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Abstract

This paper addresses the problem of vehicle-mounted
camera localization by matching a ground-level image with
an overhead-view satellite map. Existing methods often
treat this problem as cross-view image retrieval, and use
learned deep features to match the ground-level query im-
age to a partition (e.g., a small patch) of the satellite map.
By these methods, the localization accuracy is limited by
the partitioning density of the satellite map (often in the or-
der of tens meters). Departing from the conventional wis-
dom of image retrieval, this paper presents a novel solu-
tion that can achieve highly-accurate localization. The key
idea is to formulate the task as pose estimation and solve
it by neural-net based optimization. Specifically, we de-
sign a two-branch CNN to extract robust features from the
ground and satellite images, respectively. To bridge the vast
cross-view domain gap, we resort to a Geometry Projec-
tion module that projects features from the satellite map to
the ground-view, based on a relative camera pose. Aim-
ing to minimize the differences between the projected fea-
tures and the observed features, we employ a differentiable
Levenberg-Marquardt (LM) module to search for the opti-
mal camera pose iteratively. The entire pipeline is differen-
tiable and runs end-to-end. Extensive experiments on stan-
dard autonomous vehicle localization datasets have con-
firmed the superiority of the proposed method. Notably,
e.g., starting from a coarse estimate of camera location
within a wide region of 40m × 40m, with an 80% likeli-
hood our method quickly reduces the lateral location error
to be within 5m on a new KITTI cross-view dataset.

1. Introduction

Image-based camera localization [3, 8, 14, 20, 29, 36, 40,
43, 58] has attracted increasing attention from the commu-
nity due to its practical applications in various fields, includ-
ing autonomous driving, virtual and augmented reality. Re-
cently, this technique has been extended to the cross-view

(a) Cross-view image retrieval-based localization

(b) Proposed cross-view camera pose optimization
Figure 1. Comparison of two schemes for cross-view camera lo-
calization. (a) Conventional image retrieval-based scheme first
splits a large satellite map into small image patches and constructs
a reference database. Given a query image, they find the most
similar image from a database. GPS-tag of the retrieved image is
regarded as the query camera’s location. By this method, the lo-
calization accuracy is limited by the sample density of database
images. (b) The paper proposes a novel scheme for cross-view lo-
calization, which formulates the task as camera pose optimization.
We tentatively project the satellite deep features to a ground view-
point from an initial camera pose estimate by a Geometry Projec-
tion module. Then, a differentiable Levernberg-Marquardt opti-
mization procedure is applied to refine the camera pose estimation
by minimizing the differences between the predicted and observed
features.

setting, i.e., localization by matching a ground-level image
to an overhead-view satellite map to determine the ground
camera’s pose.

Existing learning-based image localization methods of-
ten treat this task as an instance of image retrieval, and solve
it by metric learning [5,17,27,37,46,47,49,51,55,57,60,63,
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64, 67, 69]. They match a ground image to many candidate
satellite patches in a large satellite map covering the geo-
graphical region of interest and then retrieve the most simi-
lar one. The query camera’s location is then assigned as the
GPS tag of the retrieved satellite patch. Although promis-
ing results have been achieved, their estimation accuracy is
limited by the sampling density of those satellite images.
A recent work [70] further discussed location refinement
by using a deep network to regress the relative displace-
ment. However, the significant domain differences between
the satellite and ground-view images makes it very difficult
to obtain accurate regression in the cross-view setting.

Departing from the traditional idea of image retrieval,
we propose to solve accurate cross-view localization task
by direct pose optimization. Specifically, we first employ
two CNNs to extract deep features from the two-view im-
ages. The learned features are expected to be robust to view
changes and discriminative for feature correspondences.
Then, we devise a Geometry Projection module, which ap-
proximately projects satellite features to a ground view-
point, based on the current camera pose estimate, to bridge
the domain gap between the views. Finally, a differentiable
Levenberg-Marquardt (LM) algorithm is embedded in the
pipeline to refine the pose. The LM optimization aims to
find the optimal camera pose such that the predicted deep
features originated from the satellite image match well to
the corresponding deep features extracted from the ground-
view image. Please refer to Fig. 1 for an overview.

We evaluate our method on two standard benchmarks
for autonomous driving, i.e. KITTI [15] and Ford multi-
AV datasets [2]. Both the datasets contain ground-level im-
ages by a vehicle-mounted camera with GT poses but with-
out satellite maps. We supplement them with correspond-
ing high-definition satellite maps, downloaded from Google
Map [1], for the evaluation of the proposed method.

2. Prior Arts
Image based localization. Image-based localization is

often formulated as an image retrieval problem and tackled
by metric learning techniques. It is solved by ground-to-
ground (G2G) image matching [3, 8, 9, 13, 14, 20, 29, 34, 36,
40, 43, 58]. Since the G2G image matching cannot localize
query images whose reference counterparts are not avail-
able, many recent works resort to the widespread satellite
images to construct the database [5, 7, 17, 27, 37, 45–49, 51,
55, 57, 60, 63, 67, 69].

These works approximate the query camera pose as the
pose of the top-1 retrieved reference image. They remain
effective at scale, but the pose estimates in this manner are
very coarse. In this work, we introduce a novel approach to
increase localization accuracy.

