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Abstract

Neural networks trained with SGD were recently shown
to rely preferentially on linearly-predictive features and can
ignore complex, equally-predictive ones. This simplicity
bias can explain their lack of robustness out of distribution
(OOD). The more complex the task to learn, the more likely
it is that statistical artifacts (i.e. selection biases, spurious
correlations) are simpler than the mechanisms to learn.

We demonstrate that the simplicity bias can be mitigated
and OOD generalization improved. We train a set of similar
models to fit the data in different ways using a penalty on the
alignment of their input gradients. We show theoretically
and empirically that this induces the learning of more com-
plex predictive patterns.

OOD generalization fundamentally requires information
beyond i.i.d. examples, such as multiple training environ-
ments, counterfactual examples, or other side information.
Our approach shows that we can defer this requirement to
an independent model selection stage. We obtain SOTA re-
sults in visual recognition on biased data and generaliza-
tion across visual domains. The method – the first to evade
the simplicity bias – highlights the need for a better under-
standing and control of inductive biases in deep learning.

Addendum (09-2022): we subsequently used the method
in [75] and extended it in [76] to require fewer models.

1. Introduction
Inductive biases in deep learning. At the core of every
learning algorithm are a set of inductive biases [45]. They
define the learned function outside of training examples and
they allow extrapolation1 to novel test points. Deep neu-
ral networks are remarkably effective because their induc-

1 Contrary to popular belief, deep neural networks rarely perform interpo-
lation even in i.i.d. settings. In high dimensions, test points are extremely
unlikely to lie within the convex hull of training points [24, 34].

Training set OOD Test set

(a) ImageNet-9 [85]

(b) MNIST/CIFAR Collages [70]

Figure 1. Training data often contains multiple predictive patterns.
(a) In ImageNet-9, bird shapes and blue backgrounds are both pre-
dictive of the bird label. (b) In MNIST/CIFAR collages, both parts
are equally predictive of training labels. Neural networks display
a simplicity bias: they latch on the MNIST digit for example, and
completely ignore the CIFAR part. We show that we can mitigate
the simplicity bias by training a collection of models, allowing us
to discover a diverse set of predictive patterns.

tive biases happen to reflect properties of real-world data,
although the reasons are still poorly understood [89]. In
particular, the simplicity bias [27, 47, 51, 57, 70] has been
proposed as a reason of their success. It makes networks
trained with SGD2 represent preferentially simple, approx-
imately piecewise linear functions.3 But the simplicity bias
can also prevent the learning of complex patterns that are
the actual mechanisms of the task of interest. This effect
is problematic when the learned simple patterns correspond
to spurious correlations a.k.a. statistical shortcuts [17]. In

2 The simplicity bias is not a property of neural networks themselves, but
also of their training with SGD, since it is possible to manually construct
networks with arbitrarily poor generalization [89] i.e. no simplicity bias.

3 We adopt the definition of simplicity of a feature from [70]: it is the min-
imum number of linear pieces in the decision boundary that achieves op-
timal classification accuracy using this feature. The definition naturally
extends to the simplicity of a model implementing this decision boundary.
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image recognition, an example of a shortcut is to use the
background rather than the shape of the object. In natural
language understanding, an example is to use the presence
of certain words rather than the overall meaning of a sen-
tence. These shortcuts are inevitable byproducts the data
collection process e.g. from selection biases. They are in-
creasingly problematic as tasks tackled with deep learning
grow in complexity. The mechanisms to learn are more and
more likely to be overshadowed by simpler spurious pat-
terns.

Role of inductive biases in OOD generalization. OOD
Generalization or strong generalization is the capability of
making accurate predictions under arbitrary covariate shifts.
To achieve this, a model must learn and reflect the intrin-
sic (i.e. causal) mechanisms of the task of interest.4 For
example, recognizing objects in arbitrary scenes requires
a model to learn about their shape and details. It can-
not rely solely on the background or contextual cues (Fig-
ure 1a) . OOD Generalization fundamentally requires extra
information beyond i.i.d. training examples [6, 68]. Exist-
ing methods use side information such as multiple training
environments [1, 12, 56], counterfactual examples [25, 73],
or non-stationary time series [23,30,58]. Importantly, OOD
generalization is not achievable only through regularizers,
network architectures, or unsupervised control of inductive
biases [6]. To make this limitation intuitive, consider the
task of image recognition in Figure 1. Should a bird la-
bel result from a bird shape or from a blue sky? If shape
and background are equally predictive of training labels,
the data simply lacks the information to prefer one over the
other (i.e. the task is underspecified: the same data could
support a task where the labels relate to the background and
not the objects). This is where a learning algorithm’s in-
ductive biases come into play, possibly detrimentally. The
simplicity bias favors the most linearly-predictive patterns,
but these may be spurious. While existing methods attempt
to integrate extra information during training, we show this
can be deferred to a model selection stage.

This study. We seek to control the simplicity bias of neu-
ral networks and investigate benefits in OOD generaliza-
tion. Variations of architectures, hyperparameters, or ran-
dom seeds have no effect on the simplicity bias. Instead,
we train a collection of similar models to fit the training
data in different ways. Each model is optimized for stan-
dard empirical risk minimization (ERM) while a regular-
izer encourages diversity across the collection. It pushes
each model to rely on different patterns in the data, includ-
ing complex ones that are otherwise ignore because of the

4 OOD Generalization goes beyond the in-domain (ID) generalization of
classical learning theory. Perfect ID generalization (i.e. reaching Bayes
error rate on a test set from the same distribution as the training data)
is achievable with infinite training data, but the predictions may rely en-
tirely on spurious correlations (e.g. recognizing birds from blue skies).

simplicity bias. Identifying a model with good OOD per-
formance is reduced to an independent model selection step
that can use any type of side information such as those men-
tioned above.5

Applicability of our method. We use three image recogni-
tion datasets to demonstrate improvements in generalization
relevant to computer vision. Issues with OOD generaliza-
tion are also root causes of adversarial vulnerabilities [26],
some model biases [49,66], and poor cross-domain/-dataset
transfer [78]. Potential benefits in these areas remain to be
investigated. Kariyappa et al. [32] already demonstrated
improved adversarial robustness by increasing diversity in
an ensemble with a method similar to ours.

Summary of contributions.
1. We review the fundamental requirements for OOD gen-

eralization and derive a rationale for addressing general-
ization during model selection rather than training.

2. We describe a method to overcome the simplicity bias
by learning a collection of diverse predictors.

3. We demonstrate these benefits on existing benchmarks.
(a) A new capability to learn multiple predictive pat-

terns otherwise ignored because of the simplicity
bias (multi-dataset collages [70]).

(b) Improved activity recognition after training on
visually-biased data (Biased Activity Recognition
dataset [48]).

(c) Improved object recognition across visual domains
(PACS dataset [36]).

Far from a complete solution to OOD generalization, this
paper highlights the need for a better understanding and
control of inductive biases in deep learning.

2. Background
Simplicity bias. Deep learning is actively studied to under-
stand reasons for its successes and failures. The simplic-
ity bias [51, 70], gradient starvation [57], and the learning
of functions of increasing complexity [57] help explain the
lack of robustness of deep neural networks and why their
performance degrade under minor distribution shifts and ad-
versarial perturbations. Shah et al. [70] showed that neural
networks trained with SGD are biased to learn the simplest
predictive features in the data while ignoring others. Wor-
ryingly, approaches like ensembles and adversarial training
– believed to improve generalization and robustness – are
ineffective at mitigating the simplicity bias.

Shortcut learning [17,35] is synonymous with poor OOD

5 Model selection for OOD performance cannot be achieved with a stan-
dard (in-domain, ID) validation set [6]: high ID performance can be
attained by relying on spurious patterns, which says nothing about the
model’s capabilities OOD. An OOD validation set is a valid option that
makes this step similar to the cross-validation routinely used to select
architectures and hyperparameters.



generalization. It happens when a model learns predictive
patterns that do not correspond to the task of interest. For
example in object recognition (Figure 1), the model uses the
background rather than the shape of an object [5, 18]. The
model is accurate on in-domain (ID) data (i.e. from the same
distribution as the training set) but is correct for the wrong
reasons. Failures are apparent on OOD test data where the
spurious patterns learned during training cannot be relied
on. The more complex the task, the larger the space of pos-
sible spurious patterns that are simpler than the mechanisms
of task, and the more likely is a case of shortcut learning.
The simplicity bias exacerbates shortcut learning.

