
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/164346 

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.



Class Similarity Weighted Knowledge Distillation for
Continual Semantic Segmentation

Minh Hieu Phan1, The-Anh Ta2, Son Lam Phung1,3, Long Tran-Thanh4, Abdesselam Bouzerdoum1,5,
1University of Wollongong, 2FPT Software, AIC, 3VinAI Research,

4University of Warwick, 5Hamad Bin Khalifa University,
vmhp806@uowmail.edu.au, anhtt71@fsoft.com.vn,

{phung, a.bouzerdoum}@uow.edu.au, long.tran-thanh@warwick.ac.uk

Abstract

Deep learning models are known to suffer from the
problem of catastrophic forgetting when they incrementally
learn new classes. Continual learning for semantic seg-
mentation (CSS) is an emerging field in computer vision.
We identify a problem in CSS: A model tends to be con-
fused between old and new classes that are visually similar,
which makes it forget the old ones. To address this gap, we
propose REMINDER - a new CSS framework and a novel
class similarity knowledge distillation (CSW-KD) method.
Our CSW-KD method distills the knowledge of a previ-
ous model on old classes that are similar to the new one.
This provides two main benefits: (i) selectively revising old
classes that are more likely to be forgotten, and (ii) better
learning new classes by relating them with the previously
seen classes. Extensive experiments on Pascal-VOC 2012
and ADE20k datasets show that our approach outperforms
state-of-the-art methods on standard CSS settings by up to
7.07% and 8.49%, respectively.

1. Introduction

Semantic segmentation, which aims to assign each pixel
of an image to its semantic class, is a fundamental task in
computer vision. Segmentation models are critical to many
real-world applications, such as self-driving cars [1,17] and
medical image diagnostics [14,40]. In most practical cases,
the model needs to continuously learn new data and adapt to
the changes in the operating environment. However, contin-
ually learning new classes leads to catastrophic forgetting of
old knowledge [12, 34]. In other words, the performance of
newly retrained models degrades significantly on old tasks.

Research on continual learning for semantic segmenta-
tion (CSS) only emerged recently in medical imaging [27,
28] and general scene understanding [2, 9]. Besides forget-
ting, CSS also faces the background shift problem, where

(a) Animal group (b) Vehicle group

Figure 1. Performance drop (degree of forgetting) on old classes
in the (a) animal and (b) vehicle group as a model learns a new
class. Our method forgets less when learning a new similar class.

object classes from previous steps are shifted to the back-
ground at the current step [2].

There are two main problems causing catastrophic for-
getting in continual learning (CL). First, the model has a
strong bias toward new classes [36]. In other words, ob-
jects of old classes are mispredicted as new ones. Second,
the model tends to forget old classes that are visually sim-
ilar to newly added classes. To investigate this problem,
we divide classes in the Pascal-VOC 2012 dataset into two
groups: animal and vehicle, and evaluate the degree of for-
getting in each group. Fig. 1 shows the performance drop1

in each group as the model learns a new class. The perfor-
mance on the animal group drops the most when the model
learns sheep. Similarly, the result on the vehicle group re-
duces the most when it learns train.

Recent CSS methods [2, 9, 23, 24] distill the knowledge
of a previous model on old classes to a current model.
Knowledge distillation prevents the model from diverging
from what it previously learned. This continual learning
paradigm gains high research interests because of its com-
putational efficiency. They do not require storing exemplars
of old classes to re-learn old knowledge. Despite the recent

1The performance drop measures how much mIoU a model drops in
percentage point(%) when it learns a new class.



success, modern distillation based methods [2,23,24] distill
the knowledge on all old classes equally even though some
are more likely to be forgotten than others. They may put
less emphasis on revising the affected old knowledge. This
overlooking makes the model more vulnerable to forgetting
visually similar old classes.

To resolve the current research gap, this paper proposes
a novel class similarity weighted knowledge distillation
(CSW-KD) method. Our CSW-KD emphasizes revising the
knowledge of old classes that are likely to be forgotten, i.e.,
the classes that are similar to a new one. In particular, when
learning a new class, the proposed method computes its
similarity to the old ones. It then reweighs the predictions
of a previous model on old classes based on their similarity
scores. The class similarity weighted knowledge is distilled
to the current model.

