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Abstract

Mining precise class-aware attention maps, a.k.a, class
activation maps, is essential for weakly supervised semantic
segmentation. In this paper, we present L2G, a simple on-
line local-to-global knowledge transfer framework for high-
quality object attention mining. We observe that classifi-
cation models can discover object regions with more de-
tails when replacing the input image with its local patches.
Taking this into account, we first leverage a local classi-
fication network to extract attentions from multiple local
patches randomly cropped from the input image. Then,
we utilize a global network to learn complementary atten-
tion knowledge across multiple local attention maps online.
Our framework conducts the global network to learn the
captured rich object detail knowledge from a global view
and thereby produces high-quality attention maps that can
be directly used as pseudo annotations for semantic seg-
mentation networks. Experiments show that our method at-
tains 72.1% and 44.2% mloU scores on the validation set
of PASCAL VOC 2012 and MS COCO 2014, respectively,
setting new state-of-the-art records. Code is available at
https://github.com/PengtaoJiang/L2G.

1. Introduction

Deep learning algorithms [37,4 1, 64] have promoted the
rapid development of the semantic segmentation task in re-
cent years. However, training a deep neural network for se-
mantic segmentation requires a large number of pixel-wise
accurate labels, which consume lots of human labors and re-
sources. Recently, to reduce the reliance on accurate anno-
tations, researchers have attempted to study semantic seg-
mentation based on cheap supervisions, such as bounding
boxes [12,42], scribbles [36,50], points [4], and image-level
labels [23, 53]. Among these weak supervisions, image-
level labels only provide information on the existence of
the target object categories, making them more popular than
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Figure 1. Conceptual working pipeline of the proposed method.
We utilize the attention maps for local views with rich details ex-
tracted from the local network to teach the global network. This
enables the global network to learn the rich local details knowl-
edge from the local network online and thereby more integral ob-
ject attentions.

other supervisions due to the easy way to collect. In this pa-
per, we also focus on weakly supervised semantic segmen-
tation (WSSS) based on image-level labels.

Speaking of WSSS, one of the most important compo-
nents should be the class activation map (CAM) [65] which
contains both semantic and location information about the
target objects and can be used as pseudo pixel-level an-
notations for training segmentation networks. Since the
quality of CAMs has a great influence on the segmenta-
tion results, recently, many strategies have been proposed
to advance the original CAM method, including adver-
sarial erasing [22, 53, 63, 66], online attention accumula-
tion [25, 26], seed region expansion [24, 28], and affinity
learning [1,2,57], etc. Despite the good performance, these
works mostly take the whole input image as the sole input
to the model. However, we empirically observe that clas-
sification models can discover more discriminative regions
when taking local image patches as input compared to the
whole input image. This suggests a proper way to improve
the quality of attention maps by making use of local image
patches.
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Figure 2. Motivation of our L2G attention knowledge transfer
method. The top row shows the original image (global view) and
multiple image patches after random crop (local views). The sec-
ond row shows the attention maps generated by CAM [65]. We
can observe that the attention maps of the local views capture more
object details compared to that of the global view.

In this paper, taking the above analysis into account, we
present a simple online local-to-global knowledge transfer
framework, termed L2G, for generating high-quality object
attentions. A conceptual illustration has been depicted in
Fig. 1. Different from the aforementioned attention mining
strategies, we propose to take advantage of both the global
view and the local views randomly cropped from the input
image (regions enclosed by the colorful bounding boxes).
Specifically, our framework contains a local network that
produces local attentions with rich object details for local
views as well as a global network that receives the global
view as input and aims to distill the discriminative attention
knowledge from the local network.

Our method offers the following advantages. First of
all, we produce attention maps from multiple local views
of the input image rather than its global view. This allows
us to attain more details on undiscovered semantic regions,
which are also complementary across different local views,
as shown in Fig. 2. Second, by designing a knowledge
transfer loss, the complementary attention knowledge can
be efficiently transferred to the global network in an online
learning manner. This enables the global network to capture
pixel-level semantic object details and produce high-quality
attention maps in inference. Last but not the least, the over-
all pipeline is simple and flexible. We can selectively add
additional constraints [32] to the local network to help shape
the attained object attentions.