3D structure based localization. Works on 3D struc-
ture based localization usually employ a 3D scene model

as reference for query camera localization [4, 6, 10, 21, 23,
24, 28, 30, 39, 41, 42, 52, 53, 56, 66, 68]. Among these al-
gorithms, works [38, 61] also use the LM optimization for
camera pose estimation. However, they are designed for
ground-to-ground localization only and require knowing the
3D coordinates of image key points. This paper only uses a
high-definition satellite image as a reference and solves the
ground-to-satellite localization when 3D scene models are
unavailable.

SLAM/VO. Simultaneous Localization and Mapping
(SLAM) and Visual Odometry (VO) techniques have been
traditionally used for vehicle localization [11,16,18,19,30,
31, 33, 35, 44, 50, 59]. They first estimate relative camera
poses between consecutive image frames, and then inte-
grate them for global pose computation. As such, they suf-
fer from error accumulation, leading to an estimation drift.
Our proposed method only relies on a single frame. Hence,
it can complement the SLAM/VO method as a novel way of
(satellite image-based) loop-closure.

3. Method Overview
Given a coarse initial estimate of a ground camera’s

pose, we aim to optimize this pose in high accuracy by
matching it to a companion satellite map. Instead of for-
mulating this task as image retrieval, we propose a pose op-
timization framework described below.

Our framework consists of three components: (i) a two-
branch deep network for feature learning, (ii) a Geome-
try Projection module, and (iii) a differentiable Levenberg-
Marquardt (LM) optimizer, as shown in Fig. 2.

3.1. Deep robust feature learning

Deep neural networks are shown to be powerful in learn-
ing robust features that are resilient to viewpoint changes
and suitable for the task of visual localization [5, 27, 37,
46, 47, 51, 55, 60, 63, 64]. We design a two-branch neural
network to extract deep features from the ground and satel-
lite images separately. The U-net structure is used to learn
multi-scale feature representations.

3.2. Cross-view feature alignment

To bridge the evident cross-view domain gap, we devise
a Geometry Projection module which aligns the two view
features in the ground-view domain based on cross-view ge-
ometry. Our geometry projection module projects satellite-
view features to a ground viewpoint by establishing approx-
imate geometric correspondences and using a relative cam-
era pose between the two views.

3.3. Iterative pose refinement

We aim to find the optimal ground camera pose such
that the projected features from the satellite domain are the
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Figure 2. An overview of the proposed highly-accurate camera pose optimization procedure. Our method employs a two-branch deep
network to extract multi-scale robust features from ground and satellite images, respectively. Next, the Geometry Projection module maps
the satellite features to the ground-view domain, based on an initial camera pose R0, t0. By minimizing the differences between the
projected satellite features Fs2g and the observed ground-view features Fg , an LM optimization is employed to find the optimal camera
pose. The LM optimization is executed in a coarse to fine manner.

most similar to the real observed ground-view features. To
this end, we develop a new differentiable LM optimizer
for cross-view feature alignment. The LM optimizer iter-
atively refines the camera pose to match the cross-view fea-
ture maps.

When the initial camera pose is too far from the ground-
truth pose, the projected contents from a satellite image will
be considerably different from the observed ground image,
causing a local minima problem. We apply a coarse-to-fine
multi-scale LM update strategy to mitigate this issue. Fea-
tures at the coarsest level have a larger receptive field in the
original image and thus are suitable for coarse-level global
search in the solution space. Conversely, features at finer
scales have a larger spatial resolution and encode more de-
tailed scene information. Hence, they are more informative
for precise pose refinement.

4. Highly-accurate Pose Optimization
In this section, we provide a detailed analysis of the

proposed method. As mentioned before, we adopt a two
branch CNN to extract deep features from the ground and
satellite images, denoted as Fl

g ∈ RHl
g×W l

g×Cl

and Fl
s ∈

RHl
s×W l

s×Cl

, respectively, where l = 1, 2, 3 indicates the
scale level. The ground and satellite branches share the
same architecture but do not share weights. In this way,
they can adapt to their respective domains. The features at
each level are L2 normalized to increase their robustness for
cross-view matching.

4.1. Satellite-to-ground geometry projection

We introduce a Geometry Projection module to estab-
lish the cross-view geometric correspondences. Our ge-

ometry projection module projects satellite-view features to
a ground viewpoint based on the relative camera pose be-
tween the two view images.

We set the world coordinate system to the initial camera
pose estimate, with its location corresponds to the reference
satellite image center, x axis parallel to the vs direction of
the satellite image, y axis pointing downward, and z axis
parallel to the us direction. A 3D point (x, y, z) in the world
coordinate system is mapped to a satellite pixel coordinate
by the orthographic projection,

[us, vs]
T = [

z

α
+ u0

s,
x

α
+ v0s ]

T , (1)

where α as the per-pixel real-word distance of a satellite
feature map, and (u0

s, v
0
s) is the satellite feature map center.

The transformation from the real camera coordinate sys-
tem to the world coordinate system is formulated as

[x, y, z]T = R([xc, yc, zc]
T + t), (2)

where R and t are the rotation and translation matrices, re-
spectively. The projection from a 3D point to a pin-hole
camera image plane is given by

w[ug, vg, 1]T = K[xc, yc, zc]
T , (3)

where K is the camera intrinsic and w is a scale factor.
From Eq. (1)∼(3), we can derive the mapping from a

ground-view pixel to a satellite pixel asus

vs
z

 =

 1
α 0 0
0 1

α 0
0 0 1

wRK−1

ug

vg
1

+Rt

+

u0
s

v0s
0

 .

