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Abstract

Visual grounding, i.e., localizing objects in images ac-
cording to natural language queries, is an important topic
in visual language understanding. The most effective ap-
proaches for this task are based on deep learning, which
generally require expensive manually labeled image-query
or patch-query pairs. To eliminate the heavy depen-
dence on human annotations, we present a novel method,
named Pseudo-Q, to automatically generate pseudo lan-
guage queries for supervised training. Our method lever-
ages an off-the-shelf object detector to identify visual ob-
jects from unlabeled images, and then language queries
for these objects are obtained in an unsupervised fashion
with a pseudo-query generation module. Then, we design
a task-related query prompt module to specifically tailor
generated pseudo language queries for visual grounding
tasks. Further, in order to fully capture the contextual re-
lationships between images and language queries, we de-
velop a visual-language model equipped with multi-level
cross-modality attention mechanism. Extensive experimen-
tal results demonstrate that our method has two notable
benefits: (1) it can reduce human annotation costs signifi-
cantly, e.g., 31% on RefCOCO [65] without degrading orig-
inal model’s performance under the fully supervised set-
ting, and (2) without bells and whistles, it achieves supe-
rior or comparable performance compared to state-of-the-
art weakly-supervised visual grounding methods on all the
five datasets we have experimented. Code is available at
https://github.com/LeapLabTHU/Pseudo-Q.

1. Introduction
Visual grounding (VG) task [13, 24, 40, 65] has achieved

great progress in recent years, with the advances in both
computer vision [16,20,21,25,26,46,56,57,59] and natural
language processing [4,14,41,50,53]. It aims to localize the
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Figure 1. Comparison with fully and weakly-supervised vi-
sual grounding method. (a) Fully-supervised VG utilizes image
region-query pairs as supervision signals. (b) Weakly-supervised
VG adopts only language queries. (c) Our Pseudo-Q method is
free of any task-related annotations.

objects referred by natural language queries, which is essen-
tial for various vision-language tasks, e.g., visual question
answering [2] and visual commonsense reasoning [67].

Most existing visual grounding methods can be catego-
rized into two types: fully-supervised [8, 13, 22, 23, 33, 35]
and weakly-supervised [6, 10, 19, 36, 38, 49, 55, 58]. Al-
though these two lines of works have made remarkable suc-
cesses, they rely heavily on manually annotated datasets.
However, obtaining a large quantity of manual annotations,
especially natural language queries, is expensive and time-
consuming. To annotate queries, humans need to firstly
recognize the visual objects and identify their attributes,
and then determine diverse relationships between them on
a case-by-case basis, such as spatial (e.g., left and right),
preposition (e.g., in and with), action (e.g., throwing some-
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thing), and comparative (e.g., smaller and bigger). Among
them, spatial relation is the most frequently queried one.

To reduce the burden of human annotation, we propose
a pseudo language query based approach (Pseudo-Q) for
visual grounding. Our inspiration comes from previous
works [17, 31] that address the high annotation cost issue
in image captioning task, by leveraging an unlabelled im-
age set, a sentence corpus, and an off-the-shelf object de-
tector. However, the visual grounding task is more compli-
cated and challenging, as it involves the modelling of rela-
tions between objects.

To accurately ground objects by language queries, it’s
fundamental to recognize their categories, attributes, and
relationships. Thus, when it comes to generating pseudo
region-query pairs for an unlabelled image set, we need
to focus on three key components: (1) salient objects
(nouns) which are most likely to be queried, (2) intrinsic
attributes possessed by the queried objects, and (3) the im-
portant spatial relationships between the objects. Moti-
vated by [17, 42], we leverage an off-the-shelf object de-
tector [1] to locate the most notable candidates with high
confidence, and an attribute classifier [1] to recognize com-
mon attributes. However, these detectors are unable to dis-
tinguish the spatial relations between objects. Thus, we
present a heuristic algorithm to determine the spatial re-
lationships between the objects of the same class by com-
paring their areas and relative coordinates. With these three
essential components, pseudo-queries with respect to spa-
tial relations between objects can be generated.

To further improve the performance of our method, we
also propose a query prompt module which attentively tai-
lors generated pseudo queries into task-related query tem-
plates for visual grounding. For the visual-language model,
we put forward a multi-level cross-modality attention mech-
anism in the fusion module to encourage a deeper fusion
between visual and language features.