We evaluate our method on the PASCAL VOC 2012
and MS COCO 2014 datasets. Experiments demonstrate
that our method achieves better performance than previ-
ous state-of-the-art methods. When using the DeepLab-v2
model [10] as our segmentation network, we attain 72.1%
and 71.7% mloU scores on the validation set and the test set
of PASCAL VOC 2012, and 44.2% on the validation set of
MS COCO 2014, setting new state-of-the-art records under
the weakly supervised setting. We also conduct a series of
ablation experiments to help readers better understand how
each component performs in our method.

2. Related Work

2.1. Weakly Supervised Semantic Segmentation

One-stage WSSS methods directly utilize the image-level
labels as supervision to train an end-to-end segmentation
network. Early works [43, 44] formulate this problem as
multiple instance learning. Later, Papandreou et al. [42]
proposed an Expectation-Maximization (EM) method that
utilizes the intermediate prediction to supervise the seg-
mentation network. Zhang et al. [62] utilized the image
classification branch to generate attention maps and con-
structed the pseudo segmentation labels to supervise the
parallel segmentation branch. Araslanov et al. [3] proposed
a self-supervised mechanism that applies the image appear-
ance priors to generate pseudo segmentation labels during
training. Chen et al. [7] constructed an end-to-end frame-
work that uses an encoder-decoder network to explore ob-
ject boundaries. Compared to two-stage WSSS methods,
one-stage methods usually have inferior performance and
are less attractive.

Two-stage WSSS methods rely on attention maps [63, 65]
to generate pseudo segmentation labels, which are then used
to train segmentation networks. The core of two-stage
WSSS methods is to produce high-quality attention maps
[5,33,48,52,54]. Towards this goal, a lot of works have
been proposed recently. Wei et al. [53] proposed the adver-
sarial erasing strategy, which iteratively occludes the mined
object regions to drive the classification network to discover
new object regions. Hou et al. [22] improved the adversarial
erasing strategy by using a self-erasing strategy to prevent
attention from spreading to the background. Kolesnikov
et al. [28] introduced the seed-expansion idea, which ex-
pands the initial seed regions from the pre-computed atten-
tion maps and constrains the expanded regions to align with
the object boundaries. Later, Jiang et al. [26] proposed the
online attention accumulation strategy that utilizes the at-
tention maps of different training phases. Chang et al. [6]
exploited the sub-category information to highlight the non-
discriminative semantic regions.

Another line of works attempts to refine attention maps
to obtain integral object regions with precious boundaries.
Ahn et al. [2] learned pixel affinity to propagate the seman-
tics of strong responses in attention maps to the adjacent
pixels. Chen et al. [8] and Ahn ef al. [1] further improved
this method by explicitly learning the class boundaries. Lee
et al. [32] utilized the off-the-shelf saliency maps as super-
vision to guide the region learning to generate high-quality
attention maps.

One common point shared by the aforementioned meth-
ods is that they all refine attention maps on the image’s
global view. Differently, our method takes advantage of
both the global view and multiple local views and stud-
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Figure 3. Overall framework of the proposed method. The complementary attention maps captured by the local network is distilled into

the global network by a knowledge transfer loss.

ies how to efficiently transfer the complementary attention
knowledge from the local network to the global network to
improve the quality of attention maps.

2.2. Knowledge distillation

Our work is also related to knowledge distillation [17,
21,61], which aims to distill the knowledge from the well-
trained teacher model to a student model. For the image
classification task, these works focus on improving the stu-
dent model by imitating the prediction distribution of the
teacher model. Moreover, some researchers [20, 39] also
study knowledge distillation for the semantic segmentation
task. Differently, we investigate how to transfer the atten-
tion knowledge captured by the local views to the global
network in an online learning manner to better leverage the
complementary information from multiple views.

3. Method

In this section, we present the whole framework of our
method in detail. Before describing the framework, we first
give some fundamental introduction to attention map gen-
eration.