OOD Generalization (i.e. avoiding shortcut learning) is
fundamentally not attainable solely with ERM [68]. ERM
learns any pattern predictive of training labels. OOD gen-
eralization requires knowing which patterns correspond to
causal mechanisms of the task (Figure 1). This information
is lost by sampling i.i.d. training examples from the joint
distribution produced by the data-generating process [6].
Current approaches to recover the missing information use
multiple training environments [1, 12, 56], counterfactual
examples [25,73], or non-stationary time series [23,30,58].
Other options to improve OOD generalization rely on ad
hoc task-specific knowledge [3, 11, 41, 48, 71, 79].

Ensembles. This paper is not about building ensembles.
Ensembling means that multiple models are combined for
inference. Rather, we train a collection of models and iden-
tify one for inference (experiments include ensembles for
comparison). The goal of ensembling is to combine mod-
els with uncorrelated errors into one of lower variance. Our
goal is to discover predictive patterns normally missed by a
learning algorithm because of its inductive biases.

See Appendix D for an extended literature review.

3. Proposed method
Method overview. We train a collection of models in paral-
lel (see Figure 2). A diversity regularizer encourages them
to represent different functions. They share the same ar-
chitecture and data. The regularizer is required because
trivial options such as training models with different ini-
tial weights, hyperparameters, architectures, or shuffling of
the data do not prevent converging to very similar solutions
affected by the simplicity bias as demonstrated in [70].

Setup. We consider a supervised learning task, where one
model is typically trained on a training set of examples
T={(xk, ŷk)}Kk=1. The vectors x represent input data such
as images and y, in the case of a classification task, vectors
of ground truth scores [0, 1]C over C classes. The standard
practice is to train a model (typically a neural network) for
empirical risk minimization (ERM) on T . A model imple-
ments a function F : supp(x) → supp(y). We repre-
sent it as a composition F = g ◦ f of a feature extractor

Figure 2. Our method trains a collection of classifiers in parallel
to produce different predictions on OOD data. A diversity loss
penalizes pairwise similarities between models, using each clas-
sifier’s input gradient at training points. Combined with standard
classification losses, we optimize models for both distinctness and
predictive performance.

fθ(·) and classifier gϕ(·) parametrized by weights θ and
ϕ respectively. We further define the hidden representation
h= fθ(x). The model F is typically optimized to minimize
the risk R of a predictive loss Lclassification on T by solving

min
θ,ϕ

R(Fθ,ϕ) (1)

with the risk R(Fθ,ϕ) = ΣK
k Lclassification(ŷ

k,yk) (2)

and predictions yk = Fθ,ϕ(x
k) = gϕ

(
fθ(x

k)
)
. (3)

In the following, we call a predictor any function Fθ⋆,ϕ⋆

from the chosen hypothesis space (e.g. neural networks of a
certain architecture) where (θ⋆,ϕ⋆) is a solution to (1).

Why we sometimes need more complexity. The simplic-
ity bias exposed in [70] implies that a neural network trained
with SGD for (1) relies on the simplest features predic-
tive of labels in T . It ignores more complex ones even if
equally predictive. The simplicity of a feature is defined
in [70] as the minimum number of linear pieces in the de-
cision boundary achieving optimal classification using this
feature. We further assume that a predictor relying this fea-
ture implements its corresponding simple decision bound-
ary (although not stated explicitly in [70] it seems supported
by their experiments). If a simple spurious pattern exists in
the data, the simplicity bias will prevent from learning any
more complex mechanism of the task. In such cases, it is
desirable to force learning a more complex predictor.

How diversity can induce complexity. By assumption of
the simplicity bias, the default predictor learned by solving
(1) with SGD is the simplest. In other words, the model
learned by default lies at one end of the space of solutions.
A diverse set of solutions departing from the default one
will necessarily include more complex models, that repre-
sent more complex decision boundaries and rely on differ-
ent features of the data.

How to quantify diversity. We compare the functions im-



plemented classifiers using their input gradients i.e. the gra-
dient of their output with respect to their input. Given any
two classifiers gϕ1

and gϕ2
we quantify their similarity at a

point h ∈ preimage(g) with

δgϕ1
,gϕ2

(h) = ∇h g⋆ϕ1
(h) . ∇h g⋆ϕ2

(h) (4)

where the dot product measures the alignment of gradients.
Since g is vector-valued, we denote with ∇g⋆ the gradient
of its largest component (top predicted score). We apply (4)
below to encourage diversity over a collection of models.

Complete proposed method. Instead of training one
model, we train a collection of models {Fi} in parallel,
where Fi = gϕi

◦ f . They share an optional feature extrac-
tor f (e.g. a ResNet) for computational reasons, whereas the
model-specific classifiers gϕi

are small multi-layer percep-
trons (MLPs) in our experiments. We replace the training
objective (1) with

min
(θ,{ϕi})

Σn
i R(gϕi

◦ fθ) + λ Σi̸=jΣ
K
k δgϕi,gϕj

(hk) (5)

where the scalar λ controls the strength of the regularizer.
The first term is the ERM objective. It ensures a low training
error and usual asymptotic guarantees for in-domain data.
The second term is the diversity regularizer. It minimizes
the alignment of input gradients over pairs of models at all
training points. We solve (5) by SGD, with {θi} initialized
differently to break the initial symmetry.

3.1. Additional considerations
Rationale for input gradients. Intuitively, we want each
model to rely on different features in the data. And in-
put gradients are indicative of the features used by the
model [69]. Input gradients have the advantage of being
implementation-invariant [72] (applicable to any differen-
tiable model) and directly relevant to OOD predictions. The
predictions of a classifiersgϕi

at a test point of features h are
denoted gϕi

(h). Assuming g continuous and differentiable,
the approximation with a first-order Taylor expansion about
a nearby training point of features htr gives

gϕi
(h) = gϕi

(htr) + (h− htr) ∇hg
⋆
ϕi
(htr) . (6)

The ERM objective clamps the value at training points
which makes the first term identical ∀ i. But the diversity
regularizer makes the second term different, causing predic-
tions to diverge more and more across models as one moves
away from training points. Simple alternatives in weight
space (e.g. pushing parameters apart) would not guaran-
tee learning different functions, since two networks can be
equivalent under permutations and scalings of weights.

Evaluating the diversity of learned predictors. Our
method produces a collection models, one of which has to
be selected for inference. The selection is necessary, just
like the cross-validation routinely performed to select hy-

perparameters and architectures, or the ubiquitous practice
of early stopping. The choice of a selection method (see
below) is orthogonal to our contribution of alleviating the
simplicity bias. Therefore, the goal of our experiments is to
demonstrate an increase in diversity (in terms of OOD per-
formance) of the models that the selection can then operate
on. Therefore we report the mean, ensemble, and maximum
accuracy (oracle selection) of all models of a collection.
We also perform a cross-dataset evaluation (Section 4.3) to
verify that the maximum accuracy is meaningful and not
merely an example of “overfitting to the test set”.

Model selection for OOD performance. It is important
to remember that selection for OOD performance cannot,
by definition, be performed with a validation set from the
same distribution as the training data [74]. OOD general-
ization fundamentally requires additional information be-
yond i.i.d. data [6, 68] (see Section 2). Our approach uses
standard i.i.d. data during training, which means that extra
information has to be brought in during model selection. It
can be as simple as a small OOD validation set, and other
options include any technique used to evaluate OOD per-
formance: contrast sets, counterfactual examples [16], in-
spection through with explainability techniques and expert
knowledge [62], etc. This flexibility of options is possible
because we only require the extra information for model
selection, compared to existing OOD methods that require
extra information attached to every training example e.g.
in multiple training environments [1,12,56], counterfactual
examples [25,73], or non-stationary time series [23,30,58].