The proposed approach has three benefits. First, our
method is more resilient to forgetting when learning new vi-
sually similar classes (as shown in Fig. 1). The model iden-
tifies the group of old classes that is more likely to be for-
gotten, i.e., the group to which a new class belongs. It then
selectively reinforces the knowledge of this group. Second,
our method better learns new tasks. Via CSW-KD, we en-
force the model to capture the similarity between classes.
Thus, it can relate the new with the previously learned
knowledge. The model then transfers what it previously
learned to facilitate the learning of new classes. Third, the
prior knowledge about class similarity enables the model to
learn an underlying class hierarchy. Using this learned hier-
archy, the model can identify groups of old knowledge that
are being affected.

We introduce REMINDER - a CSS framework that con-
sists of two components. First, the class similarity weighted
knowledge distillation (CSW-KD) transfers the reweighted
outputs of an old model based on their similarity to the new
class. Second, a feature knowledge distillation (FKD) mod-
ule distills the features of the previous model to encourage
feature reuse among different tasks.

Our main contributions can be summarized as follows.

• We propose to use semantic similarity between classes as
a prior for continual learning. To the best of our knowl-
edge, this is the first work that explores hierarchical learn-
ing to reduce catastrophic forgetting in CL.

• We propose a novel CSW-KD method that leverages class
similarity to reduce the forgetting of similar old classes
(rigidity) and promote learning of new classes (plastic-
ity). We then propose REMINDER - a CSS framework
that uses CSW-KD to remind the model of old knowledge
based on the similarity between new and old classes.

• We show that our method achieves a better rigidity-
plasticity trade-off than strong baselines via extensive
experiments. REMINDER outperforms state-of-the-art

methods on Pascal-VOC 2012 and ADE20k datasets by
up to 7.07% and 8.49%.

2. Related Work
Continual learning. To reduce forgetting, popular meth-
ods in continual learning can be categorized into four main
approaches. First, regularization techniques aim to apply
penalty constraints on networks’ weights to prevent catas-
trophic forgetting [4,7]. Second, replay-based methods pro-
pose to store a portion of data from old classes or generate
training data from previous tasks [6, 33]. Then the model
is trained on a mixture of new and old data. Third, dy-
namic architectures either grow new branches for new tasks
or rearrange subnetworks for specific tasks [19,37]. Fourth,
parameter isolation approaches train each task on its own
different subset of weights to preserve model performance
on old tasks [20, 32].

A recent neuroscience study investigates how new
knowledge is integrated into a neocortex-like network [22].
Their experiments show that the neural network implicitly
learns a hierarchy. When learning new classes, the model
projects them onto a known branch or creates a new branch
in a hierarchy. Notably, replaying old items within the same
branch as the new item results in a faster integration. In-
spired by this study, our method learns a class hierarchy
and selectively revises old items similar to new ones. Our
selective knowledge revision improves the learning of new
classes and reduces the forgetting of old classes.

Continual semantic segmentation. The common
framework of continual learning for general semantic seg-
mentation tasks was first proposed in [23] which uses dis-
tillation losses from output and feature spaces of a model
from previous tasks to train on new tasks. Besides catas-
trophic forgetting, CSS faces the problem of background
shift which was first pointed out in [2].

Recent approaches [2, 9, 24] adopt knowledge distilla-
tion techniques for CSS. An unbiased knowledge distilla-
tion (UNKD) method proposed in MiB [2] allows the old
model to predict background pixels as one of a new class
in the current task. Local pooled outputs distillation (lo-
cal POD) is a recent state-of-the-art proposed in PLOP [9].
Local POD distills both long-range and short-range spatial
relations across training steps to preserve multi-scale infor-
mation for CSS. Sparse and disentangled representations
(SDR) is a recent method that applies prototype matching
and contrastive learning to improve feature robustness for
CSS [24].