3.1. Prerequisites

We first present the way to generate attention maps.
Given an input image I, let y be the image-level label. The
output feature F’ of the last convolutional layer has C' chan-
nels, identical to the number of classes. The last convolu-
tional layer is followed by a global average pooling layer,
where the feature ' is pooled to a vector f€ of size C.
We calculate the classification loss by applying a sigmoid
cross-entropy loss function, which is formulated as follows:

C
L=~ Yy log(o(f%)) + (1~ ) og(1 — o( ),
c=1 (1)

where o is the sigmoid function. The attention maps can
be generated from the output of the last convolutional layer.
For some class ¢, the attention map A is derived from the
¢t channel of F, which can be formulated as

. ReLU(F)

~ max(ReLU(F¢))’ @

The above method, as pointed out in most previous work
[2,22,26,53], can only locate the most discriminative re-
gions. It often fails in discovering those non-discriminative
object regions that are semantically meaningful as well.
In the following, we propose a novel attention generation
framework by presenting a new local-to-global knowledge
transfer method to capture high-quality object attentions.

3.2. Overall Framework

As mentioned in Sec. 1, the local network focusing on
processing local patch views tends to discover more dis-
criminative object regions. Based on this observation, we
propose to leverage the attention maps for local views to
aid a global network to locate more integral object regions.

The overall framework of the proposed approach can be
found in Fig. 3. Functionally, there are four components: a
global network, a local network, an attention transfer mod-
ule, and a shape transfer module. The global network and
the local network can be any CNN classifier, such as the
popular VGGNet [46] or ResNet-38 [56]. In the attention
transfer module, we optimize two loss functions: a classifi-
cation loss L that is used to recognize the semantic objects
and an attention transfer loss L, that encourages the global
network to imitate the local network to discover more dis-
criminative regions. In the shape transfer module, we intro-
duce a shape constraint to loss Ly, yielding Ly, to shape the
captured object attentions. Therefore, the overall optimized
loss function can be formulated as follows:

L= Les+ A+ Ly, 3)



where )\ denotes the loss weight for Ly,. When no shape
constraint is added, Ly, = L. Otherwise, Ly, = L.

3.3. Local-to-Global Attention Transfer

Given an input image I, we transform it into a set of
different views V, including a global view V;, and N lo-
cal views {V1, V5, ..., Viy}, which are randomly cropped
from the global view. The local views {V, Vs, ...,V } are
sent into the local network focusing on generating atten-
tion maps that contain rich object details. The global view
V7 is fed into the global network, which aims to learn the
knowledge from the local network and produces object at-
tentions in inference. Let {F}, F, ..., Fiv} be the outputs
of the last convolutional layer of the local network and each
has C channels corresponding to the number of classes. Let
F be the output of the last convolutional layer of the global
network that has C'4 1 channels. The classification loss and
the attention transfer loss can be defined as follows.

Classification Loss: The classification loss is equipped
with on the local network. Specifically, the feature maps
{F1, Fs, ..., Fx} of the local views are first sent to a global
pooling layer, where the features are pooled to a set of 1D
feature vectors { f1, fo, ..., fn}. Given a 1D feature vector
fi» the predicted probabilities for all categories can be com-
puted by ¢; = o(f;). Recall that o is the sigmoid function.
Then, the classification loss L can be written as

—y°)log(1 —gj).

“)

Attention Transfer Loss: We first generate attention maps
for the local views from the local network. We use Eqn. (2)
to generate attention maps { A§, AS, ..., A%} for the ¢t cat
egory if c is in the image-level labels. If c is not in the
image-level labels, the attention values in the corresponding
attention map will be zeroed. To transfer the attentions at-
tained by the local network to the global network, we adopt
the mean squared error loss.

1
Las = —
cl N x

N C
sz y* log(qf)

Given the output F' from the global network, we apply

a Softmax function to F along the channel dimension for
each location, yielding

C ch

= sora @

where the value at each location of G¢ means the probability

of this location being category c. Let {G1, Ga, ..., Gy} de-

note the corresponding regions to { Ay, As, ..., Ay} on the

global view, ie., each pair (G, A1) are cropped from the

same coordinate on the global view. The attention trans-

fer loss is formulated by measuring the difference between

{4;} and {G;} as follows:

N
Ly = N ;:1 [|4; — Gil|*. 6)

During training, we jointly optimize the above two losses.
During inference, the attention maps are generated from the
global network while the local network can be discarded.