Computational cost. Feeding all classifiers with the same
mini-batches keeps the training cost small. We found no
difference with feeding different mini-batches. Memory
and compute scale linearly with the number of classifiers,
but these are small MLPs with a tiny footprint compared
to the shared feature extractor. With enough memory, the
operations of all models can even be parallelized, hence no
decrease in throughput. The computation of the diversity
regularizer reuses the input gradients that are byproducts of
the backpropagation necessary to train the classifiers. The
only added cost is in the computation of second derivatives
to optimize the regularizer. All our experiments were run
on a single laptop (!) with a GeForce GTX 1050 Ti GPU.

We include an FAQ with past reviews in Appendix A. See
Appendix A for FAQs from readers and reviewers.

4. Experiments

We designed a set of experiments to answer two questions.
1. Can we learn predictive patterns otherwise ignored by

standard SGD and existing regularizers? (Section 4.1).
2. Are these patterns relevant for OOD generalization in

computer vision tasks? (Sections 4.2 and 4.3).



Class 0
Zero, pullover

automobile, zero.

Class 1
One, coat

truck, one.

Figure 3. Training examples of collages. Each block features
one of two pre-selected classes from MNIST, Fashion-MNIST,
CIFAR-10, SVHN. All four blocks are predictive of training la-
bels. Because of the simplicity bias, a standard classifier latches
on MNIST and ignores others.

4.1. Multi-dataset collages
Dataset. We extend the collages of MNIST/CIFAR (see
Figure 1a) used in previous investigations of the sim-
plicity bias [70]. We also use Fashion-MNIST [84] and
SVHN [50] to form four-block collages for a binary clas-
sification task (see Figure 3). Each block features one of
two pre-selected classes from the corresponding dataset (de-
tails in Appendix E). In the training data, the contents of
all four blocks are predictive of the labels. Because of
the simplicity bias however, a standard model systemat-
ically relies on the MNIST digit and completely ignores
other parts of the image. The dataset simulates the absence
of prior preference for any image region, typical in vision
tasks. Therefore the goal is to learn predictive patterns
from all four blocks. This is evaluated with four test sets,
in which the contents of all blocks but one are random-
ized to either of its two classes. The dataset available at
https://github.com/dteney/collages-dataset.

Results of baselines. To test the simplest possible im-
plementation of our method, we use a fully-connected
2-hidden layer MLP classifier (details in Appendix E). We
obtained upper bounds on the accuracy attainable with this
architecture with four training sets where all blocks but one
are randomized (Table 1, top row). This provides a ranking
of learning difficulty: MNIST, SVHN, Fashion-MNIST, CI-
FAR. We trained the baseline with popular regularizers. In
all cases (32 models per experiment, repeated 5 times) the
models use the MNIST digit exclusively and never perform
above chance (50%) on the other test sets.

Results of our method. We then trained a collection of
the same number of models (32) with our diversity regular-
izer. In every case (five runs) the collection contains models
that use all four parts of the images. We determined that
the models specialize but do not overlap: a model is typi-
cally good on one of the four test sets at a time (see Table 5
in the appendix). A larger number of models also seems
beneficial (see discussion in Section 5). This is partly ex-
plained with the observation that, even with a large number
of models, a larger fraction relies on the simpler MNIST and

Collages dataset (accuracy in %) Best model on
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Upper bounds: one predictive block in tr. 99.7 89.7 77.4 68.7 83.9

Baseline, 32 models with different seeds 99.7 50.0 51.2 50.1 62.7
±0.0 ±0.1 ±0.3 ±0.1

With dropout (best rate: 0.5) 98.7 54.8 52.9 54.9 65.3
With penalty on L1 norm of gradients 98.9 49.8 50.7 49.9 62.3
With Jacobian regularization [28] 98.8 49.8 50.7 49.9 62.3
With spectral decoupling [57] 99.1 49.8 50.7 49.9 62.4

Proposed, 8 models 97.3 82.1 59.6 55.8 73.7
±0.5 ±6.0 ±4.0 ±1.9

Proposed, 16 models 96.6 72.1 64.6 58.4 72.9
±1.2 ±10.3 ±4.0 ±1.4

Proposed, 32 models 95.6 81.8 69.2 61.1 76.9
±0.3 ±5.3 ±2.8 ±1.0

Proposed, 64 models 95.5 80.9 70.7 60.8 77.0
±0.1 ±5.8 ±1.5 ±0.9

Proposed, 96 models 95.8 84.7 71.7 61.7 78.5
±0.8 ±4.0 ±1.1 ±1.2

Table 1. Results on collages. The upper bounds are obtained by
training the baseline four times on data where all blocks but one
are randomized. Other rows correspond to the training of 32 mod-
els, of which we report the best one on each test set. All existing
methods fixate on the MNIST block. Ours discovers predictive
signals from all four blocks (mean and std. dev. over five runs).

Baseline, 16 models

Proposed, 16 models

Best model on region: MNIST SVHN Fashion-M. CIFAR

Figure 4. Visualization of input gradients ∇h g⋆(h) (abs. val.
averaged over 10 test images; brighter means higher value). Each
model specializes in different image regions.

Fashion-MNIST blocks than on the others. There is still
room for improvement since our best models do not quite
reach the upper bounds. Finally, a manual inspection of in-
put gradients similar to some interpretability methods [69]
is an easy way to assess which part of the image is used
(see Figure 4). Combined with expert task knowledge, this
could serve for model selection in some applications.

4.2. Biased activity recognition (BAR)

Climbing Diving Fishing Racing Throwing Vaulting

Figure 5. Training and test (in red) examples from BAR.

Dataset. The BAR dataset [48] was recently introduced
to evaluate debiasing methods for image recognition. The

https://github.com/dteney/collages-dataset


Biased activity recognition (BAR) dataset

Training collection of 64 models, reporting performance of: Single model Ensemble Best single model
(average accuracy (whole (oracle
in the collection) collection) selection)

Baseline in [48] 51.9 ±5.92 N/A N/A
Learning from failure [48] 63.0 ±2.76 N/A N/A

Our strong baseline: frozen ResNet-50, 2-layer MLP 62.0 ±0.3 63.1 ±0.2 64.9 ±0.7

Penalty on sq. L2 norm of gradient (Jacobian reg. [28]) 63.7 ±0.4 64.5 ±0.7 67.0 ±0.9

Penalty on sq. L2 norm of feature-gradient product (App. E) 62.8 ±0.1 63.9 ±0.6 65.9 ±0.5

Penalty on L1 norm of feature-gradient product (App. E) 63.9 ±0.3 64.6 ±0.4 66.1 ±0.3

Penalty on sq. L2 norm of logits (spectral decoupling [57]) 64.3 ±0.2 65.2 ±0.5 67.0 ±0.4

Proposed, 8 models 64.9 ±0.8 65.9 ±0.4 66.8 ±0.5

Proposed, 64 models 64.4 ±0.2 66.1 ±0.3 67.1 ±0.3
1 8 16 32 64
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Table 2. Evaluation on BAR (mean accuracy and std. dev. over five runs). Each row corresponds to the training of 64 models, unless
otherwise noted. The heat map (right; accuracy of best model) shows that the diversity regularizer clearly improves over a classical
ensemble of independently-trained models (bottom row).

task is to classify photographs into six activities (see Fig-
ure 5). Training images were sampled from six pairs of
actions/places in imSitu [87] e.g. climbing/rock. Test im-
ages were sampled from the same actions in different places
e.g. climbing/ice. The goal is to learn a model that relies
more on a person’s appearance than on the background
to recognize actions in arbitrary places. This is challeng-
ing because both are predictive of the action training labels.
This represents an ubiquitous setting where training data is
affected by selection biases but an image recognition model
is still expected perform well on novel scenes.