Contemporary works [16,21,39] have developed several
replay-based methods for CSS. Half-real half-fake distilla-
tion proposes to generate synthetic images and add them
to training data of new tasks to remind models about old
classes [16]. RECALL uses generative adversarial networks



Figure 2. Overview of REMINDER. The model is trained via three loss objectives (in yellow): (i) a cross-entropy loss from labels Lce,
(ii) an feature knowledge distillation (FKD) loss Lfkd, and (iii) a class similarity weighted knowledge distillation (CSW-KD) loss Lcsw-kd.
When a model learns a new class (i.e., sofa), our CSW-KD weighs the predictions score on old classes based on their similarity score S to
the sofa. It then distills the reweighted outputs Õt−1 to the current model via CSW-KD loss Lcsw-kd.

and web-crawled data to regenerate new samples from old
classes for training new tasks [21]. Another approach [39]
proposes an expectation-maximization framework for CSS,
which combines relabeling and replay-based approaches.

Prototype-based approach. Prototype-based ap-
proaches were initially proposed for few-shot learning [8,
35] and domain adaptation [6, 29, 38]. They extract proto-
types of classes to distill general knowledge of each class
or encourage orthogonality between classes. Recent CSS
methods such as SDR [24] and PIFS [3] use prototypes to
regularize features for reducing the forgetting of old classes.
They enforce features to stay close to the corresponding
prototypes in the current task. In contrast, our method com-
pares prototypes across different tasks for identifying the
classes that are likely to be forgotten.

3. Method

3.1. Problem definition and background

Problem definition. Continual semantic segmentation aims
to train a segmentation model in T steps without forgetting.
In step t, we are given a dataset Dt which comprises a set
of pairs (Xt, Y t), where Xt is an image of size H × W
and Y t is the ground-truth segmentation map. Here, Y t

only consists of labels in current classes Ct, while all other
classes (i.e., old classes C1:t−1 or future classes Ct+1:T ) are
assigned to the current background class cb. In continual
learning, the model at step t should be able to predict all
classes C1:t in the history.

A segmentation model fθt consists of an encoder Et for

extracting features and a decoder Dt for producing the seg-
mentation map. The encoder extracts low-level features via
L layers f t

l (.), where l ∈ {1, . . . , L}. The decoder learns
high-level features from the encoder’s features and outputs
the logit map Zt = Dt ◦ Et(Xt). A softmax function is
applied on Zt to give a segmentation map Ot.

Revisiting knowledge distillation loss. To avoid stor-
ing old data, distillation loss [15] is applied to transfer the
knowledge of the old model fθt to the new one. Each image
has a set of pixels I with the cardinality |I| = HW . The
distillation loss is formulated as

Lkd = − 1

HW

HW∑
i=1

∑
c∈C1:t−1

Ot−1
i,c logOt

i,c, (1)

where Ot
i,c, given by fθt , refers to the probability of class c

in pixel i at step t. Here, the output Ot
i,c is defined by re-

normalizing the logit Zt across all classes in the previous
step Ct−1:

Ot
i,c =

0, if c ∈ Ct \ b
expZt

i,c∑
k∈C1:t−1

expZt
i,c

if c ∈ C1:t−1. (2)

The distillation loss in Eq. 1 encourages model fθt at step t
to produce similar outputs to model fθt−1 at step t− 1. This
enforces the parameters of fθt to stay close to the solution
found by fθt−1 for labeling pixels of previous classes.

3.2. Proposed REMINDER framework

We first train the model fθ0 to recognize pixels belonging
to the initial classes C0 using the cross-entropy loss. The



model fθt−1 trained on the previous step is frozen. Its
knowledge is used to regularize the current model fθt at
step t. Fig. 2 illustrates our proposed REMINDER frame-
work. Our approach trains the segmentation model using
three losses: i) the cross-entropy loss from labels, ii) the en-
coder knowledge distillation loss from features of encoder
Et−1, and iii) the class similarity weighted loss from out-
puts Ot−1 of the previous model fθt−1 .