Discussion: Our method provides an efficient way to lever-
age the complementary information from the global view
and the local views. The local-to-global attention transfer
method conducts the global network to absorb the rich ob-
ject detail knowledge captured by the local network in an
online learning manner. Though most previous works also
use data augmentations, like random crop, for the inputs,
they do not have a component to accumulate the object de-
tail knowledge from the cropped local patches online from
a global view. This makes our local-to-global strategy quite
different from previous works. We will show more advan-
tages of the proposed approach over other methods in the
experiment section.

3.4. Local-to-Global Shape Transfer

The proposed local-to-global attention transfer strategy
can already result in more integral object attentions than the
original CAM [65]. However, as the attention transfer pro-
cess leverages only the image-level labels, the captured at-
tentions around the object boundaries are not sharp enough.
To well capture the shape of the localized objects in the at-
tention maps, we attempt to introduce auxiliary salient ob-
ject information into the attention transfer loss by adding
a shape constraint. The saliency model [38] can serve as
a class-agnostic salient object detector, which can segment
the foreground objects and provide shape information.

The shape transfer process is simple, which has been il-
lustrated in the right part of Fig. 3. Given the attention
maps {A;} from the local network, we first binarize them
with a small threshold (e.g., 0.1), yielding the binary maps
{B;}. Then, we utilize the saliency model to generate the
saliency map S for the given image I and get the corre-
sponding saliency regions to the attention maps {4;} with
the same coordinate on I denoted as {S;}. The attention
transfer loss can then be rewritten as

1B, x S, — Gil[2, if |Si] #0
s 7
L NZ{IA alp, iflsi=o

where X denotes element-wise multiplication and |S;| is the
cardinality of the saliency map .S;. By using B; X .S;, we aim
to remove the attention regions outside the salient objects,
which belong to the background with high probability. This
allows our method to fully leverage the shape information
provided by the saliency maps and results in high-quality
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Figure 4. Qualitative comparison of attention maps from different methods.

attention maps. We will elaborate more on this in our ex-
periment section. Note that as not all the images would have
salient objects, it is inappropriate to always use the top part
of Eqn. (7). Thus, for those images whose saliency maps
contain nothing, we utilize the original attention maps as
supervision as formulated in the bottom part of Eqn. (7).

It is worth mentioning that EPS [32] also uses saliency
maps as supervision to provide the network with shape in-
formation. Differently, our method focuses more on how
to take advantage of multiple local views and how to effi-
ciently transfer the learned knowledge from the local net-
work to the global one. In the following, we will show the
advantage of the proposed local-to-global knowledge trans-
fer over EPS.

4. Experiments

The following paper is organized as follows. First, we in-
troduce the experimental setup. Then, we show experimen-
tal results on ablation study and analyze the role of each
component proposed in our method. Finally, we conduct
experiments to compare our method with previous state-of-
the-art WSSS methods.

4.1. Experimental Setup

Datasets. Experiments are conducted on two publicly avail-
able datasets, PASCAL VOC 2012 and MS COCO 2014.
The PASCAL VOC 2012 dataset contains 20 semantic cat-
egories and the background. It is split into three sets, the

training, validation, and test sets, each containing 1464,
1449, and 1456 images, respectively. Following most pre-
vious works, we also use the augmented training set [18],
yielding totally 10582 training images. The MS COCO
2014 dataset has 80 semantic categories. Following [11,32],
the images without target categories are excluded from the
dataset, remaining 82081 training images and 40137 valida-
tion images.

Evaluation metric. The mean intersection-over-union
(mIoU) [41] is used as the evaluation metric. As the seg-
mentation annotations of the test set in the PASCAL VOC
2012 dataset are not available, we submit the segmentation
results to the official PASCAL VOC evaluation server'.

Data augmentation. For data augmentation, the short size
of the input image is resized to 512. The global view is with
a resolution of 448x448, which is cropped from the input
image. The local image patches with resolution 320x320
are cropped from the global view.