Extensive experiments have verified the effectiveness of
our method. First, in fully supervised manner, it can reduce
human annotation costs by 31% without sacrificing origi-
nal model’s performance on RefCOCO [65]. Second, with-
out bells and whistles, it can obtain superior or comparable
performance even compared with state-of-the-art weakly-
supervised visual grounding methods on five datasets, in-
cluding RefCOCO [65], RefCOCO+ [65], RefCOCOg [40],
ReferItGame [28] and Flickr30K Entities [44].

In summary, this paper makes three-fold contributions:

(1) We introduce the first pseudo-query based visual
grounding method that deals with the most dominant
spatial relationships among objects.

(2) We propose a query prompt module to specifically
tailor pseudo-queries for visual grounding task, and
a visual-language model equipped with multi-level
cross-modality attention is put forward to fully capture

the contextual relationships of different modalities.
(3) Extensive experiments demonstrate that our approach

can not only dramatically reduce the manual labelling
costs without performance sacrifice under the fully
supervised condition, but also surpass or achieve
comparable performance with state-of-the-art weakly-
supervised visual grounding methods.

2. Related Work
2.1. Natural Language Visual Grounding

Visual grounding is a crucial component in vision and
language, and it serves as the fundamental of other tasks,
such as VQA. Recent visual grounding methods can be
summarized into three categories: fully-supervised [8, 13,
22, 23, 33, 35], weakly-supervised [6, 10, 19, 36, 38, 49, 55,
58], and unsupervised [54, 63]. Fully-supervised meth-
ods rely heavily on the manual labeled patch-query pairs.
Unfortunately, obtaining such sophisticated annotations is
expensive and time-consuming. Consequently, weakly-
supervised approaches attempt to alleviate the issue by uti-
lizing only image-query pairs. These methods [6, 38] usu-
ally leverage a mature object detector to compensate the
missing bounding box labels for training. However, an-
notating the language queries for salient objects in an im-
age is the most laborious part. Thus, unsupervised meth-
ods [54, 63] attempt to train a model or directly detect
queried objects without any annotations. Our work is also
an unsupervised method. However, unlike previous meth-
ods, we present a novel method, named Pseudo-Q, to auto-
matically generate pseudo-queries for supervised learning.

2.2. Vision-Language Transformer

Transformer [53] has been firstly proposed to address
natural language processing (NLP) tasks. ViT [16] makes
the first attempt to apply a transformer for image classifica-
tion task [12]. Motivated by the success of ViT, DETR [5]
and Segmenter [48] further extend the transformer for ob-
ject detection and segmentation tasks respectively.

There are also many efforts [9, 13, 32, 39, 45, 51],
which try to handle visual-language tasks by transformer.
TransVG [13] proposes a novel framework with transformer
structure for visual grounding task. CLIP [45] and UNITER
[9] leverage transformers for jointly learning text and image
representations. LXMERT [51] establishes a large-scale
transformer to learn cross-modality representation. In this
work, we propose a novel multi-level cross-modality atten-
tion on the top of the TransVG for cross-modality learning.

2.3. Visual Recognition without Annotation

There have been several works [3, 7, 11, 15, 18, 27, 42,
52, 69] for zero-shot visual tasks. Zero-shot object detec-
tion tasks [3, 18] are designed for detecting unseen object
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Figure 2. Overview of our Pseudo-Q method. Better view in color and zoom in. The proposed approach consists of a pseudo-query
generation module, a query prompt module, and a visual-language model. (a) During the training stage, pseudo image region-query pairs
are generated to train visual language model. (b) During the inference stage, the test query is filled into the prompt template, and the target
object is located by the trained model.

classes whose labels are missing. While zero-shot action
recognition task [11, 15, 27] recognizes pre-defined action
categories without using action labels. Our work’s empha-
sis lies in locating object regions without using any task-
related annotations, e.g., image regions and queries.

As for zero-shot visual grounding, the pioneering work
ZSGNet [47] focuses on query phrases which may contain
unseen nouns or object categories. It consists of a language
module to encode query features, a visual module to extract
image features, and an anchor generator to produce anchors.
However, note that the focus of our work is different from
ZSGNet, which is proposed for recognizing unseen classes,
In addition, ZSGNet utilizes manual annotations while we
do not rely on any task-related labels.