(4)



When the depth map of the ground-view image is avail-
able, i.e., w is given, the satellite to ground projection can
be easily conducted by Eq. (4). However, it is challenging
to estimate depths from a single ground image. Consid-
ering the overlap between a ground and a satellite image
mainly lies on the ground plane, our geometry projection is
conducted by using the homography of the ground plane.
In other words, we make all the ground-view pixels cor-
responds to the points on the ground plane by setting yc
in Eq. (3) to the distance between the query camera to the
ground plane. Then, w can be computed from Eq. (3).

This projection defined on ground plane homography is
only approximately correct. To handle objects higher than
the ground place and reduce distortions in the projection, we
project deep features rather than RGB pixels to measure the
gap. These deep features encode high-level semantic infor-
mation and therefore are less sensitive to object heights than
RGB values. By Eq. (4), we conduct the satellite to ground
geometry projection using bilinear interpolation, obtaining
Fl

s2g ∈ RHl
g×W l

g×Cl

as the projected ground-view features
from satellite features at scale l.

4.2. Multi-level LM optimization

The differences between the satellite and the ground ob-
servations are given by,

el = Fl
s2g − Fl

g. (5)

The objective is to find the optimal pose R̂ and t̂ of the
ground camera by minimizing the following loss function,

ξ̂ = argmin
ξ

∥el∥22, (6)

where ∥·∥22 is the L2 norm, ξ = {R, t} and ξ̂ corresponds to
its optimal solution. We solve this non-linear least squares
problem by the Levenberg-Marquardt(LM) optimization al-
gorithm [22, 32].

For each level l, we compute a Jacobian matrix and a
Hessian matrix,

J =
∂Fs2g

∂ξ
=

∂Fs2g

∂ps

∂ps

∂ξ
, and H = JTJ, (7)

where ps is the satellite feature map coordinates.
We choose to use Levenberg’s damping formula i.e.,

H̃ = H + λI, for its convenience in network training. λ
is the trade-off parameter which interpolates between the
gradient decent (λ = ∞) and Gaussian-Newton (λ = 0)
algorithm. Alternatively, the Marquardt’s damping formula
may be used instead [32].

The pose is updated by,

ξt+1 = ξt + H̃−1JTe, (8)

where t index iterations.

The LM optimization is first applied at the coarsest fea-
ture level and gradually propagates to finer levels. This
coarse-to-fine (C2F) scheme is executed iteratively until it
converges or reaches a maximum iteration of 5. This multi-
scale C2F procedure offers an opportunity to escape from
local minima and is more likely to find the global optimum.

We had attempted to embed a confidence map in Eq. (6).
The intention was to give higher weight to salient visual
features (e.g., corner points) and lower weight to textureless
regions. However, in our experiments, we did not observe
consistent improvement across different test sets. Hence
this idea is not employed in our current method.

4.3. Training objective

The LM optimization is implemented in a differentiable
manner in our pipeline (within a feed-forward pass). The
network is trained end-to-end. We use the GT camera poses
as our network supervision,

L =
∑
t

∑
l

(∥R̂l
t −R∗∥1 + ∥t̂lt − t∗∥1), (9)

where R̂l
t and t̂lt is the predicted pose by our method at the

tth iteration and lth level, R∗ and t∗ is the GT camera pose.
During training, when the camera pose provided by the

LM optimization deviates from the GT value, the error will
be backpropagated to the feature extraction network and up-
date its parameters. In this way, our network is trained to
learn useful cross-view features for pose optimization.

5. Satellite-augmented KITTI and Ford Multi-
AV dataset

We evaluate the feasibility of the proposed method in two
standard autonomous driving datasets,i.e., KITTI [15] and
Ford multi-AV dataset [2]. Cameras used in both dataset are
intrinsically calibrated. Based on the GPS provided by the
datasets, we collect satellite images from Google Map [1].
The satellite images are downloaded with zoom 18. The
per-pixel resolution for satellite images in KITTI is 0.20 m,
and for Ford multi-AV, it is 0.22 m.

KITTI. The KITTI dataset contains stereo images captured
by a moving vehicle from different trajectories at different
times. There is barely any revisited trajectory. We split the
entire dataset (raw data) into three subsets, one for training
and two for testing, denoted as Training, Test1, and Test2,
respectively. The Training and Test1 sets are from the same
region, while Test2 is in a different area. Test2 is used to
evaluate the generalization ability of an algorithm. We use
the left image in a stereo pair as our query image.

Ford multi-AV dataset. The Ford multi-AV dataset con-
sists of data captured by three vehicles, V1, V2, and V3.
Each vehicle is equipped with 7 cameras. Among the three
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Figure 3. Failure cases of our method on longitudinal location optimization. The scene facades shown in the ground-view are not visible
in the overhead view. We can only determine the lateral translation of a ground vehicle. Driving along a highway suffers even considerable
ambiguity on the longitudinal location optimization. Here, red arrows represent initial poses, green arrows denote final predicted poses,
and blue arrows indicate GT poses. The magenta points pinpoint intermediate locations during optimization.