Cross-entropy loss from the ground truth and pseudo
labels. In CSS, the pixels belonging to previous classes be-
come background in the current step. To address this back-
ground shift problem, we generate pseudo labels for back-
ground pixels using predictions of previous model fθt−1 .
The model is trained on the combined ground truth Ỹ t,
which consists in labels of current classes and the pseudo
labels of all previous classes. Here, Ỹ t is formulated as

Ỹ t
i,c =


1, if Y t

i,cb
= 0 and c = argmax

c′∈Ct

Y t
i,c′ ,

1, if Y t
i,cb

= 1 and c = argmax
c′∈C1:t−1

Ot−1
i,c′ ,

0, otherwise.

(3)

For non-background pixel i, we copy the ground-truth la-
bel from Y t

i,c. For background pixel i, we use outputs Ot−1
i,c

of a previous model. When the predictions of old steps are
likely to be incorrect, using these predictions as pseudo la-
bels can degrade the performance of the current model. We
adopt the practice of [9] to assign Ỹ t

i,c = 0 when the uncer-
tainty of pixel i belonging to class c is greater than a certain
threshold. Further details are given in [9].

The cross-entropy loss from pseudo labels is formulated
by

LCE = − λ

HW

HW∑
i=1

∑
c∈C1:t

Ỹ t
i,c logO

t
i,c, (4)

where λ denotes the percentage of the accepted old class
pixels above the certainty threshold over all old class pixels.

Distillation loss from features. When the model fea-
tures diverge from what it previously learned, catastrophic
forgetting occurs. Recent work [9, 25] distill the features of
a previous model to reduce this feature divergence problem.
Here, we generalize previous methods and introduce a fea-
ture knowledge distillation. The feature distillation loss is
formulated as

Lfkd =

L∑
l=1

∣∣Θ(f t
l (X

t))−Θ(f t−1
l (Xt))

∣∣2
2
, (5)

where f t
l (.) is the l-th layer in the network Mt and Θ(.) is

a function summarizing spatial statistics of the feature map.
Different choices of the summarizing function Θ(.) lead

to different FKD strategies. For example, pooled outputs
distillation (POD) [10] summarizes features across height,

width and channel dimensions. Local POD [9], an exten-
sion of POD, summarizes features in local regions of differ-
ent scales. We use local POD as the summarizing function
Θ(.) to capture multi-scale information, which is effective
for semantic segmentation.

Class similarity weighted knowledge distillation loss.
Our CSW-KD method revises the old knowledge that is
more likely to be forgotten, i.e., classes that are visually
similar to a new class. We propose to reweigh the predic-
tions Ot−1 of a previous model on new pixels by the class
similarity score S. The reweighted outputs are distilled to
the current model when it learns a new class. This allows
the model to simultaneously re-learn old classes that are
more likely to be forgotten and capture semantic relations
between new and old classes.

For every pixel i and its actual new class u, we reweigh
Ot−1

i,v , the output of a previous model for the old class v
on pixel i, by the similarity between new class u and old
class v. Let P t ∈ RU×C and Pt−1 ∈ RV×C respectively
denote two sets of C-dimensional prototype vectors of U
new classes and all V old classes, where U = |Ct| and V =
|C1:t−1|.

We construct a prototype map M t = [mt
i] ∈ RHW×C

where each pixel i contains a prototype vector mt
i = pt

c

based on the pixel label yi in the segmentation map. Here,
class c is the label yi of pixel i, where i = 1, 2, ...,HW .
Then we compute a similarity map S ∈ RHW×V between
the prototype mt

i of a new class in each pixel i and the pro-
totype pt−1

v ∈ Pt−1 of old class v. Each entry si,v is the
cosine similarity between mi and pt−1

v :

si,v =
mi · pt−1

v

∥mi∥ · ∥pt−1
v ∥

. (6)

The similarity map is normalized to reflect the probability
that the new class yi at pixel i is similar to old class v. The
normalized similarity map S̃ is defined as

s̃i,v =
exp si,v

V∑
j=1

exp si,j

. (7)

Our CSW-KD method first selects the old classes v that
are more likely to be forgotten. It then distills their outputs
Ot−1

i,v weighted by the similarity score S̃i,v with the new
class yi. We filter out the old classes v that have similarity
scores S̃i,v less than a certain threshold δ. The weighted
outputs Õt−1

i,v are defined as

Õt−1
i,v =

{
0, if yi ∈ C1:t−1 and S̃i,v < δ,
S̃i,vO

t−1
i,v , if yi ∈ Ct.