3. Method

In this section, we explain our Pseudo-Q method in de-
tail. In Sec. 3.1, we introduce the overview of Pseudo-Q.
In Sec. 3.2, we elaborate the pseudo-query generation mod-
ule. In Sec. 3.3, the details of the task-related query prompt
module are shown. Finally, we illustrate the mechanism of
our multi-level cross-modality attention in Sec. 3.4.

3.1. Overview

Previous visual grounding methods rely on expensive
human annotations, i.e., image region-query pairs for fully-
supervised approaches [13, 22, 35] or image-query pairs for
weakly-supervised approaches [36, 37, 49]. We firstly pro-
pose a pseudo language query based method without using
any task-related annotations at training.

Specifically, the Pseudo-Q approach consists of three
components, including: (1) pseudo-query generation mod-
ule, (2) query prompt module, and (3) visual-language
model. The illustration of Pseudo-Q is shown in Figure 2.
Taking an unlabeled image as an explanation, the detector

can produce several object proposals. Then, these propos-
als are fed into pseudo-query generation module, which can
automatically generate nouns, attributes, and relationships
for these proposals. Together with these elements, we can
easily create pseudo language queries.

Subsequently, the query prompt module refines created
pseudo language queries for visual grounding task. Finally,
we propose a visual-language model to fully capture the
contextual relationship between the image regions and cor-
responding pseudo language queries.

3.2. Pseudo-Query Generation

In general, the first step for visual grounding is recog-
nizing the categories of queried objects. However, such a
simple grounding strategy leads to ambiguities in complex
scenes, e.g., “a talk person on the left” or “a short person
on the right”, without understanding their spatial relations
or attributes. Thus, to accurately locate visual objects by
language queries, a visual grounding model needs to under-
stand queried objects’ categories, attributes, and their rela-
tionships. Based on the above analysis, generating pseudo
language queries for candidate objects involving three key
components: nouns, attributes and relationships.

Nouns. Inspired by works [17, 31, 42], we adopt an off-
the-shelf detector [1] to obtain the object proposals. Unlike
image classification task where each image contains only
one major object, scenes in visual grounding task are more
complex due to plenty of candidate objects. While it is nat-
ural to select the most salient objects as candidates, such a
process requires intensive manual labor which is not avail-
able in our setup. Instead, we use detection confidence as
a criterion. Concretely, the top-N objects with highest con-
fidence are kept as our proposals. Furthermore, we empiri-
cally discover that the detector will focus on a large quantity
of tiny objects which are less likely to be queried. Thus, we
propose to remove tiny objects before generating proposals.
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Figure 3. (a) The pseudo-query generation module produces spatial relationships and attributes for corresponding objects. (b) The
visual-language model consists of a visual encoder, a language encoder, and a cross-modality fusion module.

Attributes. They are important semantic cues that help
models understand scenes better. We investigate that, in
existing datasets [28, 40, 65], common attributes including
color, size (tall), material (wooden) and human state of mo-
tion (e.g. standing and walking), etc. Similar to obtaining
the nouns, we take advantage of an off-the-shelf attribute
classifier [1] to predict the above common attributes of cor-
responding objects. In general, one object may have sev-
eral attributes, such as “a tall person is walking”, and it is
ideal to recognize as many attributes as possible. However,
limited by the capability of the model, we only keep the at-
tribute with the highest confidence and exceeding a prede-
fined threshold as the final proposal. Furthermore, clothes
are also important attributes for a person which can be de-
termined by calculating the IoU value between clothes and
person, as shown in Figure 3(a).

Relationships. We observe that spatial relationship is
one of the most frequently used relations in most existing
datasets [40, 65] to distinguish different objects. In order to
excavate latent spatial relationships, we propose a heuristic
algorithm as shown in Figure 3(a).

In general, spatial relationship can be divided into three
dimensions: horizontal (i.e., left, middle, and right), ver-
tical (i.e., top and bottom) and depth (i.e., front and be-
hind). Note that each previously generated object proposal
is represented by a set of coordinates which naturally em-
brace spatial information. We can obtain the horizontal
and vertical spatial relationships by comparing the center
coordinates of objects along with these two dimensions.
Meanwhile, to increase the robustness of the algorithm,
the numerical difference of two objects’ coordinates in the
same dimension is required to be greater than a pre-defined
threshold. Finally, we can determine the spatial relations,
such as left, right and center, for different visual objects of
the same category.