Table 1. Performance comparison between our method and state-of-the-art methods on KITTI dataset.
Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

CVM-NET [17] 5.83 17.41 28.78 3.47 11.18 18.42 - - - 6.96 21.55 35.24 3.58 10.45 17.53 - - -
CVFT [49] 7.71 22.37 36.28 3.82 11.48 18.63 - - - 7.20 22.05 36.21 3.63 11.11 18.46 - - -
SAFA [46] 9.49 29.31 46.44 4.35 12.46 21.10 - - - 9.15 27.83 44.27 4.22 11.93 19.65 - - -

Polar-SAFA [46] 9.57 30.08 45.83 4.56 13.01 21.12 - - - 10.02 29.09 46.19 3.82 11.87 19.84 - - -
DSM [47] 10.12 30.67 48.24 4.08 12.01 20.14 3.58 13.81 24.44 10.77 31.37 48.24 3.87 11.73 19.50 3.53 14.09 23.95

VIGOR [70] 18.61 49.06 69.79 4.29 13.01 21.47 - - - 17.38 48.20 70.79 4.07 12.52 20.14 - - -
Ours 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

Table 2. Performance comparison between our method and state-of-the-art image retrieval approaches on the Ford multi-AV dataset.
Log1 Log2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

CVM-NET [17] 9.14 25.67 41.33 4.81 13.19 21.90 - - - 9.82 28.60 47.06 4.24 11.83 20.34 - - -
CVFT [49] 10.57 31.10 51.19 3.52 11.43 20.38 - - - 12.21 35.07 57.61 4.40 12.18 21.41 - - -
SAFA [46] 9.33 28.71 47.95 4.33 11.76 20.14 - - - 11.22 34.10 53.39 5.02 13.36 22.89 - - -

Polar-SAFA [46] 9.05 28.62 47.10 4.43 12.14 21.10 - - - 12.02 35.63 56.21 4.29 12.13 20.28 - - -
DSM [47] 12.00 35.29 53.67 4.33 12.48 21.43 3.52 13.33 23.67 8.45 24.85 37.64 3.94 12.24 21.41 2.23 7.67 13.42

VIGOR [70] 20.33 52.48 70.43 6.19 16.05 25.76 - - - 20.87 54.87 75.64 5.98 16.88 27.23 - - -
Ours 46.10 70.38 72.90 5.29 16.38 26.90 44.14 72.67 80.19 31.20 66.46 78.27 4.80 15.27 25.76 9.74 30.83 51.62

vehicles, only V2 captured images from six trajectories
(Log1∼Log6) at two different dates/drives, i.e., 2017-08-
04 and 2017-10-26. Hence, we use the front left camera of
V2 as our query images. For each trajectory, we split testing
and training sets based on different drives.

Evaluation Metrics. Satellite images can only provide a
vehicle’s location and orientation (i.e., azimuth angle) ref-
erence. Thus this paper estimates a 3-DoF vehicle pose by
ground-to-satellite matching. We report vehicle’s location
errors along the longitudinal direction (i.e., driving direc-
tion) and along the lateral direction, separately. This is be-
cause, using satellite map to localization, the uncertainty of
vehicle location along the driving direction is often more
considerable than that along the lateral direction. For in-
stance, when a vehicle is driving on the road with tall build-
ings on both sides, the vehicle’s location along the driv-
ing direction is mainly determined by the building facades
appearance. However, facades are not visible from the
satellite image. Driving on a highway is another scenario
where the ambiguity is significant because the scenes along
the driving direction are often monotonous and repetitive–

uninformative for localization. In contrast, lateral vehicle
location can be obtained more reliably using road bound-
aries. Moreover, multi-lane freeways in rural areas are al-
most always visible on a satellite map.

When the estimated translation of a camera is within d m
to its GT translation along a direction, it is deemed a correct
estimation. When the estimated value of a rotation angle is
within θ to its GT value, the estimation is deemed correct.
We set d to 1, 3, and 5 respectively, and θ to 1◦, 3◦ and 5◦ re-
spectively. Since this work focuses on autonomous driving,
we did not test on other cross-view datasets (e.g., [67], [27]
and [70]), also because they do not provide ground-view
heading directions relative to the satellite map, making a
meaningful comparison harder.

6. Experiments

We first compare our method with those fine-grained im-
age retrieval methods, and then conduct experiments to an-
alyze each component in our framework.

Implementation details. The satellite image resolution



used in our experiments is 512 × 512, corresponding to a
coverage of around 100 × 100 m2. We assume the city-
scale image retrieval has restricted the camera location to
be in a region of 40m×40m around the satellite image cen-
ter. Within this region, we conduct a high-accuracy pose
search. The choice of this search region guarantees that the
satellite image can provide a reference of at least 30 m vi-
sual distance for a query camera, e.g., when a query cam-
era is on the boundary of the region and looking outside.
The resolution of ground-view images is 256 × 1024. The
feature-level l corresponds to a scale of 1

24−l with respect
to the original image resolution. We use Adam optimizer to
train our network with a learning rate of 10−4, β1 = 0.9,
and β2 = 0.999. The network is trained by 2 epochs
on a RTX3090 GPU with a batch size of 3. Our method
is fully implemented in Pytorch. The pose optimization
runtime for a query image is around 500 ms. Unless
specifically stated, the rotation noise is set to 20◦ through-
out the experiments. The source code and datasets can
be accessed at https://github.com/shiyujiao/
HighlyAccurate.git.