(8)

Here, we set threshold δ based on the total number of old
classes |C1:t−1|:

δ =
1

|C1:t−1|
. (9)



The CSW-KD method distills the weighted outputs Õt−1

to the current model:

Lcsw-kd = − 1
HW

HW∑
i=1

∑
c∈C1:t−1

Õt−1
i,c logOt

i,c. (10)

Via CSW-KD, the current model fθt learns the reweighted
outputs Õt−1, and consequently captures the class similar-
ity scores S̃ embedded in Õt−1. Learning this semantic
similarity provides two benefits. First, the model can relate
the new class with what it previously learned, thus, trans-
ferring the old knowledge for better learning new classes.
Second, it encourages the model to implicitly learn the un-
derlying class hierarchy.

Finally, the combined loss is defined as

L = Lce + α1Lfkd + α2Lcsw-kd, (11)

where α1 and α2 denote the weights of each term, which
are fine-tuned to find the optimal performance.

Prototype computing. We obtain the prototype of new
class c by computing an in-batch average on the logits Z ∈
RH×W×C . Given a batch of logit maps B ∈ RB×H×W×C ,
we flatten out the batch, height and width dimensions and
index the logits as zi, where i = 1, . . . , BHW . The cen-
troid of class c is computed as

pc =

∑BHW
i=1 zi 1[yi = c]

|{i : yi = c}|
, (12)

where 1[yi = c] = 1 if the label yi is c, and 0 otherwise.
The cummulative prototypes Pt of all classes from task 1
to task t are computed at the end of task t.

4. Experiments
4.1. Experimental setup

Datasets. We perform experiments with REMINDER
on two standard image semantic segmentation
datasets: Pascal-VOC 2012 [11] and ADE20k [41].
Pascal-VOC 2012 contains 20 foreground classes. Its
training and testing sets contain 10,582 and 1,449 images,
respectively. ADE20k has 150 foreground classes, 20,210
training images, and 2,000 testing images.

CSS settings. CSS has two experimental settings [2]:
disjoint and overlapped. In the disjoint setup, all pixels in
the images at each step belong to either the previous classes
or the current class. In the overlapped setting, the dataset at
each step contains all the images that have pixels of at least
one current class, and all pixels from previous and future
tasks are labeled as background. We perform experiments
in the overlapped setting as this is the most realistic and
challenging setting.

For the Pascal-VOC 2012 dataset, we perform three dif-
ferent experiments: adding 1 class after training with 19

classes (19-1 setting with 2 steps), adding 5 classes all
at once after training with 15 classes (15-5 setting with 2
steps), adding 5 classes sequentially after training with 15
classes (15-1 setting with 6 steps).

For the ADE20k dataset, we perform four different ex-
periments: adding 50 class after training with 100 classes
(100-50 setting with 2 steps), adding 50 classes each time
after training with 50 classes (50-50 setting with 3 steps),
adding 10 classes each time sequentially after training
with 100 classes (100-10 setting with 6 steps), and adding
5 classes each time sequentially after training with 100
classes (100-5 setting with 11 steps).

Metrics. We evaluate the model performance by four
mean intersection over union (mIoU) metrics. First, we
compute mIoU for the initial classes C0, which reflects
model rigidity: the model resilience to catastrophic for-
getting. Second, we compute mIoU for all incremented
classes C1:T , which measures plasticity: the model capac-
ity in learning new tasks. Third, we compute mIoU of all
classes in C0:T (all), which shows the overall performance
of models. Lastly, we report the average of mIoU (avg)
measured step after step as proposed by [9], which evalu-
ates performance over the entire continual learning process.

