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Abstract

In label-noise learning, estimating the transition matrix
has attracted more and more attention as the matrix plays an
important role in building statistically consistent classifiers.
However, it is very challenging to estimate the transition
matrix T (x), where x denotes the instance, because it is
unidentifiable under the instance-dependent noise (IDN). To
address this problem, we have noticed that, there are psycho-
logical and physiological evidences showing that we humans
are more likely to annotate instances of similar appearances
to the same classes, and thus poor-quality or ambiguous
instances of similar appearances are easier to be mislabeled
to the correlated or same noisy classes. Therefore, we pro-
pose assumption on the geometry of T (x) that “the closer
two instances are, the more similar their corresponding tran-
sition matrices should be”. More specifically, we formulate
above assumption into the manifold embedding, to effectively
reduce the degree of freedom of T (x) and make it stably
estimable in practice. The proposed manifold-regularized
technique works by directly reducing the estimation error
without hurting the approximation error about the estimation
problem of T (x). Experimental evaluations on four synthetic
and two real-world datasets demonstrate that our method
is superior to state-of-the-art approaches for label-noise
learning under the challenging IDN.

1. Introduction
Label-noise learning has drawn more and more attention

in the deep learning community, e.g., [3, 5, 11, 29, 50, 53].
The main reason is that accurately annotating large-scale
datasets becomes extremely costly and sometimes even in-
feasible [14]. An effective way is to collect such large-scale
datasets from the crowd-sourcing platform [49] or online
queries [4], which inevitably yield low-quality and noisy
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data. Thus, mitigating the side-effects of noisy labels be-
comes a very crucial topic. The noise model can be catego-
rized as the class-conditional noise (CCN) and the instance-
dependent noise (IDN). In CCN, each instance from one
class has a fixed probability of being assigned to another.
While in IDN, the probability that an instance is mislabeled
depends on both its class and features. In this paper, we fo-
cus on the more promising IDN approach, which considers
a more general noise and can cope with real-world noise.

The traditional label-noise learning methods can be di-
vided into two categories: algorithms with statistically incon-
sistent classifiers and algorithms with statistically consistent
classifiers. In the first category, algorithms do not model
the label noise distribution explicitly, they usually employ
some heuristics to reduce the negative effects of the label
noise [8–11]. Although such approaches often empirically
work well, the learned classifier from the data with label
noise may not be statistically consistent and their reliabil-
ity cannot be guaranteed. To address this limitation, the
classifier-consistent algorithms have been proposed. Specif-
ically, recent studies showed that estimating the transition
matrix plays an important role in building consistent classi-
fiers for label-noise learning, as these methods can explicitly
model the generation process of the noisy label [7,35]. How-
ever, it is very challenging to obtain the instance-dependent
transition matrix (IDTM) for getting the noisy labels from
the clean labels, because the IDTM T (x) as a function of in-
stance x is unidentifiable under IDN without any constraint.

Existing methods have tried to deal with this challenging
and ill-posed problem from two perspectives. First, they
have simplified the complex problem of estimating a matrix-
valued function T (x) for the general label noise into a prob-
lem of estimating T (i.e., a fixed matrix), which is known as
CCN. Then, some anchor points (training data that certainly
belong to some specific classes) are adopted to easily esti-
mate the transition matrix T [22,32]. Although such methods
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Figure 1. The proposed instance-dependent label-noise learning framework. We train a classifier in a statistically consistent manner through
the proposed IDTM T (x), where T (xi) ∈ RK×K is estimated by the transition neural network. It is regularized by the manifold embedding
to reduce the degree of freedom of T (x) and make it estimable in practice. In the manifold embedding L, the affinity matrix Sij is obtained
by finding the k-nearest neighbors in the instance feature space. Finally, we use the cross-entropy to train the classifier assisted by T (x).

have theoretical guarantees and have achieved success un-
der some synthetic noisy labels or specific conditions, they
are unable to cope with general real-world noise, i.e., IDN.
Second, several pioneer works considered strong assump-
tions and focused on how to simplify T (x) and significantly
reduce its degree of freedom or complexity. For example,
in part-dependent noise [44], it is assumed that T (x) is a
convex combination of a predefined number of fixed transi-
tion matrices, and their coefficients come from non-negative
matrix factorization. In such a way, the estimation problem
becomes parametric, and the degree of freedom of T (x) can
be reduced. The issue of those methods is that simplify-
ing the form of T (x) too much will certainly cause a large
approximation error.

To address the problem of estimating IDTM T (x) under
IDN, in this paper, we will not put any strong assumption
on the form of T (x), but we will instead put some assump-
tion on the geometry of T (x). More specifically, we have
noticed that, there are psychological and physiological ev-
idences [6, 24, 30, 36] showing that we humans are more
likely to annotate instances of similar appearances to the
same class, and thus poor-quality or ambiguous instances
of similar appearances are susceptible to be mislabeled to
correlated or same noisy classes. Therefore, according to
the basic principle that the noisy class-posterior probability
P (Ȳ = j|X = x) can be inferred by the latent clean class-
posterior probability P (Y = i|X = x) and IDTM T (x), we
propose an assumption that “the closer two instances are,
the more similar their corresponding transition matrices will
be”. This can be interpreted as that the instance adjacent
relationships of one category in the feature space should be
consistent with those in the transition matrix space.