Results. We follow [48] and implement a classifier on
ResNet-50 features (details in Appendix E). We first tune
a strong baseline classifier (almost equating the method
in [48]). We then train a collection of these classifiers with
our regularizer. The accuracy of the best model improves
from 64.9 to 67.1 (Table 2). The average accuracy over the
collection also increases, perhaps surprisingly. Indeed, an
increase in diversity could induce as many worse models
than better ones. But remember that the space of predictors
ranked by complexity is one-sided (Section 3). The baseline
is at the “simplest” end. Those learned with our method are
more complex. With BAR, complex models happen to be
better, as analyzed in [48]. Thanks to this, a simple ensem-
ble (summing all predicted scores) improves over the same
ensemble of models trained without our regularizer (63.1→
66.1) with no model selection. We insist however that this
is not a universal benefit of our method.

The BAR dataset contains no information to prefer back-
grounds or persons’ appearance. With the same training
data and annotations, the task could as well be to recog-
nize places rather than actions ! This reinforces our insis-
tence that side information is necessary for OOD general-
ization. Debiasing methods like [48] rely on task-specific
design choices. Our approach is of more general purpose.

The existing Jacobian regularizer [28] and spectral de-
coupling [57] produce models almost as good as our best
one, although worse on average as seen with a lower en-
semble accuracy. The advantage of our method is to pro-
duce a collection of diverse models, whereas any specific
regularizer is either suited or not to the given task. If not,
the practitioner has to manually find another one.

4.3. Domain generalization (PACS)
Dataset. PACS is a standard benchmark for visual domain
generalization (DG) [36]. It contains images from seven
classes and four visual domains: art paintings, cartoons,
photographs, and sketches. It is used in a leave-one-out
manner with three training domains and the remaining one
for testing. The standard baseline uses images from all do-
mains indistinctively whereas DG methods use domain la-
bels to try and identify common features that should also be
reliable in the test domain.

Results. We report an ablative study in Table 3 (see Ap-
pendix E for implementation details). We obtain a better
model by training a collection with our regularizer, com-
pared to the baseline where differences within the collection
result only from different random seeds. The improvements
are modest but they clearly result from our regularizer, as
seen from a heatmap of accuracy as a function of the num-
ber of models and regularizer strength (also see Figure 6,
left). A larger number of models also seem beneficial. We
provide the training curves of all models in a collection in
Figure 6. Looking at the OOD accuracy as training pro-
gresses, we see that the regularizer induces vastly more vari-
ance, producing both worse and better models as expected.

As observed with BAR, the average accuracy within a
collection improves slightly with the regularizer – although
not to the point that a naive ensemble would be beneficial.
This corroborates the explanations given above for BAR.



Training set PACS (cartoon, photo, sketch)
Test set PACS (art) VLCS (horse/person AUC)
Model evaluated Single Ensemble Best Best model on PACS

Baseline, 64 models, no regularizer 84.48 ±0.23 84.62 85.71 74.57
Penalty on sq. L2 norm of grad. (Jacobian reg. [28]) 85.12 ±0.33 85.06 85.84 74.10
Penalty on sq. L2 norm of ReLU of grad. (App. E) 84.62 ±0.19 84.62 85.16 75.84
Penalty on sq. L2 norm of feature-grad. prod. (App. E) 84.61 ±0.26 84.77 85.45 73.51
Penalty on L1 norm of grad. (App. E) 84.66 ±0.45 84.67 86.13 76.29
Penalty on sq. L2 norm of logits (spectral dec. [57]) 84.46 ±0.32 84.81 85.16 74.60
Combination: proposed + spectral dec. [57] 84.31 ±0.83 84.72 86.08 74.51

Proposed, 64 models 85.14 ±0.59 84.62 86.80 79.66
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Table 3. (Left) Ablative evaluation on PACS (mean accuracy and std. dev. over five runs). We also evaluate models selected on PACS on
test data from VLCS. This confirms that these models do indeed generalize better. (Right) This heatmap (accuracy on PACS, best model)
clearly shows improvements over independently-trained models (bottom row).
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Figure 6. (Left) Accuracy on each test style of PACS as a function of the regularizer strength. (Right) Training curves of in-domain and
OOD accuracy of 64 models, either trained independently (left two plots) or with our regularizer (right twos).

We include an additional cross-dataset evaluation i.e.
zero-shot transfer (Table 3, last column). We use the test
images from VLCS [19] for a detection task of classes both
in PACS and VLCS (horse and person; other VLCS classes
serve as negatives). We report the area under curve (AUC)
averaged over these two classes. We observe that the best
model selected on PACS also brings substantial improve-
ments on VLCS. This verifies that the accuracy of the best
model on PACS is meaningful and not merely an example
of “overfitting to the test set”.

We evaluate regularizers previously proposed to improve
generalization. We spent substantial effort tuning these al-
ternatives to their best and trying multiple variants (see Ap-
pendix E for details). As seen in Table 3, a Jacobian regular-
izer provides small improvements. So does minimizing the
squared L2 norm of the gradient. Our regularizer mainly
minimizes the alignment between pairs of gradients but it
can also reduce their absolute norm as a side effect, just like
these two alternatives. The ablation shows this to be benefi-
cial but also that it does not entirely explain the benefits of
our method. Indeed on VLCS, only our regularizer provides
a substantial improvement (74.57→ 79.66).

We provide a comparison with state-of-the-art DG meth-
ods in Table 4. Most methods rely on labels of training
domains, which we do not use. Most were demonstrated on
top of weak baselines, as pointed out in [21]. We use the
same ResNet-18 feature extractor, we highly optimized it,
and we still get substantial improvements. See Section 5 for
more discussion about the comparison with DG methods.

5. Discussion
The above results show that (1) we now have a tool to

expand the set of solutions learned by a neural network
through SGD and (2) some solutions are relevant to com-
puter vision as evidenced by improved OOD generalization.

Limitations of the method. The main hyperparameters are
the regularizer strength and the number of models learned.
Any number >1 obviously gives more options than the sin-
gle model learned by default. Empirically, larger numbers
(>64) seem beneficial, but we did not derive guarantees
that a robust predictor will be found. The chosen number
of models may not induce the optimal “granularity”. Too
small a number could produce a model that relies on mul-
tiple entangled features including robust and spurious ones.
And too large a number could produce multiple models that
each implement a different part of a robust solution.

An interesting direction for future work would be to en-
courage learning a “basis” of elemental predictors (sug-
gested in [63]) for a given dataset by promoting notions
of sparsity or complementarity. The model selection could
thereafter search for their optimal combination as attempted
in [53]. The approach would resemble the disentanglement
methods of representation learning [39] but it would operate
in the space of predictors optimized for ERM, rather than
the space of features optimized for reconstruction.

The need for model selection. The utility of evading
the simplicity bias is in improving OOD performance be-
cause this is where the simplicity bias shows its detrimen-
tal effects (high ID performance is achievable with less



PACS Dataset

Test style (leave-one-out) Art Cartoon Photo Sketch Avg.

D-SAM baseline [15] 77.9 75.9 95.2 69.3 79.6
D-SAM∗ 77.3 72.4 95.3 77.8 80.7

Epi-FCR baseline [37] 77.6 73.9 94.4 74.3 79.1
Epi-FCR∗ 82.1 77.0 93.9 73.0 81.5

DMG baseline [9] 72.6 78.5 93.2 65.2 77.4
DMG∗ 76.9 80.4 93.4 75.2 81.5

DecAug baseline [4] 78.4 78.3 94.2 72.1 80.8
DecAug∗ 79.0 79.6 95.3 75.6 82.4

JiGen baseline [8] 77.9 74.9 95.7 67.7 79.1
JiGen 79.4 75.3 96.0 71.4 80.5

Latent domains baseline [44] 78.3 75.0 96.2 65.2 78.7
Latent domains 81.3 77.2 96.1 72.3 81.8