In the depth dimension, we assume that, for the same
kind of object, the closer the object is to a camera the larger

the object region. Concretely, we calculate the ratio of the
area of the largest object region to the smallest object region
and set a threshold to determine whether there is a front
and behind relationship. If the ratio exceeds the threshold,
we assign front and behind relationships to the largest and
smallest objects respectively.

Pseudo-queries. After obtaining three key elements, we
can generate all possible pseudo-queries for an image fol-
lowing the templates in Appendix. Finally, we sample up to
M pseudo image region-query pairs if the number of candi-
dates is greater than M , otherwise, we sample all.

3.3. Query Prompt Module

With the advances of pre-trained language models [4,
14], prompt engineering is proposed to better utilize their
learned knowledge at pre-training stage. Inspired by the
recent success of prompt engineering in visual-language
tasks, e.g., image-language pre-training [45], we propose a
query prompt module to excavate the hidden knowledge of
pre-trained language model (Sec. 3.4) by refining generated
pseudo language queries for visual grounding task.

While the prompt templates proposed in CLIP [45]
works well for the image classification task, we empiri-
cally find that they are ineffective for the challenging vi-
sual grounding task. Consequently, in this work, we explore
prompt templates exclusively for visual grounding. Our in-
troduced query prompt module follows certain templates,
e.g., “find the region that corresponds to the description
{pseudo-query}” or “which region does the text {pseudo-
query} describe?”. Such design is specifically tailored for
visual grounding task, since the focus of this task lies on
locating the regions of referred objects.

3.4. Visual-Language Model

Our visual-language model consists of a visual encoder,
a language encoder and a cross-modality fusion module
to fuse information from two modalities. The designs of

4



the visual encoder and the language encoder are following
TransVG [13]. We elaborate them in Appendix.

Cross-modality fusion module. Previous method [13]
naively utilizes final features of visual and language en-
coders to acquire cross-modality information. However,
such a simple approach is suboptimal, since each level of
visual feature possesses valuable semantic information [21,
34]. To be more specific, low-level features usually denote
coarse information, e.g., shape and edge, while high-level
features can represent finer information, e.g., intrinsic ob-
ject properties. Thus, we further propose multi-level cross-
modality attention (ML-CMA) to thoroughly fuse textual
embedding with multi-level visual features.

The mechanism of ML-CMA is shown in Figure 3(b).
Features of each visual transformer layer are passed into
a cross-modality fusion module with the extracted textual
embedding to calculate cross-modality self-attention. Then,
we concatenate all updated visual or textual features from
different levels respectively, and utilize a fully connected
layer to map them into the original dimension. Finally, all
features are concatenated and fed into a regression head to
predict referred object regions. The regression head com-
poses of three fully connected layers.

4. Experiments

Dataset and setups. Following previous visual
grounding methods [13, 60], we evaluate our method
on five datasets: RefCOCO [65], RefCOCO+ [65], Re-
fCOCOg [40], ReferItGame [28], and Flickr30K Enti-
ties [44]. We follow the same train/val/test splits from [13]
for all datasets. The number of training images in these five
datasets are 16994, 16992, 24698, 8994, and 29779. Note
that we don’t use any manual annotations during the train-
ing stage, they are only leveraged for evaluation.

Implementation details. We choose a pre-trained de-
tector [1] and attribute classifier [1] on Visual Genome
dataset [30], which contains 1600 object and 400 attribute
categories. As we mentioned in Sec. 3.2, we select top-N
and sample up to M pseudo-queries for each image. Specif-
ically, on RefCOCO, we select top-3 objects according to
the detection confidence and uniformly sample 6 pseudo-
queries from all possible candidates. As for RefCOCO+,
RefCOCOg, ReferItGame, and Flickr30K Entities, we use
top-3 objects/12 pseudo-queries, top-2 objects/4 pseudo-
queries, top-6 objects/15 pseudo-queries, and top-7 ob-
jects/28 pseudo-queries, respectively.