Motivated by this practically useful assumption, we pro-
pose to estimate T (x) by formulating the assumption into
the manifold embedding as shown in Figure 1. Specifically,
we make use of the manifold assumption, and require that
if xi and xj are close in the feature space, then T (xi) and
T (xj) should also be close (in terms of a matrix norm). Go-

ing along this line, though we do not reduce the complexity
of T (x) directly since we do not further simplify it, we
still effectively reduce the degree of freedom of the linear
system P (ȳi|xi) = T (xi)P (yi|xi), i = 1, .., N and make
T (x) stably estimable in practice. Here, T (x) can be re-
garded as practically stable, since adding such a smoothness
assumption stops T (x) from changing too much in a tiny
neighborhood and then it should be Lipschitz continuous.
Thus, it should be uniquely determined given infinite data or
the underlying data distribution. Finally, we conduct exten-
sive experiments on various datasets, which illustrates the
proposed method is superior to state-of-the-art approaches
for label-noise learning under IDN.

The main contributions are summarized as follows:

• We are the first to propose the practical assumption on
the geometry of T (x) that “the closer two instances are,
the more similar their corresponding transition matrices
should be”, which aims to reduce the degree of freedom
of T (x), and make it stably estimable in practice.

• We formulate the assumption into manifold embedding,
which allows to keep the instance adjacent relationships
in the features space to be consistent with those in the
transition matrix space. By this way, the proposed
manifold-regularized method can greatly reduce the
estimation error without hurting much approximation
error about the estimation problem of T (x).

• Extensive experiments on various datasets demonstrate
superior classification performances over current state-
of-the-art methods on both synthetic IDN datasets
(MNIST, CIFAR10, CIFAR100) and two real-world
noisy datasets (Clothing1M and Food101N).

2. Related Works
Typical label-noise models can be categorized as the

random classification noise (RCN) model, the CCN model,
and the IDN model. In the RCN model, the clean labels flip



randomly with a fixed noise rate ρ ∈ [0, 1/2) [1, 15]. The
CCN model is a nature extension of the RCN model for multi-
class classification [26, 31, 38]. It assumes that the flip rate
for each instance from class i to class j depends on the latent
clean class. Thus, it is possible to model some similarity
information between classes. For example, we expect that
the image of a “dog” is more likely to be miss-labeled as
"cat" than "boat" [3]. Common methods to handle the CCN
model include the “loss correction" [26, 32] and the “label
correction” methods [33, 39]. The IDN model considers
more general case of label noise, where the probability of
an instance being mislabeled depends on the features and
class of the instance itself. Intuitively, IDN is quite realistic
and applicable, as the poor-quality and ambiguous instances
are more prone to be labeled wrongly in real-world datasets.
However, it is very complex to model IDN without any
additional assumption. Our work in this paper, aims to
estimate this realistic IDN model by considering practical
useful assumptions on the geometry of T (x), which aims to
reduce the degree of freedom of T (x), and make it stably
estimable in practice.

Estimating the transition matrix is one popular direc-
tion to build statistically consistent classifier. It helps to
significantly reduce the side-effects of noisy labels, by infer-
ring clean distribution based on the transition matrix and the
noisy class-posterior probabilities, statistically. We first re-
view representative works under the CCN. By leveraging the
class-dependent transition matrix (CDTM) T , the training
loss on the noisy data can be corrected. There exist many al-
gorithms to estimate the CDTM T [13,19,22,37,45,51]. For
example, Liu et al. [22] introduced the anchor points assump-
tion to estimate T , Li et al. [19] tried to optimize the transi-
tion matrix by minimizing the volume of T . To estimate the
IDTM T (x), existing works rely on various assumptions, for
example, Cheng et al. [5] proposed to estimate T (x) with a
bounded noise rate, Xia et al. [44] proposed to approximate
the IDTM T (x) by utilizing the part regularization of the
transition matrices. Berthon et al. [3] introduced the instance-
level forward correction method to estimate T (x), Yang et
al. [50] proposed to infer the Bayes optimal distribution in-
stead of the clean distribution. Although above advanced
methods achieved success empirically, some strong assump-
tions limit their applications in practice [50]. In contrast,
our work proposes a manifold-regularized method to reduce
the estimation error without hurting much approximation
error of T (x), which achieves superior performances for
label-noise learning.