Classification Network. Following [2, 32], we utilize
ResNet-38 [56] as our classification network. Besides, we
also employ a pixel correlation module (PCM) [52] into the
classification network to constrain the shape of the target
object. The attention maps are generated from the global
network using the multi-scale test strategy [2].

Classification on PASCAL VOC. We train the classifica-
tion network for 10 epochs and use SGD as the optimizer.
The initial learning rate is set to le-3, which decays at the

Ihttp://host.robots.ox.ac.uk:8080/



Table 1. Comparisons of mloU scores under different network
settings. The baseline is the original CAM [65]. SW: The sliding
window strategy is applied to the baseline during inference [65].
Local: Using multiple local image patches instead of the input
image to train the classification network. L2G: Our method with
local-to-global attention transfer only. mIoU¢rqinaug denotes the
mloU score of the pseudo segmentation labels on the augmented
training set.

No. | SW Local L2G | mIoUirainaug ~ mIoUyas
1 47.1 4715
2 | v 46.1 (-1.0)  47.2(-0.3)
3 v 485 (+1.4)  50.0 (+2.5)
4 v 56.8 (+9.7) 549 (+7.4)

Table 2. Ablation experiments on the importance of each compo-
nent. L2G: Local-to-global attention transfer only. Shape: Local-
to-global shape transfer. As can be seen, our local-to-global trans-
fer strategy can significantly improve the performance compared
to the setting with only the local network being used. When the
shape information is incorporated, L2G can still lift the perfor-
mance by a large margin.

No. ‘ Local L2G  Shape ‘ mloUtrainaug ~ mIoUya
1 v 48.5 50.0
2 v 56.8 (+8.3)  54.9 (+4.9)
3 v v 68.0 69.9
4 v v 703 (+2.3)  72.1(+2.2)

6" epoch. The loss weight \ for the attention transfer loss
is 10. Other network settings are as follows: batch size: 3,
weight decay: Se-4, patch size: 320x 320, patch number: 6.

Classification on MS COCO. We train the classification
network for 15 epochs and use SGD as the optimizer. We
set the initial learning rate to 0.1 and use poly as the learning
scheduler. The loss weight A for the attention transfer loss
is 30. Other network settings are as follows: batch size: 12,
weight decay: Se-4, patch size: 320x 320, patch number: 4.

Segmentation. We select DeepLab-v1 [9] and DeepLab-
v2 [10] as our segmentation networks. We report perfor-
mance based on both VGG-16 [46] and ResNet-101 [19].
For VGG-16 based segmentation network, we use the clas-
sification model pretrained on ImageNet [13] for initializa-
tion. For ResNet-101, we use the COCO pretrained model.
For the experiments on MS COCO dataset, we all utilize
ImageNet pretrained model. Following [32], we use the
same way to generate the pseudo labels. Given the atten-
tion maps, we assign a fixed threshold to the background
channel and use the argmax function to obtain the label for
each pixel.
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Figure 5. Ablations on the local view size and number N.

4.2. Ablation Study

We design multiple ablation experiments to perform a
sanity check for our method. All the ablation experiments
are conducted on the PASCAL VOC 2012 dataset. We re-
port the mIoU scores of the pseudo segmentation labels on
the augmented training set and the mIoU scores of the seg-
mentation results on the validation set.

Local view sampling strategy. First, we study the impact
of the sampling strategy on the attention maps. We com-
pare two local view sampling strategies. One is the random
sampling strategy, and the other is the uniform sampling
strategy. We implement the uniform sampling strategy by
sliding the window over the global view uniformly. In this
way, every pixel can be enclosed within some local view.
For the global view with 448 x448 resolution, we set the
window size to 320x320 and the stride to 64, obtaining 9
local views. For a fair comparison with the uniform sam-
pling strategy, we randomly sample 9 image patches for the
random sampling strategy. The qualities of the pseudo seg-
mentation labels using these two strategies are quite close
to each other (random 68.8% v.s. uniform 68.5%). To flexi-
bly adjust the local view number N, we choose the random
sampling strategy in our method.