Training details. All our experiments are conducted
under Pytorch framework [43] with 8 RTX3090 GPUs.
Our visual-language model is end-to-end optimized with
AdamW. The initial learning rate is set to 2.5×10−5 for the
visual and language encoder and 2.5 × 10−4 for the cross-
modality fusion module. The batch size is 256. All the

datasets use cosine learning rate schedule except Flickr30K
Entities which adopts exponential decay schedule with 0.85
decay rate. Our model is trained with 10 epochs on Ref-
COCO, RefCOCOg, and ReferItGame, 20 epochs on Re-
fCOCO+ and Flickr30K Entities. The data augmentations
that we utilize are following TransVG [13], e.g., Random-
ResizeCrop, RandomHorizontalFlip and ColorJitter.

4.1. Comparison with State-of-the-art Methods

We report comparison results with existing unsuper-
vised [54, 62, 63] and weakly-supervised [38, 49, 55] meth-
ods. Note that the weakly-supervised methods are trained
with expensive annotated queries. As references, the per-
formance of fully-supervised [13, 60] methods are showed
as an upper bound. Specifically, we show the top-1 accu-
racy (%) results following previous works [38,55]. The pre-
dicted bounding boxes are regarded as correct if the Jaccard
overlaps between them and the ground truth are above 0.5.

RefCOCO/RefCOCO+/RefCOCOg. Our method’s
performances on RefCOCO, RefCOCO+ and RefCOCOg
datasets are reported in Table 1. We compare our method
with the existing state-of-the-art unsupervised method
CPT [62] and weakly-supervised method DTWREG [49].
Our method can easily surpass CPT by a remarkable mar-
gin on all three datasets (e.g., 23.82%/22.15%/23.83% per-
formance improvement on RefCOCO’s val/testA/testB split
respectively). When compared with the DTWREG method,
our method can achieve better performances on RefCOCO
and RefCOCOg datasets. Meanwhile, it can obtain compa-
rable and superior performances on val and testA split of
RefCOCO+ dataset. Although we can see that there’s an
accuracy gap compared with DTWREG on testB split, our
method still gets a large performance gain over CPT. Note
that without leveraging any manually labeled queries of Re-
fCOCO+’s training split, our method can still reach consid-
erable performance. All the experiments demonstrate that
our generated pseudo-queries can provide effective super-
vision signals for visual grounding task.

ReferItGame. In Table 2, we show the compar-
isons with other existing visual grounding methods on
ReferItGame dataset. Our method can achieve 43.32%
top-1 accuracy, which outperforms all unsupervised and
weakly-supervised methods. Especially, compared with
the state-of-the-art weakly-supervised method [55], which
can achieve 38.39% top-1 accuracy, our method can obtain
4.93% performance improvement without using any anno-
tated labels. These results can demonstrate the superiority
of our proposed method.

Flickr30K Entities. The results on Flickr30K Entities
dataset is shown in Table 2. It can be observed that our
method can still achieve surprising 60.41% top-1 accuracy
which outperforms the state-of-the-art weakly-supervised
method [38] by 1.14%. Considering the scale of Flick30K
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Table 1. Comparison with state-of-the-art methods on RefCOCO [65], RefCOCO+ [65] and RefCOCOg [40] datasets in terms of top-1
accuracy (%). “Sup.” refers to supervision level: No (without annotation), Weak (only annotated queries), Full (annotated bbox-query
pairs). The best two results with supervision level of No and Weak are bold-faced and underlined, respectively.

Method Published on Sup. RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

CPT [62] arXiv’21 No 32.20 36.10 30.30 31.90 35.20 28.80 - 36.70 36.50
Ours CVPR’22 56.02 58.25 54.13 38.88 45.06 32.13 49.82 46.25 47.44

VC [68] CVPR’18

Weak

- 33.29 30.13 - 34.60 31.58 33.79 - -
ARN [36] ICCV’19 34.26 36.43 33.07 34.53 36.01 33.75 33.75 - -
KPRN [37] ACMMM’19 35.04 34.74 36.98 35.96 35.24 36.96 33.56 - -
DTWREG [49] TPAMI’21 39.21 41.14 37.72 39.18 40.10 38.08 43.24 - -

MAttNet [64] CVPR’18

Full

76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
NMTree [35] ICCV’19 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
FAOA [61] ICCV’19 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
ReSC [60] ECCV’20 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
TransVG [13] ICCV’21 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44

Table 2. Comparison with state-of-the-art methods on Refer-
ItGame [28] and Flickr30K Entities [44] in terms of top-1 accuracy
(%). “Sup.” refers to supervision level: No (without annotation),
Weak (only annotated queries), Full (annotated bbox-query pairs).
The best two results with supervision level of No and Weak are
bold-faced and underlined, respectively.