Extracting confident clean examples is crucial for op-
timizing the transition matrix T (x) when only noisy data
is available. To accurately estimate the transition matrix,
we usually require that some clean data of each class are
given. When clean data is not available, they are required
to be extracted from the noisy data automatically, to con-

struct confident clean dataset for optimizing T (x). The
current effective methods mainly include but not limited
to the following approaches: the distillation method [50],
sample sieve approach [5, 25], loss distribution modeling
by a Gaussian mixture model [18], confidence-based sam-
ple collection [3, 9], small-loss-based methods [11, 41], and
some early stopping techniques [2]. When the confident
clean examples are obtained, the IDTM T (x) for each in-
stance can be learned. Besides, there also exist many other
semi-supervised learning methods [5, 8, 10, 18, 28], which
transform the label-noise learning into the semi-supervised
learning by using the extracted confident clean examples. In
this paper, we also need to adopt such a method to extract
confident clean examples for optimizing the IDTM T (x).

3. Label-Noise Learning Method

In this section, we obtain a statistically consistent clas-
sifier through the estimated IDTM T (x). Specifically, as
illustrated in Figure 1, the proposed method mainly consists
of the following components: the input noisy data, confident
clean example-extracting module, where we have cast them
as a whole in Figure 1, the backbone network and the transi-
tion neural network aiming to learn the instance features and
estimate T (x) respectively, the cross-entropy loss training
with noisy labels, and the proposed manifold-regularized
objective. Finally, we jointly train the DNN to learn T (x)
for each instance, and obtain a consistent classifier f(x; w)
on the given noisy data.

3.1. Problem Setting

Define D be the distribution of pair-wise random vari-
ables (X,Y) ∈ X × Y , where X denotes the variable of
training samples, Y is the variable of corresponding la-
bels, X ∈ Rd and d is the instance feature dimension,
Y = {1, 2, . . . ,K} and K is the total number of the la-
bel classes. The classification problem is to predict the label
y ∈ Y for each given instance x ∈ X . However, in some
real-world classification problems, it is not easy or even
infeasible to directly obtain large-scale training samples in-
dependently from the clean distribution D, since the clean
labels are often randomly corrupted into the noisy labels
when being observed.

Define D̄ be the distribution of these noisy examples
(X, Ȳ) ∈ X × Ȳ , where Ȳ denotes the random variable of
noisy labels. This paper targets at the classification problem
when we can only access a set of N training examples with
IDN denoted by D̄ := {(xi, ȳi)}Ni=1, where examples (xi, ȳi)
is independently drawn according to D̄.

The IDTM T (x) is defined to build the bridge between
the clean distribution D and the noisy distribution D̄. As
described in Eq. (1), the noisy class-posterior probabil-
ity P (Ȳ |X) can be inferred by the IDTM T (x) and the
clean class-posterior probability P (Y |X), where T (x) =



(Ti,j(x))Ki,j=1 ∈ [0, 1]K×K .

P (Ȳ = j|X = x) =

K∑
i=1

Tij(x)P (Y = i|X = x), (1)

where the IDTM is defined as Tij(x) = P (Ȳ = j|Y =
i, x). We can clearly see that T (x) depends on the actual
instance, and it is tremendously complex as the noise is
now characterized by K2 functions over the instance feature
space X , which can be very high-dimensional.

Therefore, the goal is to obtain a reliable classifier from
the noisy training dataset that could classify the test instances
accurately, by accurately estimating the IDTM T (x). Specif-
ically, in Eq. (1), only the noisy class-posterior probability
P (Ȳ |X) can be obtained by exploiting the noisy data. To
accurately estimate T (x), there contain two important steps:
1) extracting confident clean examples; 2) optimizing the
IDTM T (x) based on the given noisy labels and the extracted
confident clean examples.

Extracting confident clean examples is very crucial
for optimizing the IDTM T (x) as can be inferred from
Eq. (1). In the related work section, we have listed many
useful sample-sieve approaches. In this paper, we adopt
the example distillation method [50] to extract confident
clean examples. This method can extract a distilled sub-
dataset with theoretically guaranteed Bayes optimal labels
out of the noisy dataset. Note that our method is not
limited to the above distillation-based example extraction
method, but many other sample-sieve approaches can also
be used. Then, we can train a DNN on the extracted sub-
dataset to learn the transition matrix T (x) to model the re-
lationships between the confident clean data distribution
D and the noisy data distribution D̄. Here, we denote as
D̄s := {(xsi , ȳi)}N

s

i=1 the extracted examples. For simplicity,
we still use D̄ := {(xi, ȳi)}Ni=1 in the following descriptions.

3.2. The Label-Noise Learning Framework

Given the extracted training examples {(xs
i , ȳi)}N

s

i=1, we
train the transition neural network parameterized by θ to
estimate T (x), which models the probability of observing
a noisy label ȳ from the given input instance x and its cor-
responding estimated latent clean label ŷ. Then, it can be
expressed as Tij(x; θ) = P (Ȳ = j|Ŷ = i,X = x; θ), where
Tij(x; θ) ∈ RK×K , Ŷ is the variable for the labels of the
extracted confident clean data. To extract confident clean
data, we need to learn the noisy class-posterior probability,
which can be obtained by a classifier f(•; w) parameterised
by w, i.e., P (Ŷ |x; w) = f(x; w).