Baselines. We benchmark our model against the lat-
est state-of-the-art CSS methods PLOP [9], SDR [24],
MiB [2] and ILT [23]. We also evaluate our model against
the general continual learning methods: EWC [18] and
LwF-MC [31]. For a fair comparison, state-of-the-art meth-
ods have been re-trained with a Deeplab-v3 architecture [5]
and a ResNet-101 backbone [13].

4.2. Comparisons with the state-of-the-arts

Quantitative evaluation. We compare experimental results
of REMINDER with current state-of-the-art methods. For
the Pascal-VOC 2012 dataset, Table 1 shows results on the
19-1 (2 tasks), 15-5 (2 tasks) and 15-1 (6 tasks) settings.
REMINDER outperforms all other methods on all and avg
mIoU. On the short 15-5 setting (with 2 tasks), our model
performs better than PLOP by 1.11% on the all mIoU.
On the long 15-1 setting (6 tasks), REMINDER improves
PLOP by 1.75% on mIoU of new classes (16-20). This
shows that our model can learn new knowledge by relating
the new with the previously learned concepts. Furthermore,
our model outperforms both the recent methods, PLOP and
SDR, by 7.07% and 56.46% on the all mIoU. REMINDER
is more resilient to forgetting than other methods when the
model continually learns more tasks.

For the ADE20k dataset, Table 2 shows results on the
100-50 (2 tasks), 50-50 (3 tasks) and 100-10 (6 tasks) set-
tings. On the short 100-50 setting (2 tasks), REMINDER
outperforms PLOP by 4.27% and 1.85% on the all and
avg metrics, respectively. On the medium 100-10 setting
(6 tasks), REMINDER improves PLOP by a large margin



Table 1. CSS results on Pascal-VOC 2012 in mIoU (%). †: excerpted from [9]. Other results come from our re-implementation.

19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks)
Method 0-19 20 all avg 0-15 16-20 all avg 0-15 16-20 all avg

EWC† [18] 26.90 14.00 26.30 24.30 35.50 27.10 0.30 4.30 1.30
LwF-MC† [31] 64.40 13.30 61.90 58.10 35.00 52.30 6.40 8.40 6.90
ILT† [23] 67.75 10.88 65.05 71.23 67.08 39.23 60.45 70.37 8.75 7.99 8.56 40.16
MiB [2] 70.57 22.82 68.30 72.95 75.30 48.68 68.96 75.07 39.47 14.50 33.53 54.44
SDR [24] 68.52 23.29 66.37 71.48 75.21 46.72 68.64 74.32 43.08 19.31 37.42 54.52
PLOP [9] 75.50 30.22 73.35 75.43 75.44 49.65 69.30 74.82 63.41 26.76 54.68 66.96
REMINDER (Ours) 76.48 32.34 74.38 76.22 76.11 50.74 70.07 75.36 68.30 27.23 58.52 68.27
Joint 77.45 77.94 77.47 78.88 72.63 77.39 78.88 72.63 77.39

Table 2. CSS results on ADE20k in mIoU (%). †: excerpted from [9].

100-50 (2 tasks) 50-50 (3 tasks) 100-10 (6 tasks)
Method 0-100 101-150 all avg 0-50 51-150 all avg 0-100 101-150 all avg

ILT† [23] 18.29 14.40 17.00 29.42 3.53 12.85 9.70 30.12 0.11 3.06 1.09 12.56
MiB [2] 40.52 17.17 32.79 37.31 45.57 21.01 29.31 38.98 38.21 11.12 29.24 35.12
SDR [24] 40.52 17.17 32.79 37.31 45.66 18.76 27.85 34.25 37.26 12.13 28.94 34.48
PLOP [9] 41.76 14.52 32.74 37.73 47.33 20.27 29.41 38.75 38.59 14.21 30.52 34.48
REMINDER (Ours) 41.55 19.16 34.14 38.43 47.11 20.35 29.39 39.26 38.96 21.28 33.11 37.47
Joint 44.34 28.21 39.00 51.21 32.77 39.00 44.34 28.21 39.00

Table 3. CSS results in mIoU (%) on ADE20k 100-5 setting.