Method Published on Sup. ReferIt Flickr30K

Yeh et al. [63] CVPR’18
No

36.93 20.91
Wang et al. [54] ICCV’19 26.48 50.49
Ours CVPR’22 43.32 60.41

Chen et al. [6] CVPR’18

Weak

33.67 46.61
Zhao et al. [70] CVPR’18 33.10 13.61
Liu et al. [36] ICCV’19 26.19 -
Gupta et al. [19] ECCV’20 - 51.67
Liu et al. [38] CVPR’21 37.68 59.27
Wang et al. [55] CVPR’21 38.39 53.10

Kovvuri et al. [29] ACCV’18

Full

59.13 72.83
Yu et al. [66] IJCAI’18 63.00 73.30
Yang et al. [61] ICCV’19 60.67 68.71
Yang et al. [60] ECCV’20 64.60 69.28
Deng et al. [13] ICCV’21 69.76 78.47

Entities which consists of 427K manually annotated re-
ferred expressions, our method still achieves remarkable
performance without any training label. As for other meth-
ods without using manual labels, our method can easily sur-
pass [63] and [54] with 39.50% and 9.92% absolute perfor-
mance improvement, respectively.

Explanations of the gain over weakly-supervised
methods. First, the core of visual grounding task is learning
the correspondence between visual and linguistic modali-
ties which relies heavily on the correct mapping between
image regions and queries inside training data. A key differ-
ence between our approach and weakly-supervised meth-
ods is that we can generate corresponding queries for the
detected object which guarantees the correctness of map-
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Figure 4. Experiments of reducing the manual labeling cost on Re-
fCOCO [65]. We replace the manual labels whose queries contain
spatial relationships with our pseudo-samples.

ping between two modalities. Although weakly-supervised
methods have annotated queries, they lack key supervi-
sion signals that are the region-level correspondence be-
tween two modalities. Second, our model jointly optimizes
the features from two modalities which allows the model
to learn a better correspondence while weakly-supervised
methods [38, 49, 55] only update the language model leav-
ing the visual model fixed.

4.2. Improving the Efficiency of Manual Labeling.

In Figure 4, we perform experiments with the same
hyper-parameters as Sec. 4 on RefCOCO [65] to verify
the effectiveness of our pseudo-samples, i.e., pseudo image
region-query pairs, by replacing the manually annotated la-
bels whose queries contain spatial relationships. The base-
line is our model trained in a fully-supervised manner. Note
that the query prompt module is not applied in this experi-
ment. As we can see, compared to the fully-supervised set-
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Figure 5. Left: Ablation of object number. Right: Ablation of
pseudo-query number. Both are conducted on ReferItGame [40].

ting, substituting 12.01%, 20.68%, and 30.75% manually
annotated labels with our generated pseudo region-query
pairs do not degrade the original performance. In such a
situation, about 31% of human annotation costs can be re-
duced. Consequently, our method can be utilized to au-
tomatically annotate one of the dominant components, i.e.
spatial relationship, in language queries, which significantly
improves the efficiency of manual labeling.

4.3. Ablation Study

In this section, we conduct extensive ablation experi-
ments to demonstrate the effectiveness of each proposed
component and the rationality of hyper-parameters setting.
Most of the following experiments are conducted on Refer-
ItGame [28] dataset and we report the top-1 accuracy. The
model is trained with the same hyper-parameters as Sec. 4.

Number of nouns. We investigate the impact of utilizing
different number of nouns (objects) in Figure 5(a). Increas-
ing the number of nouns can produce more pseudo samples
which boosts the performance of our model, as shown in
Figure 5(a). In our experiments, we use the detection con-
fidence as a criterion to select salient objects. If the num-
ber of nouns is too large, the likelihood of detecting low
confidence objects which are inconspicuous will grow. We
empirically find that, on ReferItGame dataset, the model
reaches its peak performance when the number of nouns
is 6. Once the number of nouns exceeds 6, the performance
starts to degrade. Thus, we use the top-6 object proposals
on the ReferItGame dataset.