The probability of observing a noisy label Ȳ given the
input instance x can be inferred as,

P (Ȳ = j|x) =

K∑
i=1

P (Ȳ = j|Ŷ = i, x)P (Ŷ = i|x). (2)

Obviously, to infer the noisy label Ȳ given the instance x,
we need to optimize two sets of parameters {w, θ}, where
w is for the classifier f(x; w), θ is for the IDTM Tij(x; θ) =

P (Ȳ = j|Ŷ = i,X = x; θ). Traditionally, we could jointly
optimize the parameters (w, θ) by minimizing the empirical
risk on the inferred noisy labels and the ground-truth noisy
labels as follows:

min
w,θ

R(w, θ) = − 1

N

N∑
i=1

ȳi log(T (xi; θ)f(xi; w)), (3)

where N is the number of instances in the extracted con-
fident clean dataset. Intuitively, we can optimize Eq. (3)
directly to obtain the parameter set (w, θ). However, the
transition matrix T (x; θ) must be hard to learn without
any assumption, the ultimate reason is that the degree
of freedom of T (x; θ) is too high, and the linear system
P (ȳ|xi) = T (xi)P (ŷi|xi), i = 1, ..., N , has the same num-
ber of equations and variables. Existing methods focused
on how to simplify T (x) itself and significantly reduce its
degree of freedom or complexity, which will certainly cause
an approximation error. While in our work, we will not put
any strong restrictions on the form of T (x), instead we will
put a mild assumption on the geometry of T (x) by using the
manifold regularization.

3.3. Manifold-Regularized Transition Matrix

Manifold learning typically aims to retain intrinsic neigh-
bouring structures in the underlying lower-dimensional fea-
ture space. The classical manifold learning techniques
such as LLE [34] and Isomap [40] estimate the local man-
ifolds via justifiable assumptions. Therefore, we adopt the
manifold embedding techniques to fulfill our proposed as-
sumption “the closer two instances are, the more similar
their corresponding transition matrices will be”, to make
the IDTM T (x) practically learnable. With the manifold
regularization, though we do not reduce the complexity of
T (x) directly since we do not further model it, we still ef-
fectively reduce the degree of freedom of the linear sys-
tem P (ȳi|xi) = T (xi)P (yi|xi) and make T (x) stably es-
timable. Meanwhile, T (x) can be regarded as practically
stable, since adding such a smoothness assumption stops
T (x) from changing too much. It should be uniquely deter-
mined given infinite data or the underlying data distribution.

More specifically, we construct an intrinsic affinity graph
to characterize the within-manifold consistency and the ex-
trinsic affinity graph to characterize the between manifold
relationships [36], respectively. The intrinsic graph is con-
structed by node adjacency relationships in all the manifolds,
where each node is connected to its k1-nearest neighbours
within the same manifold. The extrinsic graph is constructed
using the between-manifold node adjacency relationships
from different manifolds. We use the k2-nearest neighbors
between the k-th manifold and the other manifolds.



Specifically, the within-manifold regularization is to fulfil
our assumption on the geometry of T (x) that “the closer two
instances are, the more similar their corresponding transition
matrices should be”, and can be expressed as:

MI =

N∑
i,j=1

S
(I)
ij ||T (xi)− T (xj)||2, (4)

S
(I)
ij =

{
1, if xj ∈ N (xi, k1) and ȳi = ȳj ,
0, else, (5)

where S(I)
ij refers to element (i, j) in the intrinsic affinity

graph matrix SI = (S
(I)
ij )N×N , T (xi) indicates the IDTM

for instance xi, N (xi, k1) indicates the k1-nearest neigh-
bours of the instance xi, ȳi = ȳj indicates that xi and xj
are in the same manifold, the distance used for computing
nearest neighbours is the Euclidean distance between xi and
xj in the feature space. Obviously, minimizing the within-
manifold consistency encourages the learned IDTM T (x)
to be close, if their corresponding instances are close in the
same category. This keeps the manifold in the instance fea-
ture space to be consistent with that in the transition matrix
space.

Meanwhile, since instances with different noisy labels
correspond to different effective row values in the transition
matrix, we also construct a extrinsic graph to characterize
the margin between manifolds. It can be expressed as:

MB =

N∑
i,j=1

S
(B)
ij ||T (xi)− T (xj)||2, (6)

S
(B)
ij =

{
1, if xj ∈ N (xi, k2) and ȳi 6= ȳj ,
0, else, (7)

where S(B)
ij denotes element (i, j) of the between-class affin-

ity matrix SB = (S
(B)
ij )N×N , N (xi, k2) indicates the k2-

nearest neighbours of instance xi, ȳi 6= ȳj indicates xi and
xj are from different manifolds.

Therefore, the overall proposed manifold-regularization
on the IDTM T (xi; θ) can be expressed as:

M(θ) =MI −MB . (8)

We can clearly see that, minimizing the manifold-
regularization objectiveM(θ) is equivalent to keep the man-
ifold in the transition matrix space be consistent with that
in the feature/label space. Thus, we fulfill the proposed
practical useful assumption on the geometry of T (x).