Our baseline, 64 independent models
Random single model 84.4 77.8 95.8 69.8 82.0

±0.3 ±0.3 ±0.1 ±0.7

Ensemble of all models 84.6 77.9 96.0 69.6 82.0
±0.1 ±0.1 ±0.1 ±0.2

Best single model 85.1 78.7 96.2 71.7 82.9
±0.1 ±0.3 ±0.1 ±0.5

Proposed, 64 models
Random single model 85.2 79.6 95.9 70.8 82.9

±0.6 ±0.7 ±0.1 ±0.8

Ensemble of all models 84.8 79.0 96.0 70.3 82.5
±0.1 ±0.1 ±0.1 ±0.1

Best single model 86.5 81.1 96.2 72.8 84.2
±0.1 ±0.4 ±0.4 ±0.2

Table 4. Comparison with existing methods on PACS. For each
method, we mention the accuracy of the baseline reported by its
authors, and of the method itself. All methods are based on a
ResNet-18. ∗Require labels of tr. domains. Our method discovers
additional predictive features in the data. It returns a collection
of models, among which some clearly have a better OOD perfor-
mance (last row) than the baseline simply trained with different
random seeds (82.9 → 84.2).

sophistication). The key novelty is to require no extra
information during training contrary to existing methods
that require upfront task-specific knowledge (e.g. debias-
ing methods [3, 11, 41, 48, 71, 79]) or additional annota-
tions [1, 12, 56, 73]. The requirement for side information
(besides a training set of i.i.d. examples) is fundamental for
OOD performance (see [6,68] and additional background in
Appendix B) but we defer its use to an independent model
selection step. This allows more flexibility in the type and
quantity of side information used.

Limitations of the evaluation. In a review on domain gen-
eralization (i.e. OOD generalization across visual styles),
Gulrajani and Lopez-Pas [21] note that model fitting and
model selection are equally hard. They recommend that
methods for datasets like PACS (Section 4.3) include a se-
lection strategy. On the opposite, we show that the two
steps can be completely decoupled. Our analysis focuses
on the best learned model (denoted oracle selection in [21]

and best in [53]). This optimistic choice is justified be-
cause it is the performance achievable with an optimal se-
lection strategy. This accounts for existing and future se-
lection strategies e.g. the calibration-based method of Wald
et al. [82] that came out after the writing of this paper.

Is the comparison unfair with methods for PACS that
train a single model? We do not think so: existing methods
were selected at the paper level. Methods with no improve-
ment on the test set did not get published. It is unlikely that
authors never peeked at test-set performance until getting
published ! It was even showed in [21] that all tested meth-
ods lost their benefits when deprived of heavy hyperparam-
eter tuning and early stopping based on OOD performance.
Our approach makes the selection more explicit.

Heuristics about simplicity. Our improvements support
previous claims [51, 70] that more complex models are
sometimes preferable. Works in NLP have even argued
that any simple correlation in a dataset is likely to be spuri-
ous [11, 80, 90]. We point out that such heuristics are nec-
essarily task- or dataset-specific. However, we also remark
that the tasks addressed with deep learning are increasingly
complex (take visual question answering for example [77]).
This implies that the space of potentially-spurious patterns
that are simpler than the task in any given dataset is also
growing. The above heuristics may therefore have a practi-
cal utility. It remains crucial to study their limits of appli-
cability. They cannot be universal [45] and cannot obviate
the need for extra information (or task-specific knowledge)
in our model selection step.

Universality of inductive biases. The inductive biases of
any learning algorithm cannot be universally superior to an-
other’s [83]. For example, weight decay, Jacobian regular-
ization, or even data augmentation are only as good as they
are tuned to a particular task. In comparison, our method
does not affect inductive biases in a directed way. It only
increases the variety of the learned models, so it could be
seen as a “meta-regularizer”. Our results also show that in-
tuitive notions behind classical regularizers like smoothness
(Jacobian regularization), sparsity (L1 norm), or simplicity
(L2 norm) are sometimes detrimental.

Any quest for universal architectures, regularizers, data
augmentations, or even dataless selection strategies [46,90]
is known to be futile. Benefits can only apply to a sub-
set of learning tasks [83]. Questions remain: how small or
vast is the subset of learning tasks that humans care about?
Which properties of naturally-produced data make some in-
ductive biases generally useful? Deep learning has proven
surprisingly successful. Studying its inductive biases will
help understanding its limits of applicability. And methods
to control these biases will help expanding these limits.
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Evading the Simplicity Bias:
Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization

Supplementary material

A. Past reviews and FAQ
We include questions and comments received during the

reviewing process along with our answers. We hope that
they will be helpful to readers.

Q1: Where to split a model into “feature extractor” and
“classifier”? The separation between the feature extractor
and the classifier is somewhat arbitrary. In our experiments,
it was dictated by computational reasons. Using a pre-
trained ResNet as the feature extractor was a natural choice.
The subsequent classifiers need sufficient width/depth such
that they can model different functions on top of the fea-
tures. The choice of 2-hidden-layer MLP was a compromise
between expressibility and computational cost. A possible
extension of this work would be to evaluate deeper classi-
fiers or complete replicated models.

The choice of the “extractor/classifier” separation also
affects the dimension along which the gradients are com-
pared. For example with ResNet, features undergo a global
spatial pooling before being passed to the classifier. The
gradients are thus compared only across channels, not spa-
tial dimensions. In our experiments with collages, the fea-
ture extractor is the identity function and the classifier is
a fully-connected network operating directly on the pixels.
The gradients are thus compared across spatial dimensions

Q2: Why not design the diversity regularizer on the ac-
tivations of the models rather than on the input gradi-
ents? Because the activations in different models live in
“different spaces” so they are not directly comparable. Con-
sider any chosen layer: the activations do not tell much
about the function implemented by the whole network.
Whereas the input gradients (through the whole network)
do.

The activations also cannot be used with a simple dot
product to compare different models. For example, one can
rearrange the weights of a model to permute the channels of
the activations without actually changing the function im-
plemented by the whole network.

Q3: Is the introduction of more diversity just a fancy
random search? The common training by SGD is already
stochastic. It is not uncommon to restart training by SGD
with different random seeds if training does not converge.
But simply using different random seeds is not sufficient
to evade the simplicity bias however, whereas the proposed
method is.

The proposed method does not bring any additional

source of randomness. It makes solutions found by SGD
from different initializations more different from one an-
other.

Q4: Why not use the Colored MNIST toy data? A num-
ber of recent works have use “Colored MNIST” toy data
introduced in [1] to evaluate OOD generalization. We be-
lieve it is an overly simplistic setting. The so-called “color”
only means that the MNIST pixels are stored on one discrete
channel or another. This is like operating on symbolic data,
or on perfectly disentangled representations. And learning
disentangled representations from high-dimensional data is
itself a largely unsolved problem. Our collages achieves
a similar objective (multiple predictive signals of different
complexity) but it is more challenging and representative of
real data.

Q5: Why not use dataset [X]? We chose a few datasets
representative of OOD challenges in computer vision (mul-
tiple predictive signals, biased data, generalization across
visual styles). We had to choose datasets with an es-
tablished OOD test set. For the reasons explained at
length in the paper, no improvement is expected with
identically-distributed training and test sets.

Q6: Why doesn’t in-domain (ID) performance necessar-
ily improve when OOD performance does? Because the
irreducible error with robust features can be larger than with
spurious ones. This is not uncommon and it often makes
improvements in OOD performance come at the expense of
ID performance.

To do well ID, a model can exploit any predictive pattern
in the training data, including spurious correlations. For
example, birds may be reliably recognized in the training
data by detecting a blue background. However, relying on
blue backgrounds is not desirable for an OOD bird detector.
A good OOD model would instead rely on shape, such that
it can recognize birds in any scene. But shapes are more
often ambiguous, so in ID scenes (where the blue color is
a reliable indicator of birds) the OOD model will not be as
accurate as a blue-background detector.

Q8: “In stage one, there is no guarantee that simple bi-
ases (i.e. spurious features) and complex patterns (i.e.
robust features) can be disentangled. Could each model
in the collection be a mixture of simple biases and com-
plex patterns?” It is correct that no semantically or
causally-meaningful disentanglement can be guaranteed.
What can be guaranteed is that the models trained in a
large-enough set cannot be decomposed into “simpler”, lo-
cally independent functions. Indeed, [65] showed that local
independence enforced with orthogonal gradients leads to
the recovery of sparse predictors. As one increases the num-
ber of predictors fitted in parallel, they approach a “maximal
set” as defined in [65]. This implies functional simplicity, in
the sense that each predictor in a maximal set cannot be fur-



ther decomposed into a combination of locally independent
functions.