Patch size and patch number N. The patch size controls
the spatial size of the local views. The patch number N
denotes the number of the local views sent to the local net-
work. To study their impact on the attention quality, we se-
lect 5 different patch sizes [240x240, 280280, 320x 320,
360x360, 400x400]. When studying the patch number /V,
we select the number of local views from the range of [1,
2, 4, 8, 16]. As shown in Fig. 5, we observe that when
N increases, the quality of the pseudo segmentation labels
becomes better. The performance tends to be robust when
the local view number is larger than 4. For the patch size,
we can see that our method achieves the best performance
when the local view size takes 320x320. When the size is
larger than 320320, the quality of the pseudo segmenta-
tion labels decreases largely.

Importance of the proposed local-to-global knowledge
transfer. When sending the local views to the local net-
work, we can discover more object regions from the result-
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Figure 6. Comparison of the segmentation results under different network settings. We can observe that the combining L2G and shape

transfer yields the best results, especially on local object details.

ing attention maps. Here, one may raise a question: “Are the
attention maps from the local network good enough so that
we do not need the transfer process?”. To answer this ques-
tion, we test the quality of the pseudo segmentation labels
using the attention maps from the local network. As shown
in Tab. 1, we can see the performance of the local network
is slightly better than the baseline CAM [65]. However, the
performance is far lower than L2G (48.5% v.s. 56.8%). We
also show some qualitative results of the attention maps in
Fig. 4 and segmentation results in Fig. 6. This indicates
the local-to-global attention transfer strategy is a more ef-
ficient way to leverage the rich object attention knowledge
captured by the local network.

In addition, we further extend the above experiments by
introducing the shape information. The corresponding re-

sults can be found in Tab. 2. It has been demonstrated
in [32] that saliency shape information can significantly im-
prove attention quality. However, when the proposed L2G
is used, the mIoU scores on both the trainaug and validation
sets can be largely improved. We will show more numerical
results on segmentation in the next subsection.

L2G v.s. Sliding window. The key of our method is to
leverage the local attention maps to facilitate the global net-
work to discover more integral object regions. One direct
way to implement this idea is to utilize the sliding win-
dow strategy during inference and aggregate the attention
maps from different image patches. We compare our L2G
with the sliding window strategy. Specifically, for the slid-
ing window strategy, the window size and the stride are set



Table 4. Comparisons of
pseudo segmentation labels
on the PASCAL VOC train
set with saliency maps in-

Table 3. Comparison of
pseudo segmentation labels
on the PASCAL VOC train
set with no saliency maps.

corporated.
Methods ‘ mloUsrqin
CAM [65] 48.0 Methods mloU¢rgin
SC-CAM [6] 50.9
SEAM [52] 554 SGAN [58] 62.8
ADVCAM [31]|  55.6 EPS [32] 69.4
L2G (ours) 56.2 L2G (ours) 71.9

to 320x320 and 64, respectively. For our L2G, we set the
local view size to 320x320 and the number of randomly
sampled patches to 4 at a time.

As shown in Tab. 1, the local-to-global attention trans-
fer strategy achieves much better results than the baseline
CAM [65], which verifies the effectiveness of our method.
However, the results of the sliding window strategy are even
worse than the original CAM. We argue that the sliding win-
dow strategy is not suitable for mining non-discriminative
object regions as the trained model is still based on inputs
with the global view. This makes the undiscovered object
regions that have different appearances with the distinctive
regions hard to respond when processing the global view.

Classification loss in the global network. The local net-
work is equipped with the classification loss to guide the
attention generation. One may ask the question “Does the
global network also need the classification loss?”” To answer
this question, we have attempted to add a classification loss
to the global network. We observe that the attention maps
generated from the global network locate very small object
regions when adding the classification loss. The quality
of the pseudo segmentation labels decreases largely from
70.3% to 53.8%. We argue that the classification loss and
the attention transfer loss play opposite roles. The classifi-
cation loss makes the attention be more discriminative. The
attention transfer loss aids in transferring the attention on
non-discriminative regions to the global network. Thus, the
attention maps become worse.