Remarks: The manifold embedding is usually used in
the unsupervised or semi-supervised learning, its affinity
matrix is constructed by the k-nearest neighbours in an un-
supervised manner traditionally. However, in this work, we
construct the affinity matrix for the manifold embedding

while considering the given noisy labels as shown in Eq. (5)
and Eq. (7). The main reason is that different instances with
different given noisy labels correspond to different effec-
tive rows in their corresponding transition matrices T (x).
We only used one row of T (x) to generate the noisy label.
Then even two instances, xi and xj , are very close in the
feature space and have the same confident clean label, their
corresponding transition matrices should be far apart if they
have different given noisy labels. Therefore, we specially de-
sign the affinity matrix in the proposed manifold-regularized
label-noise learning framework, as shown in Eq.(5), (7), (9)
and (10), for optimizing the IDTM T (x).

3.4. Kernel Trick to the Manifold Embedding

To improve the effectiveness of the proposed manifold-
regularization on the IDTM T (xi; θ) , we further consider
to adopt the kernel trick to pre-compute the affinity graph
matrix [36]. Concretely, S(I)

ij and S(B)
ij can be defined as,

S
(I)
ij =

{
e−
||xi−xj ||

2

σ2 , if xj ∈ N (xi, k1) and ȳi = ȳj ,
0, else,

(9)

S
(B)
ij =

{
e−
||xi−xj ||

2

σ2 , if xj ∈ N (xi, k2) and ȳi 6= ȳj ,
0, else,

(10)
where σ is one hyper-parameter to adjust the weight distri-
bution in the affinity graph matrix.

3.5. Overall Objective Function

Finally, the overall objective function can be expressed
as Eq.(11),

min
w,θ
L(w, θ) = R(w, θ) + λM(θ), (11)

where λ is the hyper-parameter to balance the cross-entropy
loss and the manifold embedding regularization.

3.6. Optimization

During optimization, the traditional back-propagation
method (e.g., SGD) is used to learn the classifier f(x; w)
and the IDTM T (x). Therefore, it is required to compute the
gradient of the objective function with respect to the output
of the corresponding layers.

Define S = (Sij)N×N = SI − SB , then the manifold-
regularized objective can be re-written as [36],

M =

N∑
i,j=0

Sij ||T (xi)− T (xj)||2 = 2tr(TΦTT ), (12)

where T = [T (x1), T (x2), ..., T (xN )], T (xi) ∈ RK×K can
be reshaped as K2 × 1 dimension in T, Φ = D − S,
D = diag(d11, d22, ..., dNN ), dii =

∑N
j=1,i6=j Sij , i =



1, 2, ..., N , Φ is the Laplacian matrix of S, and tr(·) denotes
the trace of a matrix.

The gradient ofM(θ) with respect to T (xi) can be de-
rived as [36],

∂M
∂T (xi)

= 2T(Φ + ΦT )(:,i) = 4TΦ(:,i), (13)

where Φ(:,i) denotes the i-th column of matrix Φ.
Please note that, whether the affinity graph matrix S is

in the traditional form or the kernel-wise version, they are
pre-computed based on current instance features in the mini-
batch. They work as constant values which do not involve in
the gradient back-propagation.

Algorithm 1: Instance-dependent Label-Noise
Learning Algorithm

Input: Noisy training dataset D̄ = {xi, ȳi}Ni=1

Output: The final classifier f(x; w) and the
transition matrix T (x; θ).

Warmup: Train the DNN on the noisy dataset D̄
with the early-stop strategy to obtain the initial
classifier f(x; w);

while Number of training epoch ≤ Max-Epoch do
• Extract confident clean examples using

example distillation method [50] with current
classifier f(x; w) to form the sub-dataset
D̄s = {xsi , ȳi}N

s

i=1;
• Input the extracted confident clean examples

into the backbone network;
• Compute the affinity graph matrix S(I)

ij and

S
(B)
ij based on current instance features

according to Eq. (5) and (7) or Eq. (9) and (10);
• Optimize the DNN based on the loss function

shown in Eq. (11) to obtain new classifier
f(x; w) and transition matrix T (x; θ).

end

4. Experiments
In this section, we first introduce the experiment setup

including the dataset, noisy type and implementation details.
Next, we compare the proposed method with the state-of-
the-art methods on four synthetic and two real-world noisy
datasets, then conduct an ablation study to analyze the ex-
perimental results and some useful hyper-parameters.

4.1. Experiment Setup

Datasets. Extensive experiments are conducted to il-
lustrate the effectiveness of our method, on four manually
corrupted datasets (i.e., F-MNIST [46],SVHN [27],CIFAR-
10 [16], CIFAR-100 [16]) and two real-world noisy datasets
( i.e., Clothing1M [47] and Food-101N [17]). F-MNIST

has 28× 28 gray scale images of 10 classes including 60K
for training and 10K for testing. SVHN contains 10 classes
of images with 73, 257 for training and 26, 032 for testing.
CIFAR-10 contains 10 classes and CIFAR-100 contain 100
classes, and both of them contain 50K training images and
10K testing images of size 32× 32. Clothing1M has 1M
images with real-world noisy labels from 14 fashion classes
for training and 10K test images with clean label, where the
estimated noisy label rate is 38.46%. Food101N contains
101 food categories with 310k training images and 55K clean
images for testing, which is also a real-world noisy dataset
and has about 19.66% noisy labels in the training dataset.