6.1. Comparison with fine-grained image retrieval

Given a query image, its retrieved satellite counterpart
from a city-scale database provides a coarse location esti-
mate of this query image. To refine this pose estimate, a rea-
sonable approach might be splitting the satellite image into
small patches further and conducting a fine-grained image
retrieval. Hence, we first show the performance of the state-
of-the-art cross-view localization algorithms by using this
fine-grained image retrieval for camera pose refinement.

Settings. During inference stage for image retrieval
based method, we sample a grid within the 40m × 40m
search region uniformly and crop corresponding satellite
patches centered at the grid points to construct the fine-
grained retrieval database. Since our method searches 15
possible solutions, i.e., 3 feature levels×5 iterations, the
grid size is set to 4× 4 in the fine-grained retrieval for a fair
comparison. Note that the regular discretized grids only ap-
ply to the inference stage. During training stage, the grids
are continuously, randomly, and exhaustively sampled.

Competing models. We compare our method with
state of the art CVM-NET [17], CVFT [49], SAFA [46], Polar-
SAFA [46], DSM [47], and VIGOR [70]. Among these meth-
ods, DSM is the only one that can estimate the orientation
of a query camera, while others are restricted to location
estimation only. Only VIGOR considers the spatial shifts
between a query camera location and its matching satellite
image center, and they employ two FC layers to regress the
spatial shifts. Toker et al. [57] needs a matching ground-
level image for each database satellite image to train their
generator, which is not available in our fine-grained retrieval
setting. Hence, we cannot compare to it. The above com-

(a) KITTI dataset

(b) Ford multi-AV dataset
Figure 4. Performance comparison of our method when rotation is
given or unknown (rotation noise 0◦ Vs. 20◦).

peting models were retrained (fine-tuned) on our datasets
using their original metric learning procedure.

Results. The comparison results on KITTI and Ford
multi-AV dataset are presented in Tab. 1 and Tab. 2, respec-
tively. For space limits, only the results on the first two logs
of the Ford multi-AV dataset are presented in the main pa-
per. We provide the performance on the remaining logs of
our method in the supplementary material.

From Tab. 1 and Tab. 2, it can be seen that the pure im-
age retrieval-based methods, i.e., CVM-NET [17], CVFT [49],
SAFA [46], Polar-SAFA [46], DSM [47], show very poor per-
formance on the high-accuracy distance based localization.
This is not only because the database images are discretized
but also because the fine-grained partitions of a satellite im-
age are very similar, inducing large uncertainty in cross-
view image matching. Since VIGOR explicitly considers the
relative displacement between a query camera center and
its matching satellite image center, it achieves better per-
formance compared to the pure image retrieval techniques.
Moreover, the performance is significantly boosted by using
the proposed camera pose optimization mechanism rather
than a fine-grained image retrieval.

Visualization. As expected, the performance of all the
methods on longitudinal direction is worse than that on the
lateral direction. We give some visual examples of such am-
biguities along the longitudinal direction in Fig. 3. Despite
this ambiguity, our method is still able to refine lateral poses
effectively. Fig. 5 gives additional visualizations of the in-
termediate poses by our method when the scenes are diverse
at different regions.

Known orientation. In general, the azimuth rotation of
a query camera can be easily obtained from a compass, and
the rotation estimation accuracy by SLAM and VO meth-
ods is usually accurate. Hence, we test our method when

https://github.com/shiyujiao/HighlyAccurate.git
https://github.com/shiyujiao/HighlyAccurate.git


Figure 5. Visualization of updated poses during optimization. The arrow and point legends are the same as those in Fig. 3.

Table 3. Performance comparison on different ground-and-satellite domain alignment methods on the KITTI dataset.
Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

G2SP NN 20.30 53.25 72.12 4.93 15.08 25.31 21.65 54.44 71.88 17.01 46.12 64.41 5.16 15.18 25.31 20.66 51.45 70.03
H 27.72 59.98 71.91 5.75 16.80 26.13 18.13 48.77 69.26 25.32 54.63 64.74 4.99 15.61 26.31 17.37 46.57 67.70

S2GP Polar 18.98 45.93 55.79 5.14 14.95 24.99 13.31 39.25 61.20 11.27 40.51 53.62 4.87 14.73 25.19 13.78 39.68 62.03
H (Ours) 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

orientation information is given. Fig. 4 reports the test re-
sults. It can be seen that the performances of our method
are consistently improved.

6.2. Method Analysis

6.2.1 Effectiveness of GP geometry projection

S2GP Vs. G2SP. Compared to satellite images, ground-
view images have a larger resolution of scene objects. A
small change in the camera pose will be magnified on the
appearance changes of ground-view images. In contrast, the
corresponding appearance changes in the overhead view are
smaller. This sensitiveness of ground-view observations to
camera pose changes is a desired property. It contributes to
a higher accuracy of estimated poses. Hence, we conduct
satellite-to-ground projection (S2GP), instead of ground-
to-satellite projection (G2SP), in our geometry projection
module. Below, we compare the performance of the two
projection methods. Since we use the homography of the
ground plane in the projection, we label them by “H” in
Tab. 3. As expected, the performance of S2GP is superior
to that of G2SP.