Local and global backbone sharing. Here, we explore the
performance gap between with/without the local and global
network backbone sharing. When the local and global net-
works share the same backbone, the mloU score of the
pseudo segmentation labels on the trainaug set is 69.2%.
After training the segmentation network, the mloU score
on the validation set is 70.9%. When the local and global
networks utilize different backbones, the mIoU score of the
pseudo segmentation labels can be improved by 1.1%. The
final segmentation result also attains 1.2% mloU gains.

Table 5. Quantitative comparisons to previous state-of-the-art ap-
proaches on PASCAL VOC 2012 validation and test sets. All
the segmentation results are based on the DeepLab with VGGNet
backbone [46]. Pub.: Publication, Seg.:Segmentation network,
Sup.: Supervision, I.: Image-level label, S.: saliency maps from
the off-the-shelf saliency model.

Methods ‘ Pub. ‘ Seg. ‘ Sup. ‘ Val (%) ‘ Test (%)

AffinityNet [2]
MCOF [51]
DSRG [24]
SeeNet [22]
FickleNet [30]

CVPR’18 | V1 | L 58.4 60.5
CVPR’18 | V1 |L+S.| 562 57.6
CVPR’18 | V2 |L+S.| 59.0 60.4
NeurIPS*18 | V1 |L.+S.| 61.1 60.7
CVPR’19 | V2 |L+S.| 612 61.9

OAA™ [26] ICCV’19 | V1 |L+S.| 63.1 62.8
BES [8] ECCV’20 | VI | L 60.1 61.1
MCIS [48] ECCV’20 | V1 |L+S.| 635 63.6
Multi-Est. [16] ECCV’20 | V1 |L+S.| 64.6 64.2
ICD [15] CVPR’20 | VI |L+S.| 64.0 63.9
ECS-Net [49] ICCv’21 | V1| L 62.1 63.4
DRS [27] AAAT21 | VI |[I4S.| 635 64.5

Group-WSSS [34] | AAAI'21 | V2 |L+S.| 633 63.6
OAA++T [25] PAMI'21 | V1 |L4S.| 63.7 63.2

NSROM [59] CVPR’21 | V2 |L+S.| 65.5 65.3
EPS [32] CVPR’21 | V1 |1+4S.| 66.6 67.9
EPS [32] CVPR’21 | V2 |14S.| 67.0 67.3
L2G (ours) - V1 |L+S.| 68.1 68.8
L2G (ours) - V2 [1+S.| 68.5 68.9

4.3. Comparisons with the State-of-the-Arts

We first compare the quality of our produced attention
maps with the previous state-of-the-art WSSS methods. Our
attention maps are converted to pseudo segmentation labels.
As shown in Tab. 3 and Tab. 4, it is obvious that the attention
maps generated by our method are better than other methods
no matter whether the saliency maps are used. Without the
saliency maps, the mIoU score on the PASCAL VOC train
set reaches 56.2%, better than SEAM [52] by 0.8%. After
applying the saliency maps to the transfer process, the mloU
score reaches 71.9%, much better than EPS [32] (71.9% v.s.
69.4%).

We use the pseudo segmentation labels to train the
DeepLab segmentation model directly. We compare the
segmentation performance of our method with previous
state-of-the-art methods. Tab. 5 and Tab. 6 list the segmen-
tation results of our method and the recent state-of-the-art
methods on the PASCAL VOC dataset. As we can see, com-
pared to the previous WSSS methods, our method achieves
the best results on both the validation and test sets. The
work most relevant to our method is EPS [32], which ex-
plicitly uses the saliency maps as supervision. The differ-
ences between our method and EPS have been explained in
Sec. 3.4. As shown in Tab. 6, we can see that our method
can improve the results of EPS by around 1%. Besides, as



Table 6. Quantitative comparisons to previous state-of-the-art ap-
proaches on PASCAL VOC 2012 validation and test sets. All the
segmentation results are based on the ResNet backbone [19, 56].
Our method achieves the best results.

Table 7. Quantitative comparisons to previous state-of-the-art ap-
proaches on MS COCO validation set. All the segmentation re-
sults are based on VGGNet backbone [46] except L2G* using
ResNet-101 backbone [19].