Noisy type. For the manually corrupted datasets (i.e.,
F-MNIST, SVHN, CIFAR-10, and CIFAR-100), we adopt
exactly the same strategy to generate the instance-dependent
label noise as previous methods [5, 44]. The basic idea is to
randomly generate one vector for each class (K vectors for
all the classes) and project each instance feature onto the K
vectors. The noise label is generated by jointly considering
its clean label and the projected results. We have set different
noisy rate for all the datasets from 10% to 50% to evaluate
all the methods.

4.2. Implementation Details

For fair comparison, we conduct all experiments on
NVIDIA GeForce RTX 3090, and all methods are imple-
mented on the same PyTorch platform. The backbone net-
work we used on F-MNIST dataset is ResNet-18, while
ResNet-34 network is used on SVHN, CIFAR-10 and
CIFAR-100 datasets. For the two real-world dataset (Cloth-
ing1M and Food101), we adopt the ResNet-50 network pre-
trained on ImageNet as the backbone network. The tran-
sition neural network in the framework is implemented by
one fully-connected layer, where the input is the instance
features, and the number of output nodes is K×K where K
denotes the number of classes on each dataset. The obtained
T (x) is normalized in each row. The k-nearest neighbor
parameters in Eq. (5) and Eq. (7) are set as k1 = k2 = 7,
the hyper-parameter σ in Eq. (9) and Eq. (10) is set to 1.1.
The optimization strategy we used is SGD with momentum
0.9, weight decay 10−3, and batch size 128. The initial
learning rate is set to 10−3, which is divided by 10 every 20
epochs. Firstly, we train the network on all the noisy data
with the early stop techniques as warm-up, where we have
trained 5, 10, 20, 1, and 1 epochs on F-MNIST, CIFAR-10,
CIFAR-100, Clothing1M and Food101N datasets for warm-
up, respectively. Then, we use the initial classifier to extract
confident examples from the noisy datasets based on the
distillation method [50]. The algorithm flowchart can refer
to Alg. 1.



Table 1. Comparison with state-of-the-art methods on F-MNIST and CIFAR-10 datasets. The mean and standard deviation computed over
five runs are presented. “IDN-xx%” means the noise rate is xx% and noise type is “IDN”.

Method
F-MNIST CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50% IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%
CE (baseline) 87.73± 1.25 87.63± 1.11 85.25± 0.57 75.00 ±0.25 65.42± 1.59 88.86± 0.23 86.93± 0.17 82.42± 0.44 76.68± 0.23 58.93± 1.54

GCE [54] 90.24 ±0.16 88.71± 0.17 85.90± 0.23 76.78± 0.37 67.67± 0.58 90.82± 0.05 88.89± 0.08 82.90± 0.51 74.18± 3.10 58.93± 2.67
DMI [48] 90.14± 0.22 88.13± 0.47 85.90± 0.23 76.22± 0.71 64.84± 1.28 91.43± 0.18 89.99± 0.15 86.87± 0.34 80.74± 0.44 63.92± 3.92

Forward [32] 90.78± 0.30 89.01± 0.44 86.51± 1.20 78.17± 0.32 68.31± 1.07 91.71± 0.08 89.62± 0.14 86.93± 0.15 80.29± 0.27 65.91± 1.22
CoTeaching [11] 90.54± 0.35 88.53± 0.09 87.37± 0.14 78.36± 0.82 67.81± 1.02 90.80± 0.05 88.43± 0.08 86.40± 0.41 80.85± 0.97 62.63± 1.51

CoTeaching++ [52] 90.67±0.49 88.52± 0.44 87.33± 0.87 79.85± 1.03 68.86± 1.39 91.47± 0.59 89.78± 0.34 85.72± 0.35 81.00± 0.82 61.46± 1.36
JoCor [43] 91.48± 0.11 89.24± 0.09 86.50± 0.10 77.15±1.04 67.85±0.84 91.42± 0.11 89.30± 0.27 85.54± 0.82 80.87± 0.91 64.11± 2.57

PeerLoss [23] 90.76±0.41 87.06± 0.74 84.40± 0.93 73.95± 2.37 65.79± 2.49 90.89± 0.07 89.21± 0.63 85.70± 0.56 78.51± 1.23 59.08± 1.05
TMDNN [50] 91.33± 0.27 89.70± 0.14 87.63± 1.28 78.40± 3.69 66.55± 7.52 90.45± 0.72 88.14± 0.66 84.55±0.48 79.71± 0.95 63.33± 2.75

PartT [44] 91.27± 0.38 89.78± 0.43 88.30± 0.51 80.75± 2.86 72.22± 4.22 90.32± 0.15 89.33± 0.70 85.33±1.86 80.59± 0.41 64.58± 2.86
MEIDTM (Ours) 91.78± 0.87 90.49± 0.35 88.74± 0.25 84.21± 0.52 73.67± 3.76 92.17± 0.21 91.38± 0.34 87.68± 0.26 82.63± 0.24 72.17± 1.51

kMEIDTM (Ours) 91.96±0.08 90.83± 0.05 89.61± 0.65 85.81± 0.44 76.43± 4.88 92.91± 0.07 92.26± 0.25 90.73± 0.34 85.94± 0.92 73.77± 0.82

Table 2. Comparison with state-of-the-art methods on SVHN and CIFAR-100 datasets. The mean and standard deviation computed over five
runs are presented. “IDN-xx%” means the noise rate is xx% and noise type is “IDN”.