Homography Vs. Polar transform. Apart from ho-
mography, polar transform was adopted in the literature for
bridging the cross-view domain gap [46, 47, 57]. We intend
to compare our method with the polar transform in S2GP,
labeled as “Polar”. From the results in Tab. 3, it can be seen
the polar transform performs worse than the homography.
This is possiblly because the polar transform only accounts
for ground-level panoramas rather than images captured by

a ground-level pin-hole camera.
Explicit geometry projection Vs. Implicit network.

In contrast to using an explicit geometry transform, we also
tested whether a simple neural network can learn an implicit
geometric mapping for the same purpose, denoted as “NN”.

Here, the NN ablation cannot be conducted in the S2GP
direction, because the S2GP is a whole-to-part mapping and
will loss much information in the projection. When the ini-
tial pose is significantly different with the real one, the syn-
thesized ground-view feature map at the initial pose can be
totally different with the real observed one. In this case, it
is impossible to make the synthetic and real feature maps
aligned by simple image/feature level rotation and transla-
tion. Suppose we let NN regenerate a ground feature map
for the original satellite image at each pose update. The Ja-
cobian of network parameters will be required at each LM
optimization step, which takes a significant amount of GPU
memory and is far beyond the capacity of existing 12/24G
GPUs. In contrast, our geometry-based S2GP does not in-
volve any network parameters in the LM optimization and
thus is feasible. Therefore, our NN ablation is conducted
in the G2SP direction. We employ a network that takes a
ground image as input and outputs a synthetic satellite fea-
ture map. After that, the LM directly rotates and translates
the synthetic feature map to register it with its real counter-
part without any NN regeneration.

As shown in the first row of Tab. 3, the results are not
favorable. Although “NN” achieves slightly better perfor-
mance than our geometry projection (both S2GP and G2SP)
on rotation estimation, its capability in handling translation



optimization is rather limited. Our reflection on this is that
whenever explicit and principle geometric knowledge about
the problem at hand is known and can be used, one should
use it instead of black-box neural network implementations.

6.2.2 Superiority of LM optimization

LM Vs. SGD and ADAM. Stochastic Gradient Decent
(SGD) and ADAM are widely-used optimization methods
in neural network training. They have also been demon-
strated as effective in many recent Nerf-based methods for
scene-specific camera pose estimation [26, 62, 65]. Hence,
we compare the LM algorithm employed in this paper with
the first-order SGD and Adam on the ground-to-satellite
camera pose optimization.

As shown in Tab. 4, it can be seen that the LM optimiza-
tion performs significantly better than SGD and ADAM.
This is because the adaptive second-order LM optimization,
as a variant of Gaussian Newton, is essentially guaranteed
to find at least one local minimum of a cost function. In
contrast, SGD suffers the usual zigzagging behavior and is
thus very slow to converge. Although ADAM is often better
than SGD on neural network training, we found that it per-
forms the worst among the comparison optimizers in this
ground-to-satellite pose optimization.

LM Vs. Network-based optimizer. Using a network
to mimic an optimizer has also been investigated in various
tasks, for example, optical flow [54], view synthesis [12],
and object pose estimation [25]. Hence, we also compare
with a network-based optimizer, denoted as “Net” in Tab. 4.
The network-based optimizer is composed of a set of con-
volutional layers and fully connected layers. We also used
convolutional GRU and LSTM to construct the network-
based optimizer, but we found no significant difference.

Interestingly, we found that the network-based opti-
mizer performs significantly better on rotation optimization
while achieving inferior translation optimization perfor-
mance than LM. This is probably because regular CNNs are
not inherently rotation-invariant. A slight rotation change
in the input signal will lead to a big difference in the CNN
feature maps. Such amplified changes give the CNN-based
optimizer more power to search for better rotations. On the
other hand, CNNs are translational invariant/equivariant. A
small change in translation can be absorbed by higher-level
CNN features, adversely affecting the accuracy of transla-
tion estimation. These observations have been confirmed
in our experiments as seen in Tab. 3. Using a network for
the ground-and-satellite domain mapping performs better
than the geometry-guided method on rotation optimization,
while worse on translation optimization. It deserves further
exploration to better combine the advantages of principled
theories (e.g., geometry and LM optimization) with data-
driven approaches.

7. Conclusion
In this paper, we have proposed a novel method for ac-

curate camera localization using ground-to-satellite cross-
view images. This new method represents a departure from
the conventional wisdom of image retrieval-based localiza-
tion. The key challenge lies in properly handling the vast
domain gap between the cross-view setting (satellite Vs.
ground-view). To this end, we have devised a Geometry
Projection module that aligns the two-view features in the
ground domain. A principled LM optimization algorithm
is employed to optimize the relative camera poses progres-
sively in an end-to-end manner.

Although this work was motivated by the poor accuracy
of conventional image retrieval-based localization, we do
not intend to replace the image retrieval-based localization
technique. Instead, city-scale place retrieval can provide an
initial estimate for a query camera. Our method then refines
this pose estimate to higher accuracy.

Our ground-to-satellite pose optimization method can
also help the conventional SLAM and visual odometry
methods for camera tracking as a novel mechanism for
“loop closure” in SLAM. In particular, we remark that com-
bining our method with a VO pipeline may resolve the lon-
gitudinal ambiguity issue, achieving all-around highly accu-
rate vehicle localization. Furthermore, we expect the overall
performance of our method will be further improved when
depth information is available, for example, provided by
stereo images or Lidar points. This is left as a future work.