Q8: “Is it possible to train all 96 MLP classifiers simul-
taneously (in parallel) on a single GPU?” Indeed we had
no issue training 96 MLPs on a laptop GPU, thanks to the
sharing of mini-batches across models.

Q9: “In Table 1, can you explain the decrease in accuracy
when increasing the number of models from 8 to 16?” We
attribute this decrease in accuracy to evaluation noise since
it is well within the standard deviation across runs.

Q10: “Can you elaborate on the connection between this
paper’s findings and the simplicity bias?” The connec-
tion follows from the recent evidence [70] that the simplic-
ity bias is an important source of poor OOD generalization
(studied e.g. with MNIST/CIFAR collages in [70]). Our
study is however not strictly tied to the simplicity bias: the
proposed method improves the sampling of the hypothe-
sis space, regardless of the default solution being explained
by the simplicity bias or by other effects, such as neural
anisotropies for example [52].

Q10: “Can the method apply to complete ResNet-scale
models?” The extension to full models involves no con-
ceptual leap since the regularizer operates in the space of
representations (input or latent), not of weights. The ap-
plicability of our findings to simple models with pretrained
features is certainly useful in itself. We haven’t addressed
the tuning of full-scale models so far due to our limitations
in computational resources.

Q11: “By relying on model selection to select the desired
inductive biases, could the method be at greater risk of
adaptive overfitting, since it requires more evaluations on
the test set than other OOD approaches?” Model selection
is not limited to cross-validation, other choices include con-
trast sets [16], calibration-based methods [82], model ex-
plainability with expert knowledge, etc. If cross-validation
is used in a real application, OOD validation data would
be used, never the test set data itself obviously. Our results
under “oracle selection” serve to provide an upper bound
on achievable OOD performance (i.e. with perfect model
selection).

Q12: Clarification of some definitions. Spurious cor-
relations: statistical pattern in the data that does not re-
flect a causal relationship (i.e. not guaranteed to transfer
OOD) but which results from confounding (e.g. selection
bias). Inductive biases: assumptions made by a learning
algorithm about the nature of the target function to enable
finite-sample generalization.

B. OOD Generalization and causality
The ultimate goal of supervised machine learning is to

learn a model that mimics a real-world process that jointly

determines the values of an observed variable X and target
variable Y . It makes sense to learn a task when the process
relates these variables with causal (X → Y ) mechanisms,
such that the conditional P (Y |X) is a property of the task:
it will always remain the same across training and (OOD)
test conditions. The OOD setting used throughout this pa-
per is also called covariate shift: P (Y |X) is constant and
only the marginal P (X) varies across training and test sets.
For example, X can represent images being drawn as pho-
tographs during training and paintings during testing.

To achieve OOD generalization across arbitrary covari-
ate shifts, it is necessary that the causal mechanisms of in-
ference (within the learned model) mirror the causal mech-
anisms of the data-generating process. In other words, fea-
tures responsible for the prediction of a label by the model
should be the same as those causally related to this label
in the training data. However, causal properties of the
real-world process are not properties a joint distribution
over (X,Y ) of training examples [68]. The information
necessary for OOD generalization is lost by drawing i.i.d.
training samples from the data-generating process. This is
why optimizing a model for ERM cannot generally achieve
the above condition. Even infinite amounts of training
data cannot bring back this missing information.

Note that all of the above is true for arbitrary tasks and
data distributions. If task- or dataset-specific knowledge is
available, it sometimes sufficiently circumscribes the space
of possible ground-truth data-generating processes to allow
recovering some causal properties from observational data
(see examples with images [40] and time series [33]). The
method of this paper makes use of no such prior knowledge.

C. Project chronology and negative results
This section is an informal chronology of the develop-

ments that led to this paper, including things we tried that
did not work.

Initial motivation. The initial motivation for this work was
to learn patterns that a model would not learn by default
because of the simplicity bias. The closest existing works
were “debiasing methods” popular for visual question an-
swering [7,10,31] and NLP [3,11,41,71,79]. They typically
train one model that is biased by design (for example being
fed a partial input) while a second model is subsequently
trained to be different, hence more robust. Our first inno-
vation was to enforce this difference in the space of input
gradients of these models (rather than in the space of their
activations, weights, etc.). This quickly appeared effective
and easier to train than adversarial objectives of many debi-
asing methods. A later literature search showed that input
gradients had previously been used in similar [32] and other
applications [14].

To improve over existing debiasing methods, we ex-



tended our approach to >2 models and removed the reliance
on a “weak” first model by design. Instead, we used the
same architecture for all models and realized the simplic-
ity bias would make any model “weak” by default. The
publication of multiple studies in late 2020 related to the
simplicity bias encouraged pursuing with this approach.

Parallel training. Our first implementation used sequential
training of multiple models, inspired by existing debiasing
methods. We implemented a parallel version as a baseline,
but it quickly proved more effective, to our surprise. Despite
much effort, the sequential scheme could not equate the par-
allel version. We gave up the former after coming up with
a satisfying intuitive explanation. The sequential training
makes each model only marginally different from the previ-
ous one (for example, with the collages, every model would
use another pixel of the MNIST digit, but would never fo-
cus on a completely different part of the images). This
holds even after training a very large number of models, and
whether the diversity regularizer is applied on the last two
models, or on the whole collection of models trained so far.
In contrast, the parallel training, using with pairwise con-
straints between all models simultaneously, could produce
multiple potentially-good models at once.

Similarity of gradients. To achieve the goal of maximiz-
ing the diversity of the models, we designed many elaborate
measures of similarity between the gradients. The intuitive
goal was to “spread” the learned solutions evenly within
the space of predictors. However, none of these alterna-
tive measures worked better than the sum of pairwise dot
products described in this paper. Alternatives that we tested
include cosine distances, the determinant of a matrix of dot
products (similar to determinantal point processes or DPPs)
or of other kernel function of the dot products, a soft ap-
proximation (logSumExp) of the maximum of the pairwise
dot products (rather than the overall sum).

We also tried using the gradient w.r.t. the spatial in-
put (all input pixels), or w.r.t. intermediate representations
in CNNs. We also tried all of these as gradient-feature
products (in the style of the Grad-CAM method). The
bare gradients worked great with the collages, and the
gradient-feature products worked clearly better with ResNet
as the feature extractor. Our larger-scale experiments there-
fore all use the gradient-feature products.

We also tried applying various normalizations (L0, L1,
L2, softmax: none worked) and rectifications to the gra-
dients (absolute value, ReLU/positive part, negative part,
square: the square did not work at all, but all other options
performed similarly).

As described in the paper, we use the gradient of the top
predicted score. Using the gradient of its corresponding
logit (before sigmoid rectification) seems to work equally
well. We tried alternatives: the gradient of the score pre-

dicted for the ground truth class, or the gradient of the clas-
sification loss. Both performed worse.

Datasets. We started with toy data (32-dimensional vectors
of numeric values generated with known functions) in the
style used in [55]. We then moved to colored MNIST digits.
This dataset proved useless since the signal is perfectly dis-
entangled across two input channels, which is ridiculously
simple and unrealistic. We found the multi-dataset col-
lages [70] the best compromise between toy and real data.
We then moved to the real datasets PACS and BAR. Overall,
most of our developments were done with the collages and
PACS (using art painting as the test style because it seemed
to be the PACS setting with the clearest possible improve-
ments, from results of other methods).

D. Related work

We provide below an extended literature review. Since
this paper addresses a central problem in machine learning,
it touches many well-established research areas.

Importance of OOD generalization. Failure to general-
ize OOD is the root cause of many limitations of machine
learning: adversarial attacks [26], some model biases [49],
failure to generalize across datasets [78], etc. Poor OOD
generalization is only apparent and problematic with OOD
test data. Academic benchmarks have traditionally been
built with i.i.d. training and test samples. This rarely holds
in the real world, and OOD is closer to the norm in real-life
deployments of machine learning models.