Method
SVHN CIFAR-100

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50% IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%
CE (baseline) 90.47±0.27 89.85±0.16 86.31±0.79 80.59±0.56 64.93±2.03 66.55±0.23 63.94±0.51 61.97±1.16 58.70±0.56 56.63±0.69

GCE [54] 90.82±0.12 89.48±0.66 86.92±0.24 81.95±1.45 63.20±2.75 69.18±0.14 68.35±0.33 66.35±0.13 62.09±0.09 56.68±0.75
DMI [48] 92.66±0.58 91.88±0.42 88.44±0.85 82.27±1.54 68.72±2.32 67.06±0.46 64.72±0.64 62.8±1.46 60.24±0.63 56.52±1.18

Forward [32] 92.01±1.10 90.67±0.27 86.04±0.40 83.18±0.95 70.72±2.00 67.81±0.48 67.23±0.29 65.42±0.63 62.18±0.26 58.61±0.44
CoTeaching [11] 91.11±0.16 90.88±0.17 88.21±0.62 86.46±1.33 70.04±1.05 67.91±0.34 67.40±0.44 64.13±0.43 59.98±0.28 57.48±0.740

CoTeaching++ [52] 92.64±0.43 91.59±0.43 87.55±1.26 87.69±1.06 72.36±1.39 68.67±0.25 68.30±0.69 65.77±0.30 61.75±0.53 57.94±0.15
JoCor [43] 93.52±0.47 93.47±0.40 89.47±1.04 88.56±1.28 73.70±1.92 68.48±0.49 67.87±0.80 65.73±0.55 61.64±0.54 57.75±0.80

PeerLoss [23] 92.59±0.56 91.67±0.72 89.86±0.67 85.44±0.97 73.91±2.30 65.64±1.07 63.83±0.48 61.64±0.67 58.30±0.80 55.41±0.28
TMDNN [50] 95.51±0.13 94.83±0.64 92.43±0.91 86.91±1.17 76.53±2.15 68.42±0.42 66.62±0.85 64.72±0.64 59.38±0.65 55.68±1.43

PartT [44] 95.56±0.45 94.19±0.20 92.56±0.83 88.13±1.56 77.04±2.56 67.33±0.33 65.33±0.59 64.56±1.55 59.73±0.76 56.80±1.32
MEIDTM (Ours) 95.72±0.40 95.48±0.01 94.23±0.27 92.00±0.10 78.25±0.35 68.19±0.32 67.21±0.38 66.06±0.77 62.34±0.18 57.69±0.51

kMEIDTM (Ours) 96.38±0.07 95.66±0.02 94.68±0.17 92.20±0.23 80.22±2.00 69.88±0.45 69.16±0.16 66.76±0.30 63.46±0.48 59.18±0.16

4.3. Comparison with State-of-the-art Methods

We compare our method with the following 10 represen-
tative works: 1) CE, which trains the classification network
with the standard cross-entropy loss on the original noisy
dataset; 2) GCE [54], which uses the mean absolute error
and the cross-entropy loss to jointly optimize the model on
noisy datasets; 3) DMI [48], which proposed a information-
theoretic loss function to robustly train the deep model on
the noisy dataset; 4) Forward [32], which utilizes a CDTM
T to correct the loss function; 5) Co-teaching [11] and
Co-teaching++ [52] propose to train two deep neural net-
works simultaneously to handle label noise; 6) JoCor [43]
adopted a joint training method with co-regularization; 7)
PeerLoss [23],which does not require a prior specification
of the noise rates; 8) TMDNN [50] and PartT [44] proposed
to estimate the IDTM T (x) for IDN using DNNs.

Results on the synthetic noisy datasets. Table 1,2,4 and
3 report the classification accuracy on datasets of F-MNIST,
SVHN, CIFAR-10 and CIFAR-100 under five different noise
ratios, respectively. Each table includes 10 representative
works on corresponding datasets. Our proposed method
has two variants as described in the tables: one is the pro-
posed method with kernel-trick affinity matrix as illustrated
in Eq. (9) and (10), which is our final version denoted as
“kMEIDTM”; another is the proposed method where the affin-
ity matrix is build by Eq. (5) and Eq. (7), denoted as “MEI-

DTM”. The baseline method is the standard cross-entropy
loss trained on the noisy dataset, denoted as “CE”.