8. Acknowledgments
This research is funded in part by ARC-Discovery grants

(DP 190102261 and DP220100800) and a gift from Baidu
RAL to HL. The first author is a China Scholarship Council
(CSC)-funded PhD student to ANU. We thank all anony-
mous reviewers and ACs for their constructive suggestions.

References
[1] https : / / developers . google . com / maps /

documentation/maps-static/overview. 2, 4
[2] Siddharth Agarwal, Ankit Vora, Gaurav Pandey, Wayne

Williams, Helen Kourous, and James McBride. Ford multi-
av seasonal dataset, 2020. 2, 4

[3] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-
jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5297–5307, 2016. 1, 2
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Appendices
A. Training and Testing Splits of the KITTI and the Ford Multi-AV dataset

Despite both KITTI and the Ford Multi-AV datasets being captured by accurate survey-grade RTK-GPS systems, we
have uncovered that their ground-truth GPS tags are sometimes contaminated by considerable noises. This can be seen, for
example, by marking up the GPS-reported camera position in the satellite image and visually comparing if the observed
ground-level scenes as if seen from the ground plane matches well with the marked position in the satellite image. Fig. 6 and
Fig. 7 illustrate some examples from the Ford Dataset, which clearly reveal such mismatches.

We manually filter out those inaccurate ones and construct new subsets for the KITTI and the Ford multi-AV dataset to
train and evaluate our new localization method. The training and testing image numbers of the two datasets are presented in
Tab. 5 and Tab. 6, respectively.

To validate such a pre-filtering is necessary, we conducted comparisons between “training on the full dataset” and “training
on the filtered dataset” on the first two logs of the Ford multi-AV dataset. The results are presented in Tab. 7. They are
evaluated on the same test sets for fair comparisons. It can be seen that the pre-filtering strategy significantly boosts the
performance, especially for lateral translation optimization.

We provide the performance of our method on the remaining logs (Log3∼Log6) of the Ford multi-AV dataset in Tab. 8,
to complement our results in Sec. 6.1 of the main paper.

(a) The camera is on the left road, as indicated by the ground image, while
its position computed from the GPS tag pinpoints it is near the lane line
between the left and right roads, as shown in the satellite image.

(b) The camera is on the second road from the right, as indicated by the
ground image, while its position computed from the GPS tag pinpoints it
is near the lane line between the first and second roads from the right, as
shown in the satellite image.

(c) The camera is on the left of the main road, as indicated by the ground
image, while its position computed from the GPS tag pinpoints it is in the
middle of the main road, as shown in the satellite image.

(d) The camera is in the middle of the right road, as indicated by the ground
image, while its position computed from the GPS tag pinpoints it is near
the right boundary of the road, as shown in the satellite image.

Figure 6. Examples whose GPS tags are inaccurate. In the satellite image of each sub-figure, the red point indicates the camera position
computed from the GPS tag, and the red arrow marks the camera facing direction. The images are from Log3 of drive 2017-10-26.

Table 5. Training and testing image
numbers for the KITTI dataset.

Training Test1 Test2

#Image 19.655 3,773 7,542

Table 6. Training and testing splits for the Ford multi-AV dataset. (The training and testing sets
of Log3 are from the same drive but different locations.)

Log1 Log2 Log3 Log4 Log5 Log6

Training Drive 2017-10-26 2017-10-26 2017-08-04 2017-10-26 2017-08-04 2017-08-04
#Image 4,000 10,350 1,500 7466 8430 3857

Testing Drive 2017-08-04 2017-08-04 2017-08-04 2017-08-04 2017-10-26 2017-10-26
#Image 2,100 3,727 1,500 3,511 3,500 1,000

B. Increasing the Grid Sample Density for Image Retrieval-based Methods
In this section, we provide additional experiments to investigate the performance of image retrieval-based methods when

increasing the grid sample density in constructing the database. Among the state-of-the-art cross-view image retrieval algo-
rithms, DSM [45] and VIGOR [67] are two of the performers. We therefore only compared ours with these two algorithms.



Figure 7. Examples whose GPS tags are accurate. In the satellite image of each sub-figure, the red point indicates the camera position
computed from the GPS tag, and the red arrow marks the camera facing direction. The images are from Log2 of drive 2017-10-26.

Table 7. Performance comparison of our method on the first two logs of the Ford multi-AV dataset, when trained on the “Full Dataset” or
the “Filtered Dataset”.

Log1 Log2
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

Full Dataset 26.67 64.76 79.76 5.14 15.48 24.14 28.81 66.14 81.24 22.14 58.06 71.18 5.47 16.15 25.95 9.98 30.35 49.26
Filtered Dataset 46.10 70.38 72.90 5.29 16.38 26.90 44.14 72.67 80.19 31.20 66.46 78.27 4.80 15.27 25.76 9.74 30.83 51.62

Table 8. Performance of our method on the remaining logs of the Ford multi-AV dataset.
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

Log3 11.40 34.00 58.13 4.47 13.13 22.47 8.93 29.73 48.80 Log4 29.96 66.28 74.88 4.96 15.52 25.92 14.33 43.69 67.45
Log5 15.26 54.60 76.71 6.23 19.89 32.34 17.74 47.60 67.74 Log6 20.20 45.20 59.00 3.90 14.30 24.50 10.80 31.80 52.50

From the results in Tab. 9, we did not observe consistent positive effects when increasing the grid sample density. This
might be because, in the fine-grained retrieval-based localization, the database images using a grid of 4× 4 are already very
similar and hard to discriminate. Thus, increasing the sample density of database images does not help. Fig. 8 presents some
examples of the database images sampled using a grid of 4× 4.

