT, navigation
reward acts as a strong supervision for directing our agent
to the target object. Formally, D; is a distance from the
agent to the target object at time ¢, and AD;, = D;_1 — Dy
is a change of distance by an action a;. Reward for each a;

is defined as:
1
P = {* ’
_1’

Stop Reward. When the agent decides to stop a; == stop,
we give the agent the final reward depending on if the task
is successful or not:

+3,
T final = _3

AD; >0
otherwise

€))

Task == Success

. (10)
otherwise
where the task success means that the agent has completed
all subtasks for the task.

Interaction Reward. Since VLNOBERT trains the agent
in a navigation-only dataset, we need to define an additional
interaction reward in order for the agent to learn to choose
between navigation and interaction actions. Formally, at a
given time step ¢, the agent will be rewarded if the inter-
action action matches the ground-truth interaction action,
which we retrieve from the environment state. The reward
for each a; is defined as:

+1,
e

Visibility Reward. We define an additional visibility re-
ward to ensure the agent learns to face the correct direction
of the object to be interacted with before predicting an in-
teraction action to that object. This reward is paired with
the interaction reward, so the total reward that an agent can
get from interacting with the right object is +2.

+1,
=t

at == ar (11)

otherwise

o is re’achable (12)
otherwise

15

C.4.2 Behavior Cloning

Following the prevalent approach in training VLN mod-
els [18,50], we combine reinforcement learning and imita-
tion learning (i.e., behavior cloning) to train our model. At
each time step, the model is expected to produce the ground-
truth action and interaction mask (for interaction actions).
We apply cross-entropy loss between the predicted actions
and the ground-truth action and add it to our reinforcement
learning loss to ensure that the current trajectory is favored
toward the expert demonstration trajectory. While we can
adapt the expert demonstration directly on the LSTM-L +
M-TRACK , it is not straightforward in VLNOBERT-L +
M-TRACK because it requires a panoramic input. Since
ALFRED does not provide panoramic expert demonstra-
tion, we generated panoramic ground-truth trajectory infor-
mation from ALFRED expert demonstration using its tra-
jectory augmentation tool”.

C.5. Training Details

For the LSTM, we use a pre-trained BERT as the lan-
guage encoder and randomly initialize the rest of the model.
For VLNOBERT, we use its pre-trained weights on R2R [1]
to initialize the model. For the vision encoder in the mile-
stone builder, we use a ResNet-50-FPN [14] as the back-
bone for Mask R-CNN and finetune on ALFRED expert
demonstrations from the Ai2Thor simulator [22] with batch
size 16. We finetune the Mask R-CNN pretrained on Im-
ageNet [44] on 4 Nvidia A6000 GPUs for 270k iterations,
with a learning rate of 0.02, which is decreased by 10 at the
210k and 250k iteration. A weight decay of 0.0001 and mo-
mentum of 0.9 are applied. For all the experiments with M-
TRACK and baseline models, we use a single Nvidia 2080TI
GPU and AdamW optimizer is applied with a fixed learn-
ing rate of 10~° for VLNOBERT and 10~* for LSTM. The
batch size is set to 4, and the agent is trained for 20 epochs
maximum. Early stopping is applied when the model shows
no improvement on 3 consecutive epochs, and the model
that shows the highest SR on the validation unseen split is
adopted for testing. For all model training, only training
split was used for training and validation split was held out.

D. Additional Experiments

Agent frequently skips subtask As mentioned in the main
paper, we perform an experiment that shows that the agent
frequently skips a subtask and tries to execute the next sub-
task. In Table 5, we perform an analysis of the first fatal
error that the agent encounters for the validation unseen
split. We first categorize the failure type by interaction fail-
ure, which the agent gets close to the interaction target but
fails to perform an interaction action, and navigation fail-
ure, where the agent does not get close to a target object at

Shttps://github.com/askforalfred/alfred/tree/master/gen

Error Types L L+M-TRACK V V+M-TRACK
No error 76 129 83 134
Interaction Failure 231 255 178 199
Collision 87 99 100 121
Interact with other object 31 23 31 54
Wander endlessly 66 130 22 24
Navigate to next subtask location 47 0 33 0
Navigation Failure 513 436 559 487
Collision 205 288 245 296
Interact with other object 24 18 33 13
Wander endlessly 183 130 203 172
Navigate to next subtask location 101 0 78 0

Table 5. Error cases on unseen validation. Interaction Failure: Agent gets close to the target object but fails to interact with it.
Navigation Failure: Agent does not navigate to the target object at all. Next Action: Next action that happens after the failure has
happened. L stands for LSTM-L and V stands for VLNOBERT-L.

Task Type Valid Unseen Valid Seen
Pick & Place 48 63
Stack & Place 28 25
Place Two 32 38
Examine 50 69
Heat & Place 19 18
Cool & Place 32 29
Clean & Place 27 29

Table 6. Validation completion rate (%) by task type for
VLNOBERT-L + M-TRACK .

all. Then, we also retrieve the next sequence of actions after
the failure and sort them into four categories:

* Collision: Agent gets stuck in the environment and can
not get out

* Interaction with other object: Agent interact with
a wrong object or interacts when interaction is not
needed

* Wander endlessly: Agent endlessly repeats a certain
sequence of actions

* Navigate to the next subtask location: Agent nav-
igates to the location of the next target object in the
next subtask

We show that M-TRACK performs better on most error
cases in both interaction and navigation. Specifically, M-
TRACK notably prevents the agent from performing the next
subtask without completing the current one (e.g., 101 vs. 0),
reflecting M-TRACK’s idea.

M-TRACK completion rate by task type We further ana-
lyze M-TRACK’s completion rate by task type in Table 6.

16

We can see that M-TRACK excels at completing relatively
simple tasks such as “Pick & Place” or “Examine” effec-
tively, while suffers in complex tasks that require multiple
interactions (e.g., “Heat & Place”). We attribute this phe-
nomenon due to the fact that the current M-TRACK does not
effectively learn the multi-interaction reasoning. However,
by seeing the notable improvement on the simple tasks, M-
TRACK opens up the possibility of leveraging more fine-
grained milestone construction to improve the agent’s task
learning in VLN.

	1 . Introduction
	2 . Related Work
	3 . VLN Background
	4 . Milestone-based Task Tracker (M-Track)
	4.1 . Design of M-Track
	4.1.1 Milestone Builder
	4.1.2 Milestone Checker

	4.2 . Planning with M-Track
	4.3 . Agent Models
	4.3.1 VLNBERT Baseline
	4.3.2 LSTM Baseline

	4.4 . Learning

	5 . Evaluation
	5.1 . Experimental Setup
	5.2 . Main Results
	5.3 . Fine-grained Analyses
	5.3.1 When to Apply M-Track?
	5.3.2 Ablation Studies

	5.4 . Case Studies

	6 . Discussion and Conclusions
	A . More Related Work
	B . M-Track Implementation Details
	B.1 . Milestone Builder
	B.2 . Milestone Checking

	C . Model Implementation Details
	C.1 . VLNBERT
	C.2 . LSTM
	C.3 . Vision Encoder
	C.4 . Learning
	C.4.1 Reward Shaping
	C.4.2 Behavior Cloning

	C.5 . Training Details

	D . Additional Experiments