Evaluation with i.i.d. training/test sets hide a model’s
limitations because spurious correlations and biases in the
training data also exist in the test data. Thanks to the in-
creasing awareness of issues of robustness with deep learn-
ing, many benchmarks now include OOD (a.k.a. “chal-
lenge”) tests sets [16, 20]. OOD evaluation can also be
done by cross-dataset evaluation without fine-tuning (i.e.
zero-shot transfer) [60]. The assumptions then is that the
spurious patterns in different datasets are uncorrelated.

Improving OOD generalization. Given its central place,
OOD generalization is addressed from multiple angles by
multiple communities making different assumptions. Do-
main generalization methods [21] use multiple domains
during training. Domain adaptation methods use unla-
beled data from a second domain for rapid adaptation at
test time. Debiasing methods use expert knowledge of the
spurious correlations to prevent the model from using them.
Adversarial training methods use expert knowledge of the
type of statistical patterns that are undesirable to learn, or
notions of smoothness and continuity that a model should
exhibit. Other training objectives have also been proposed



to use interventional data such as counterfactual exam-
ples [25, 73] or non-i.i.d. datasets like non-stationary time
series [23, 30, 58]. The common point to all approaches
that improve OOD generalization is that extra knowledge
is provided, either as expert task-specific knowledge, or as
non-i.i.d. data. This corroborates the point made through-
out this paper that i.i.d. data alone (even in infinite quantity)
cannot improve OOD generalization.

Domain generalization. The goal of domain generaliza-
tion (DG) is to learn models that generalize across visual
domains such as photographs, sketches, paintings, etc. Im-
ages from multiple domains (a.k.a. training environments)
are provided for training. The model is then evaluated on
one held-out domain. The training environments can be
formalized as different interventions on the data-generating
process. This was shown to carry the kind of information
required for OOD generalization [1, 56]. Intuitively, DG
methods discover features of the input that are “common”
and similarly-predictive across the environments. The prin-
ciple is sound if a large number of training domains is avail-
able but this is not the case with existing datasets. PACS for
example provides only three training domains. Although
some of the information necessary for OOD generaliza-
tion is theoretically there, the learning problem is still very
ill-defined because of this large distribution shift between
the training domains. Practically, this leaves much room to
apply various inductive biases. This explains the plethora
of methods already developed for this dataset. Because the
problem is ill-defined, the effectiveness of any such method
can only be assessed when confronted with the test domain
(and this is what we also need to do after training a collec-
tion of models with our method).

Gulrajani and Lopez-Paz [21] discussed the practice of
model selection using the test domain. They observed
that no existing method performed better than ERM when
access to the test domain is restricted. This is unsur-
prising to us: this follows from the fundamental need, to
achieve generalization, of substantial knowledge about the
relation between training and test distributions. And this
information is unlikely to be available from a handful of
disparate training domains.

Our method does no require the labels of training envi-
ronments used by DG methods. Our setup is more similar
“single-source” domain adaptation [59,81]. These methods
augment the training data using a generative model to ex-
pand the region of feature space in which the predictions of
the model are “stable”. Consequently, these methods can-
not make the model use features of the data it was not using
in the first place. Thus there is no hope to counter the sim-
plicity bias.

Debiasing. Methods for debiasing are concerned with im-
proving generalization of models against a precisely identi-
fied (undesirable) factor of variation in the data [3,11,41,48,
71,79]. In computer vision for example, this can be remov-
ing the bias towards texture in the ImageNet dataset [5,18].
In NLP, this can be removing the “hypothesis-only bias” of
entailment models, that make these models guess an answer
without considering the whole input [11].

Debiasing is relevant to this paper because most meth-
ods rely on training multiple models that each use the in-
put differently. The source of improvement is the explicit
specification of the factor of variation to be be invariant to.
Typically, debiasing methods train a pair of models to re-
spectively focus or ignore it. The latter model is used at test
time. For example in [3], a first CNN model is trained with
an architecture providing a small receptive field, such that is
focuses on local texture. A second CNN is then trained with
a larger receptive field while a regularizer makes its activa-
tions uncorrelated with the first one’s, such that it focuses
on overall shape more than on texture. Variations of the
method include the extension to more than two models [71].
In comparison to our work, debiasing methods require the
explicit specification of a factor of variation to ignore and
they require it to be easily disentangled from other features
of the input.

Some debiasing methods claim to require no explicit
knowledge of the bias [11,67,80]. They actually make this
knowledge only less explicit: the authors design the archi-
tecture of the models such that the weak learner is forced to
use the bias (through limited capacity, receptive field, etc.).
Our method does not rely on heterogeneous architectures
and is applied to many more models. We also found that
parallel training of multiple models was much more effec-
tive than the sequential training used with most debiasing
methods.

Encouraging diversity within one model. We can draw
parallels between the method in this paper and existing
methods that encourage a notion of diversity. Classical fea-
ture selection approaches [22] are related but they not suit-
able to deep learning model and high-dimensional represen-
tations. For example, SCOPS [29] performs self-supervised
part discovery using an objective of orthogonality (akin to
diversity) between parts. In comparison, we use diversity
as an objective alongside predictive performance. Diver-
sity was also used an objective during model compression,
for fusing redundant neurons with similar activations [43].
Closer technically to our method, [14] uses the cosine simi-
larity of gradients of multiple losses to measure their mutual
correlation in the context of multitask learning. Previous
works [32, 53] proposed to promote diversity in the space
of learned representations within a model. Our approach is
different in that we promote diversity across multiple in-



dependent models. These works focus on synthetic data
and adversarial robustness while we show improvements on
multiple benchmarks with real data.

Encouraging diversity within ensembles. Ensembling
several models is a common technique to improve predic-
tive performance over a single model. The diversity of the
models in an ensemble is important [88] and usually pro-
moted by training models with different hyperparameters
or random seeds, or by enforcing diversity in the space of
weights of the models [86]. In comparison, our diversity
loss operates in the space of the gradients of the models.
They need to be differentiable w.r.t. their input but their
implementation as neural networks is irrelevant. For adver-
sarial robustness, ensembles have shown benefits. Both [2]
and [54] encourage diversity in the distributions of the mod-
els’ logits. [32] minimizes the cosine similarity between
gradients of the models. For domain generalization, [9]
learns an ensemble of classifiers on CNN features. Each
classifier is trained on a different visual domain and they
promote diversity by minimizing the overlap between fea-
tures used by each model, such that each specialize to one
domain.

The multiverse loss [38, 42] improves transfer learning
by duplicating a cross-entropy loss over multiple linear clas-
sifiers with an orthogonality constraint on their weights. It
was shown to increase the number of distinct discriminative
directions of the learned representation. It can be seen as a
special case of our method.

In [64], the authors use input gradients to sequentially
train multiple copies of a model to focus on different input
features. The authors however mentioned in private com-
munication that “sequential training doesn’t work in most
cases” which has also been our experience (see our nega-
tive results in the appendix). Their experiments are limited
to toy datasets. After the writing of this paper, we real-
ize that the same authors subsequently honed in on a par-
allel training scheme and diversity regularizer very similar
to ours [63, 65], using a cosine similarity of gradients. Our
motivation and experiments are very different and we in-
vite the reader to consult those papers for a complementary
view.

In [61], the authors train a generative model (Hyper-
GAN) of parameters for a chosen network architecture.
Their goal is to produce a diverse set of models, which
they enforce and evaluate in parameter space. We think that
our use of input gradients is more implementation-invariant
and better capture the overall function implemented by deep
models. We also believe that our evaluation with OOD tasks
better captures the functional diversity of the learned mod-
els.

The earliest use of input gradients of neural networks
was proposed by Drucker and LeCun [13] as “double back-

propagation” to improve in-domain generalization. Almost
identical formulations were described in many subsequent
papers; see [28] and citations therein.