Methods ‘ Publication ‘ Seg. ‘ Sup. ‘ Val (%) ‘ Test (%) Methods ‘ Publication ‘ Seg. ‘ Sup. ‘ Val (%)
AffinityNet [2] CVPR’18 | V1 L 61.7 63.7 SEC [28] ECCV’16 V1 L+S. 224
MCOF [51] CVPR’18 | V1 | L+S. | 60.3 61.2 DSRG [24] CVPR’18 V2 L+S. 26.0
DSRG [24] CVPR’18 | V2 | 1+S.| 614 63.2 ADL [11] PAMI’20 V1 L+S. 30.8
SeeNet [22] NeurIPS’18 | V1 | L+S. | 63.1 62.8 EPS [32] CVPR’21 V2 L.+S. 35.7
IRNet [1] CVPR’19 | V1 I 63.5 64.8 L2G (ours) = V2 L+S. 42.7
FickleNet [30] CVPR’19 | V2 | 1+S.| 649 | 653 L2G* (ours) - V2 | L+S. 442
OAA™T [26] ICCV’19 | V1 | L+S.| 65.2 66.4
SSDD [45] ICCV’19 | VI L. 66.1 66.8 . Desieni d d classificati
SO | O (V2| L | s | gy s deion Deding o e s
SC-CAM 6] CVPR'20 | V2 ) L 66.1 63.9 results.’ Second, the shape of the ciisco’vered objecpts is still
ICD [15] CVPR’20 | VI | I+S.| 67.8 68.0 . . .

, being further improved (the last two rows). Using stronger
BES [8] ECCV'20 1 V2 1 63.7 06.6 saliency models or over-segmentation methods could, to
MCIS [48] ECCV’20 | V1 | L4S.| 66.2 66.9 some extent. solve this ’
Multi-Est. [16] ECCV’20 | V1 | I+S.| 672 | 667 ’ '
LIID [40] PAMI'20 | V2 |L+IS.| 66.5 67.5
DRS [27] AAAI'21 | V2 | L+S. | 71.2 71.4

Group-WSSS [34]
ECS-Net [49]

AAAT21 | V2 [ I4S.| 682 68.5
ICCVv’21 | V1 L. 66.6 67.6

PMM [35] ICccv’21 |PSP| L 68.5 69.0
CDA [47] Iccv’2l | v2 | L 66.1 66.8
CGNet [29] ICCv’21 | V1 L. 68.4 68.2
AuxSegNet [57] ICCV’21 | V1 | L+S.| 69.0 68.6
AdvCAM [31] CVPR’21 | V2 | L 68.1 68.0
NSROM [59] CVPR’21 | V2 | 1+S.| 704 70.2
EDAM [55] CVPR’21 | V1 | L+S.| 70.9 70.6
EPS [32] CVPR’21 | V1 | 1+S.| 71.0 71.8
EPS [32] CVPR’21 | V2 | 1+S.| 709 70.8
L2G (ours) - V1 | L+S. | 72.0 73.0
L2G (ours) - V2 | L+S. | 72.1 71.7

shown in Tab. 7, our results on the challenging MS COCO
dataset are much better than the previous methods, which
also demonstrates the effectiveness of our local-to-global
strategy. The mIoU of the pseudo labels for our method is
43.4%, much better than that of EPS (37.2%).

Discussion. It is worthy to note that our local network is
just a simple classification model. Because of the flexi-
bility of the proposed framework, we can replace the local
network with more complicated attention models to further
improve the results. Thus, we believe there is still a large
room to improve the proposed framework, and we also hope
our local-to-global knowledge transfer method could pro-
vide researchers with a new research direction.

Analysis of failure cases. First, some non-target objects
are wrongly recognized as the target classes as shown in the
first two rows of Fig. 7. In our L2G, we only use ResNet to

Image Result GT

Figure 7. Two failure segmentation examples of our L2G.

5. Conclusion

In this paper, we propose a novel local-to-global atten-
tion transfer method to attain object attentions. By leverag-
ing the complementary attention captured by the local net-
work from the local views and introducing the shape con-
straint to the attention transfer process, our method achieves
the best results on both the validation and test sets of PAS-
CAL VOC 2012 and the validation set of MS COCO 2014.
We hope the proposed approach could facilitate the research
on vision tasks relying on high-quality attention maps.
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