Number of pseudo-queries. Another essential factor is
the number of pseudo-queries. We study the influence of
sampling different number of pseudo-queries in Figure 5(b).
The candidates of pseudo-queries are generated following
templates in Appendix. As shown in Figure 5(b), our model
performs best when the sampling number of pseudo-queries
is 15. If the sampling number is too small, we will miss
plenty of useful candidates which hinders the improvement
of model performance. Meanwhile, note that not every can-
didate provides the correct supervision signal. Thus, overly

Table 3. Ablations of each component on RefCOCO [65] and
ReferItGame [40]. “Attr” and “Rela” denote attribute and re-
lationship, respectively. “Prompt” represents the query prompt
module. “ML-CMA” means the proposed multi-level cross-
modality attention.

Noun Attr Rela ML-CMA Prompt RefCOCO ReferIt

3 22.04 27.91
3 3 31.30 (↑9.26) 31.33 (↑3.42)
3 3 48.71 (↑26.67) 39.26 (↑11.35)
3 3 3 53.39 (↑31.35) 40.37 (↑12.46)

3 3 3 3 55.16 (↑1.77) 41.72 (↑1.35)
3 3 3 3 3 56.02 (↑2.63) 43.32 (↑2.95)

sampling candidates will also hurt the performance. Finally,
we sample up to 15 pseudo-queries.

Effectiveness of integrating attributes. We empiri-
cally support the effectiveness of introducing attributes into
pseudo-queries by comparing them with those lacking at-
tributes. As shown in Table 3, generating pseudo-queries
with nouns and attributes clearly surpasses the one that
only has nouns on RefCOCO and ReferItGame. Moreover,
adding attributes into pseudo-queries with nouns and re-
lationships can further boost the performance. Thus, we
demonstrate that incorporating the attribute into pseudo-
queries helps models to comprehend the scenes better.

Effectiveness of generating relationships. As we men-
tioned in Sec. 3.2, spatial relationship is the most essen-
tial component. With only nouns, models are still far from
comprehensively understanding scenes. The ablation study
of generating relationships that supports our proposition is
reported in Table 3. Compared with pseudo-queries with
only nouns, generating relationships with our method out-
performs it overwhelmingly by 26.67% on RefCOCO. In
sum, experimental results show that incorporating spatial
relationships into pseudo-queries can significantly enhance
the model’s capability of understanding scenes.

Effectiveness of query prompts. In Table 3, we show
that prompts help to excavate the hidden knowledge of the
pre-trained language model, and consequently, boost the
performance. On ReferItGame, the well-designed prompt
“which region does the text {pseudo-query} describe?” im-
proves the performance by 1.60%. Meanwhile, on Ref-
COCO, the prompt “find the region that corresponds to
the description {pseudo-query}” improves the performance
by 0.86%. On the other hand, we find that hand-designed
prompts are not robust enough across all the datasets.

Effectiveness of cross-modality fusion module. We
further investigate the contribution of the cross-modality
fusion module in Table 3. On the basis of the pseudo-
query generation module, the proposed cross-modality fu-
sion module can further improve the performance by 1.77%
and 1.35% on RefCOCO and ReferItGame, respectively.
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Figure 6. Four visualization examples of detection results. The red bounding boxes and queries are ground truth. The green bounding
boxes are detected by the model that trained on pseudo-samples generated with nouns, attributes, and relationships. The blue bounding
boxes are detected by the model that trained on pseudo-samples generated with only nouns.
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Figure 7. Four visualization examples of pseudo-sample generated by our method. We use blue and green to distinguish two objects.

4.4. Qualitative Analysis

To further figure out the importance of spatial relation-
ships and attributes, in Figure 6, we show four detection ex-
amples of our models trained on generated pseudo-queries
with or without spatial relationships and attributes on Ref-
COCO dataset. In the first two examples, we can easily ob-
serve that the model trained with relationships locates tar-
get objects much better than the one trained without rela-
tionship component. In the last two example, the key fac-
tor to locate the queried man is leveraging the attributes
“blue” and “standing”. Obviously, with the above analy-
sis, we can conclude that the proposed spatial relationship
and attribute play an essential role in accurately grounding
referred objects with given language queries. In addition,
we also display four generated pseudo region-query pairs
on RefCOCO dataset in Figure 7.