100-5 (11 tasks)
Method 0-100 101-150 all avg

ILT† [23] 0.08 1.31 0.49 7.83
MiB† [2] 36.01 5.66 25.96 32.69
SDR [24] 33.02 10.63 25.61 33.07
PLOP [9] 35.72 12.18 27.93 35.10
REMINDER 36.06 16.38 29.54 36.49

of 8.49% on all and 8.67% on avg. On 50-50 setting,
REMINDER is on par with PLOP with a slight decrease
on the all metric, while outperforming PLOP by 1.31% on
the avg metric measured across all tasks.

Table 3 compares the model performance on the longest
100-5 setting with 11 tasks. Our REMINDER performs bet-
ter than PLOP by 5.76% and 3.96% on all and avg, respec-
tively. Between prototype-based approaches, REMINDER
outperforms SDR by a large margin 15.34% in all mIoU.
Notably, the proposed REMINDER significantly outper-
forms PLOP by 34.48% on newly learned classes (i.e., class
101-150). REMINDER yields the better rigidity-plasticity
trade-off than the competitors, especially in long CL set-
tings.

Table 4 shows the per-class mIoU of different methods
on the Pascal-VOC 15-1 setting. The model learns tv at the
last step. Our REMINDER consistently outperforms pre-
vious methods on the object class. Via REMINDER, the

model remembers better visually similar classes. Further-
more, REMINDER also outperforms other contenders on a
newly learned tv class. This shows that relating old and new
concepts assists the learning new knowledge.

Qualitative evaluation. Visualization results of seg-
mentation maps of REMINDER, PLOP, and MiB are shown
in Fig. 3 on two test images of Pascal-VOC 2012. For
the first image (Row 1-3), PLOP and MiB gradually for-
get class dog from Step 3. The model gets confused be-
tween visually similar images. Compared with other meth-
ods, REMINDER better distinguishes between two similar
animal classes, dog and sheep. Our framework selectively
reminds the model of old class dog as it learns sheep. Thus,
the model’s knowledge on dog is less affected when learn-
ing the visually similar class sheep. For the second image
(Row 4-6), when learning too similar new class (i.e., sheep)
at Step 3, our REMINDER still retains small parts of cow,
while other methods completely forget cow. In Step 4-6,
PLOP gets confused cow with horse, while REMINDER re-
tains most part of its correct prediction on cow. Since CSW-
KD enforces the model to learn how similar two classes are,
we hypothesize that the model can detect more subtle dif-
ferences between similar concepts.

4.3. Ablation study

Effectiveness of class hierarchy learning. We explore
the model’s ability to learn class hierarchy by visualizing
feature distribution by class. Fig. 4 visualizes t-SNE dis-
tribution of features extracted from our REMINDER and



Figure 3. Visualization results of MiB, PLOP and REMINDER across 6 steps of the 15-1 setting of CSS for two test images in
Pascal-VOC 2012. On rows 1-3, MiB and PLOP are confused betweed dog and sheep at Step 3, person and sofa, train at Steps 4-5,
while REMINDER suffers much less. On rows 4-6, REMINDER is less confused between cow and horse, sheep compared to PLOP and
MiB.

Table 4. Per-class IoU on the Pascal-VOC 15-5 setting.
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MiB [2] 84.59 11.30 16.18 37.50 26.03 49.48 6.26 41.08 75.03 1.24 33.34 36.95 64.56 44.04 23.53 80.46 0.84 24.65 14.69 15.21 17.12 33.52
SDR [24] 82.00 16.65 19.54 18.82 0.88 21.46 32.70 35.06 47.81 12.66 4.06 8.05 37.42 32.96 12.74 74.55 15.44 9.66 9.66 11.47 9.77 24.44
PLOP [9] 80.16 66.09 27.11 47.02 52.47 62.82 83.94 80.70 80.43 33.56 64.82 55.24 75.46 62.97 75.04 66.79 20.95 49.44 18.02 31.58 13.82 54.68

REMINDER (Ours) 85.77 73.58 32.50 65.10 59.58 67.45 85.64 82.99 84.91 34.55 67.64 57.74 79.22 70.90 76.70 68.58 16.26 46.86 18.79 36.58 17.65 58.52

PLOP [9]. Features of REMINDER are well-clustered
and yield a separation between animals and vehicles. Our
CSW-KD method enables the model to capture the semantic
similarity between classes and implicitly learn the underly-

ing hierarchy. The well-separated feature distribution also
shows that our model can extract discriminative representa-
tions and distinguish visually similar classes better.