Figure 8. The database images for fine-grained image retrieval using a grid of 4× 4. They are very similar and hard to discriminate.

C. Different Initial Values
In Tab. 10, we show the performance of our method with different pose initialization ranges. The performance increases

as the search range decreases. The consumer-level GPS accuracy ranges from 15m to 20m, and the image retrieval methods
[44, 54] can make their top-1 retrieved results be within 5m to their ground truth. Since the primary purpose of this paper is
to study whether we can refine an initial coarse estimate by cross-view matching, we set our search region as 40m×40m in



Table 9. Performance of image retrieval-based methods when increasing the grid sample density on the KITTI dataset.

Grid
Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

DSM [45]

4× 4 12.00 35.29 53.67 4.33 12.48 21.43 3.52 13.33 23.67 8.45 24.85 37.64 3.94 12.24 21.41 2.23 7.67 13.42
5× 5 11.69 33.34 50.25 4.51 13.68 21.55 3.66 13.65 24.49 11.44 33.16 50.76 4.11 12.13 20.35 3.20 13.35 23.67
6× 6 12.72 34.35 50.15 4.53 12.70 21.89 3.45 13.65 24.44 12.25 34.31 51.83 4.04 12.49 21.13 3.37 13.55 23.77
7× 7 12.80 35.38 50.41 4.93 13.60 22.55 3.60 13.91 25.10 12.42 34.91 51.72 3.99 12.56 21.49 3.31 13.14 23.38

VIGOR [67]

4× 4 20.33 52.48 70.43 6.19 16.05 25.76 - - - 20.87 54.87 75.64 5.98 16.88 27.23 - - -
5× 5 18.98 48.85 70.34 4.59 13.89 22.77 - - - 16.83 48.38 71.15 4.08 12.32 20.91 - - -
6× 6 17.84 48.98 70.39 5.17 14.58 24.07 - - - 17.54 48.46 71.40 4.46 13.56 22.01 - - -
7× 7 18.50 49.06 70.55 4.90 14.15 23.43 - - - 17.37 48.48 71.68 4.36 13.71 22.29 - - -

Ours - 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

Initial Camera Pose (World Coordinates System)
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Figure 9. Coordinates illustration. Note that this is only for illustration purpose. The coordinates used in our codes are slightly different
with this one.

the paper.

D. Additional Comparisons

Ours w/o Long. We investigate whether the loss item on longitudinal pose estimation can be removed, denoted as “Ours w/o
Long”. As shown in the first row of Tab. 11, this results in a negative effect, indicating that the longitudinal pose constraints
contribute to learning discriminative features, although the ambiguity along this direction is high.

Different iteration strategies. In our framework, the LM optimization is first applied to the multi-level features from coarse
to fine (C2F), and then the C2F update is executed iteratively. Here, we study the performance of the LM optimization when
it is first applied to the coarsest feature level until the maximum iteration and then propagates to finer levels, denoted as “C2F
Global”. The results are presented in the second row of Tab. 11. Compared to C2F Global, our update strategy guarantees
fine-tuning around more possible solutions and thus is more likely to find the global optimum.

E. Coordinates Illustration and Pose Parameterization

We set the world coordinates system to the initial camera pose estimate, as shown in Fig. 9. For illustration brevity, we
pre-align the satellite image to make its center correspond to the initial camera position and its u direction parallel to the
initial camera facing direction. Here, both z and zc denote the camera facing direction.

Denote ∆x is the lateral translation, ∆z is the longitudinal translation, and θ is the azimuth angle. The query ground
camera pose in Eq. (2) and Eq. (4) in the main paper is parameterized as

R =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , t =

∆x
0
∆z

 . (10)



Table 10. Performance comparison with different search regions on the KITTI dataset.

Search
Region

Test1 Test2
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

40m×40m 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00
20m×20m 44.66 73.92 81.18 12.06 35.62 54.73 25.31 57.41 74.48 34.17 72.30 81.15 11.56 35.08 53.77 11.40 48.18 65.80
10m×10m 64.86 92.23 96.98 29.08 69.49 88.66 36.92 73.95 86.88 55.98 90.84 96.43 25.97 66.96 88.12 31.36 69.46 84.50

Table 11. Additional ablation study results of our method on the KITTI dataset.
Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

Ours w/o Long 25.63 56.72 69.55 5.99 16.06 26.85 13.84 39.01 59.98 20.50 52.52 67.57 5.32 15.16 25.23 12.90 36.79 57.73
C2F Global 23.32 50.60 61.25 5.27 15.88 26.05 11.87 33.66 54.86 20.43 45.86 58.51 5.25 15.82 26.16 11.65 33.65 54.02

Ours 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

F. Broader Impact
This paper has introduced a new technique for high-accuracy vehicle/camera localization. This technique can provide

accurate camera position estimation even in a GPS-denied environment. The position of a vehicle or camera of a user is often
considered sensitive or private information. The proposed technique may be abused or misused, causing privacy violations.
We advocate careful data protection and model management to mitigate the risk.
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