Compared with the representative works, the proposed
method achieves top performances on all the four synthe-
sized datasets under five noise ratios. The evaluation results
shown in the four tables can be summarized as follows,

• Compared with the best performances shown in pre-
vious representative methods, the proposed method
kMEIDTM outperforms the former by a margin of
0.48% to 7.67%, and our method outperforms the
baseline method “CE” by a large margin of 2.55% to
17.29%.

• The superiority of the proposed method is gradually re-
vealed along with the noise rate increases. As shown in
the four table, our method outperforms the second best
method by an average margin of 0.64 and 1.04 under
IDN-10% and IDN-20%, while 3.12% and 4.69% under
IDN-40% and IDN-50%, which illustrate our method
can handle extremely hard situation much better.

• Our kernel version kMEIDTM outperforms MEIDTM
in almost all situations, by a margin of 0.06% to 2.76%.

Results on the real-world datasets. Table 3 and 4 show
the classification results on the real-world Clothing1M and
Food101N datasets. It can be seen that the proposed method



Table 3. Classification accuracy (%) on the Clothing1M dataset. (*) indicates that the implementation is based on the authors’ code.

Methods CE (Baseline) GCE [54] SL [42] Co-teaching [11] JointOpt [39] LDMI [48] PTD-R-V [44] ERL [21]
Accuracy 68.94 69.75 71.02 69.21 72.16 72.46 71.67 72.87

Methods ForwardT [32] JoCor [43] CORES [5] CAL [55] DivideMix* [18] MEIDTM(Ours) kMEIDTM(Ours) kMEIDTM (+DivideMix)

Accuracy 69.84 70.30 73.24 74.17 74.67 73.05 73.34 74.82

Table 4. Classification accuracy (%) on the Food101N dataset.

Methods Accuracy
CE(Baseline) 81.44

CleanNetWHard(cvpr2018) [17] 83.47
CleanNetWSoft(cvpr2018) [17] 83.95

DeepSelf(cvpr2019) [12] 85.11
NoiseResist(cvpr2021) [20] 84.70
DivideMix(iclr2020)* [18] 84.39

kMEIDTM(+DivideMix) (Ours) 85.61
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Figure 2. shows the transition matrix estimation error varying with
the number of epoches during model training, under five different
noise rates, on CIFAR-10 dataset.

“MEIDTM” can improve the baseline method “CE” by a mar-
gin of 4.11%, and then the kernel-wise method “kMEIDTM”
further improves the classification accuracy to 73.34%.

Since the proposed IDTM estimation method can work as
a plug-and-play module, we then integrate this module into
the representative work “DivideMix” [18] to further illustrate
its effectiveness, denoted as “kMEIDTM(+DivideMix)”. Ex-
perimental results show that the proposed transition matrix
can further improve the method of “DivideMix” [18] by
0.15% and 1.22% on Clothing1M and Food101N datasets
respectively, which is superior to state-of-the-art methods.

4.4. Ablation Study

To evaluate the estimated IDTM T (x), we show the
IDTM estimation error during model training under five
different noise rates, on CIFAR-10 dataset, in Figure 2. The
error is measured by the l1 norm between the ground-truth
transition matrix and the estimated transition matrix. For
each instance, we only analyze the estimation error of a spe-
cific low since the noisy is generated by one row of T (x).
We summary Figure 2 as follows: 1) IDTM estimation error
gets smaller and smaller during model training under five
noise rates, which illustrate the effectiveness of the proposed
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Figure 3. shows the classification accuracy varying with hyper-
parameter λ under five different noise rates on CIFAR-10 dataset.

method for T (x) optimization; 2) the lower noise rate, the
better/easier estimation for T (x).

To investigate the effect of hyper-parameter λ on the
model performance, we conduct experiments with various
values of λ on CIFAR-10 dataset under five noise rates,
where each experiment is done with five runs. The results
is shown in Figure 3. We can see that the test accuracy is
not relatively sensitive to λ under low noise rate, i.e., IDN-
10%, but it is sensitive under high noise rate, i.e., IDN-50%.
Overall, we can clearly see that our method yields the best
performance when λ is around 0.3. Based on this observa-
tion, we set λ = 0.3 in all our experimental evaluations.

5. Conclusion and Limitation
In this paper, we focus on obtaining a consistent classifier

under the challenging IDN. To address this problem, we
propose the assumption on the geometry of IDTM T (x) that
“the closer two instances are, the more similar their corre-
sponding transition matrices should be”. Specifically, we
formulate the assumption into the manifold embedding to
effectively reduce the degree of freedom of T (x) and make it
stably estimable. This method can directly reduce the estima-
tion error without hurting much approximation error about
the estimation problem of T (x). Extensive experimental
results demonstrate the effectiveness of our method.
Limitation. One major limitation in this study is that we
just adopt one fully-connected layer with K × K output
nodes to work as the transition neural network (TNN) for
learning T (x), which is a little bit simple. In the future, we
will make deep analysis on the TNN design theoretically and
practically, to learn robust classifier on the noisy dataset.
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