Reducing the forgetting of similar old classes. We



Figure 4. Class hierarchy learned by REMINDER. T-SNE visual-
ization of features learned by PLOP and REMINDER.

investigate our model’s efficiency in reducing the forget-
ting of old classes similar to the new one. Fig. 5 shows
the confusion matrix from the predictions of PLOP [9] and
REMINDER on Pascal-VOC 15-1 setting. PLOP misjudges
the old vehicle classes - bus (class 6) and car (class 7) - as
new class train (class 19). It also mispredicts old animal
classes - cow (class 10) and dog (class 12) - as new class
sheep (class 17). Our REMINDER distinguishes these sim-
ilar classes better.

(a) PLOP (b) REMINDER (ours).

Figure 5. Confusion matrix of (a) PLOP and (b) REMINDER on
the Pascal-VOC 15-1 setting.

Impact of each loss objective. We investigate the
impact of different distillation loss objectives on the
Pascal-VOC 15-1 setting, as shown in Table 5. We apply
a feature knowledge distillation (using local POD) with one
of the three output knowledge distillation objectives: (i) our
proposed CSW-KD, (ii) the normal knowledge distillation
(KD), and (iii) the unbiased knowledge distillation (UNKD)
in MiB [2]. Our CSW-KD consistently outperforms the
UNKD in all settings.

Table 5. Performance of REMINDER on the Pascal-VOC 15-1
setting when using different output distillation losses.

Distillation loss 0-15 16-20 all avg

Knowledge Distillation 29.72 4.42 23.69 49.18
UNKD [2] 59.67 20.26 50.29 62.47
CSW-KD 68.30 27.23 58.52 68.27

Effectiveness of learning new classes. We examine the
model efficiency on learning new tasks on the Pascal-VOC
15-1 setting. When the model learns a new class, we record
its performance on that class, as shown in Fig. 6a. The
proposed REMINDER (blue curve) achieves the highest
mIoU on all new classes. We conjecture that learning the
class similarity enforces the model to identify common fea-
tures between similar classes, thus better transferring the
old knowledge to learn new tasks more effectively.

(a) mIoU on a new class (b) CKA between old and new features on
different layers.

Figure 6. (a): Model performance on newly learned class. (b):
Similarity between features before and after learning all 5 new
tasks on the Pascal-VOC 15-1 setting (6 tasks in total).

Feature reuse of REMINDER. We investigate the
model’s ability to reuse features in REMINDER. Follow-
ing recent studies [26, 30], the centered kernel alignment
(CKA) metric is used to measure the similarity of model
representations. We compute similarities between features
before and after the model learns all 5 new tasks on the
Pascal-VOC 15-1 setting. As shown in Fig. 6b, a normal
fine-tuning method (red curve) erases features in the deeper
layers of the model, which indicates the forgetting problem.
Our REMINDER (blue curve) encourages the most feature
reuse. This shows that the model with CSW-KD retains the
most knowledge in a long continual learning setting.

5. Conclusions
This paper proposes a new class similarity weighted knowl-
edge distillation (CSW-KD) method to alleviate the forget-
ting of visually similar classes in continual semantic seg-
mentation. REMINDER - our proposed framework - uses
CSW-KD to selectively revise old classes that are more
likely to be forgotten. Evaluated on Pascal-VOC 2012 and
ADE20k datasets, REMINDER outperforms recent state-
of-the-arts methods in both reducing the forgetting of old
tasks and promoting the learning of new tasks.
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