E. Experimental details
Collages dataset. We use images from MNIST,
Fashion-MNIST, CIFAR-10, SVHN. The images are con-
verted to grayscale. The images from MNIST and
Fashion-MNIST are padded to 32×32 pixels. We pre-select
two classes from each dataset to be respectively associ-
ated with the collages 0 and 1 labels. We follow [70] and
choose 0/1 for MNIST, automobile/truck for CIFAR-10,
and additionally choose 0/1 for SVHN and pullover/coat for
Fashion-MNIST. We generate a training set of 51,200 col-
lages, and multiple test sets of 10,240 collages each. Each
collage is formed by tiling four blocks, each containing
an image chosen at random from the corresponding source
dataset. The images in our training/evaluation sets are se-
lected respectively from the original training/test sets of the
source datasets.

We propose two versions of the dataset. An ordered ver-
sion, where the four blocks appear in constant order, and a
shuffled version where the order is randomized in every col-
lage. The shuffled version can be used to demonstrate that
a given method does not rely on a known or constant image
structure.

In the training set, the class in each block is perfectly
correlated with collage label. In each of the four test sets,
the class in only one block is correlated with the collage la-
bel. The other blocks are randomized to either of its two
possible classes. We also generate four training sets in this
manner, used solely to obtain upper bounds on the highest
accuracy achievable on each block with a chosen architec-
ture.

Collages experiments. We use the ordered version of the
dataset. This allows generating the visualizations of Fig-
ure 4 and the use of a simple fully-connected classifier. We
initially downsample the images by a factor 4. In our mod-
els, the feature extractor is the identity function and the clas-
sifier is a fully-connected MLP with two hidden layers of
size 16 with leaky ReLU activations (leak rate: 0.01). The
classifier is followed by a sigmoid and trained to minimize
a standard binary cross-entropy loss. Training is performed
by SGD with Adam, a learning rate of 0.001, mini batches
of size 256, for a fixed number of 65 epochs (13k iterations)
with no early stopping. The diversity regularizer is imple-
mented as described in the paper. The visualizations in Fig-
ure 4 are obtained with the same model trained on images
downsampled by a factor 16. The input gradient is evalu-
ated and averaged on randomly selected test images. They
are then upsampled by bilinear interpolation to the origi-
nal collage dimensions of 64×64 for visualization purposes
(without upsampling, they obviously look more “blocky”).



BAR Experiments. We follow [48] and use frozen fea-
tures from a standard pretrained ResNet-50. We train a
2-hidden-layer MLP classifier on these features. We spent
some effort optimizing this baseline to the point of almost
equating the method proposed in [48] (they only used a lin-
ear classifier on ResNet features). We use Adam, a learning
rate of 0.001, a batch size of 256, and hidden layer dimen-
sions of 512. We applied our method on this strong baseline.

As usually done with ResNet, feature maps are glob-
ally pooled before the classifier. Thus, unlike the experi-
ments on collages, the features h have no spatial dimen-
sions. The input gradients are compared across channels in-
stead. We implement this with a variant of Eq. (4) inspired
by the Grad-CAM method [69], in which we multiply the
gradients (with respect to the features) by the features them-
selves:

δgϕ1
,gϕ2

(h) = (h∇hg
⋆
ϕ1
).(h∇hg

⋆
ϕ2
) . (7)

Each model is trained for 200 iterations with no early
stopping. The optimal weight of the regularizer is found by
selection on the OOD test set. For the reasons explained at
length in the paper, we found no reliable strategy to tune it
without access to the OOD test set. This strategy is used for
both our method and all other regularizers, ensuring a fair
comparison.

PACS Experiments. We use a standard ResNet-18 as the
feature extractor like most current methods. [21] showed
that a ResNet-50 could slightly improve performance but
we did not have the computational resources to do so, and
the results of most methods to compare ours with also use
ResNet-18. We first fine-tuned a ResNet-18 in the standard
“ERM” setup (aggregated data of three training domains,
linear output layer on top of ResNet features, Adam opti-
mizer, learning rate of 4e−5, batch size of 32, with aug-
mentations described in [21], and early stopping based on
test set accuracy). We found that training with a sigmoid
activation and binary cross-entropy loss was slightly better
than the usual softmax. All our PACS models (baselines and
others) therefore use a sigmoid output. All of these choices
provided a very strong baseline on which to test our method.
Our baseline is noticeably stronger than those in existing
papers as noted in Table 4. Demonstrating an improvement
over a strong baseline is obviously more challenging than
over a weaker one.

Our method was with a two-hidden-layer MLP as the
classifier, fed with frozen features from the fine-tuned
ResNet-18 (hidden size of 512, leaky ReLUs of rate 0.01,
Adam, learning rate 3e−5, batch size 256). We use the in-
put gradient over channels (not over spatial dimensions) de-
scribed above (Eq. 7).

Existing regularizers. We describe below the existing reg-
ularizers reported in Tables 1, 2, and 3.

1. Dropout. Used on collages only. Dropout is applied
on input images i.e. on pixels of the quarter-size images
fed to the MLP. We tuned the dropout rate, hoping that
very high dropout rates would force the model to learn
different parts of the image, but it did not work.

2. Penalty on L1 norm of gradients. This adds the fol-
lowing term to the minimization objective: ||∇hg||1.

3. Penalty on L1 norm of feature-gradient product.
Variant that uses the same product as our regularizer with
BAR and PACS (Eq. 7): ||h∇hg||1.

4. Penalty on squared L2 norm of gradients. Also
known as Jacobian regularization [28], it adds the fol-
lowing term to the minimization objective: ||∇hg||22.

5. Penalty on squared L2 norm of ReLU of gradient.
Variant that only uses the positive coordinates of the gra-
dient: ||ReLU(∇hg)||22. The rationale is that this variant
is “half-way” like the feature-gradient product described
below which also masks some coordinates of the gradi-
ent (the features come from a ReLU and have a number
of coordinates equal to zero).

6. Penalty on squared L2 norm of feature-gradient
product. Variant that uses the same product as our reg-
ularizer with BAR and PACS (Eq. 7): ||h∇hg||22.

7. Penalty on squared L2 norm of logits. Also known as
spectral decoupling [57], it adds the following term to
the minimization objective: ||g||22.

All penalty terms are summed over all training examples.



Baseline
With diversity

Figure 7. 2D Projection of the gradients {∇hg
⋆
ϕi
}64i=1 of a collection of models trained without and with our diversity regularizer (PACS

dataset, “art” as test style). Each point represents one model. With the regularizer (in red), the gradients are clearly more spread out. The
2D projection is done with t-SNE using the inverse of the dot product as the distance function. The size and color saturation of each point
are proportional to the accuracy of the corresponding model.
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Figure 8. Examples from the biased activity recognition (BAR) dataset [48]. Each row shows a different class, and the upper/lower part of
each row shows training/test images respectively (for example on the first row, rock climbing/ice climbing).
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Upper bounds: training data with all blocks but one randomized

MNIST predictive only 99.7 49.7 50.5 49.9
±0.0 ±0.0 ±0.0 ±0.0

SVHN predictive only 50.2 89.8 50.5 50.2
±0.2 ±0.5 ±0.1 ±0.2

Fashion-M. predictive only 50.0 50.3 77.3 49.0
±0.2 ±0.1 ±0.4 ±0.4

CIFAR predictive only 49.9 50.1 50.2 68.4
±0.2 ±0.3 ±0.4 ±0.9

With proposed regularizer, 32 models

Best model on MNIST 95.4 49.6 50.6 49.8
±0.4 ±0.1 ±0.3 ±0.1

Best model on SVHN 51.0 79.3 52.2 51.4
±2.7 ±3.1 ±1.2 ±1.1

Best model on Fashion-M. 50.6 50.4 69.0 52.6
±1.6 ±0.3 ±3.0 ±1.6

Best model on CIFAR 50.4 50.3 56.1 59.6
±1.5 ±0.3 ±1.2 ±0.5

Table 5. Detailed results on collages. We identify the best model
on each test set as in Table 1. The difference is that we report
the accuracy on all four test sets (in the main paper, these were
summarized as a single row). Each model specializes and is good
on a single test set at a time. This shows that the features used by
each model do not overlap.