4.5. Limitation

Although our method achieves superior performances on
five datasets, there are still two limitations. First, when
it comes to pseudo language queries, there may be some
incorrect queries which harms final performance. Second,
the generated pseudo-queries are simple, other relationships
can be explored in the future.

5. Conclusion

In this paper, we make the first attempt to introduce
a pseudo-query based visual grounding method called
Pseudo-Q. Firstly, we propose a pseudo-query generation
module to automatically produce pseudo region-query pairs
for supervised training. Then, we present a query prompt
module, so that generated pseudo language queries can be
tailored specifically for visual grounding task. Finally, in
order to sufficiently model the relationships between visual
regions and language-queries, we develop a visual-language
model equipped with multi-level cross-modality attention.
Extensive experiments have shown that our method can not
only achieve superior performances on five datasets, but
also dramatically reduce manual labeling costs.
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Appendix

A. Statistics of RefCOCO Dataset
In Figure 8, we show the statistics of the training set of

RefCOCO [65] dataset to demonstrate spatial relationship
is one of the dominant components in language queries. As
we can see, spatial relationships exists in almost 60% of
queries. Furthermore, the most common spatial relation-
ships in RefCOCO are left and right. In addition, other spa-
tial relationships, i.e., middle, front, top, and bottom, are
also frequently found in language queries.

59.4%

40.6%
Queries contain spatial relationship
Others

(a)

left right middle front behind top bottom
0

5000

10000

15000

20000
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Figure 8. Statistics of the training set of RefCOCO [65] dataset.
(a): The percent of language queries that contain spatial relation-
ships. (b): The number of different spatial relationships.

B. Pseudo-Query Templates
Our pseuod-queries are generated following the tem-

plates shown in Table. 4. All the possible templates is con-
sidered in our method for the purpose of obtaining as many
candidate pseudo-samples as possible. Honestly, this strat-
egy will inevitably produce some ungrammatical pseudo-
samples. Our approach is similar to all the pseudo-label

based methods, such as semi-supervised learning, which
can’t guarantee every single pseudo-query is correct. Over-
all, these pseudo-queries provide valuable supervision sig-
nals and eventually benefit the training of the model.

Table 4. Pseudo-query templates. Attr and Rela represents at-
tribute and relationship, respectively.

Pseudo Query Template Example

{Noun} “man”, “building” etc.

{Noun} {Attr} “man standing” etc.
{Attr} {Noun} “talk man”, “wooden building” etc.

{Noun} {Rela} “man on the right” etc.
{Rela} {Noun} “center man”, “left building” etc.

{Noun} {Attr} {Rela} “man standing on the right” etc.
{Noun} {Rela} {Attr} “man right standing” etc.
{Attr} {Noun} {Rela} “standing man on the right” etc.
{Attr} {Rela} {Noun} “standing right man” etc.
{Rela} {Noun} {Attr} “right man standing” etc.
{Rela} {Attr} {Noun} “right standing man” etc.

C. Visual-Language Model
In this section, we provide more details about the archi-

tecture of the visual encoder and the language encoder.
In the visual encoder, a CNN backbone and a

transformer-based network are stacked sequentially for im-
age feature extraction. The CNN backbone is a ResNet-
50 model [21] pre-trained on ImageNet [12], and the
transformer-based network is the encoder part of DETR net-
work [5] which consists of six transformer layers. More-
over, the pre-trained weights of DETR are utilized for ini-
tialization. The output feature maps of the ResNet-50 are
fed into a 1 × 1 convolutional layer for dimension reduc-
tion. Then, they are flattened into 1D vectors for the trans-
former network.

In the language encoder, a token embedding layer and a
linguistic transformer are employed to extract textual fea-
tures. Specifically, the token embedding layer is leveraged
to convert the discrete words into continuous language vec-
tors. Since BERT [14] has been successfully applied for
text feature extraction, the BERT architecture which has 12
transformer layers is adopted as the linguistic transformer.
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