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Abstract

This paper presents a novel parametric curve-based
method for lane detection in RGB images. Unlike state-
of-the-art segmentation-based and point detection-based
methods that typically require heuristics to either decode
predictions or formulate a large sum of anchors, the curve-
based methods can learn holistic lane representations natu-
rally. To handle the optimization difficulties of existing poly-
nomial curve methods, we propose to exploit the parametric
Bézier curve due to its ease of computation, stability, and
high freedom degrees of transformations. In addition, we
propose the deformable convolution-based feature flip fu-
sion, for exploiting the symmetry properties of lanes in driv-
ing scenes. The proposed method achieves a new state-of-
the-art performance on the popular LLAMAS benchmark.
It also achieves favorable accuracy on the TuSimple and
CULane datasets, while retaining both low latency (>150
FPS) and small model size (<10M). Our method can serve
as a new baseline, to shed the light on the parametric
curves modeling for lane detection. Codes of our model
and PytorchAutoDrive: a unified framework for self-driving
perception, are available at: https://github.com/
voldemortX/pytorch-auto-drive .

1. Introduction

Lane detection is a fundamental task in autonomous driv-
ing systems, which supports the decision-making of lane-
keeping, centering and changing, etc. Previous lane de-
tection methods [2, 12] typically rely on expensive sensors
such as LIDAR. Advanced by the rapid development of
deep learning techniques, many works [19, 21, 22, 33, 41]
are proposed to detect lane lines from RGB inputs captured
by commercial front-mounted cameras.

*Equal Contribution.
†Lizhuang Ma is a member of Qing Yuan Research Institute, Shanghai

Jiao Tong University.

Figure 1. Lane detection strategies. Segmentation-based and point
detection-based representations are local and indirect. The abstract
coefficients (a, b, c, d) used in polynomial curve are hard to opti-
mize. The cubic Bézier curve is defined by 4 actually existing
control points, which roughly fit line shape and wrap the lane line
in its convex hull (dashed red lines). Best viewed in color.

Deep lane detection methods can be classified into three
categories, i.e., segmentation-based, point detection-based,
and curve-based methods (Figure 1). Among them, by
relying on classic segmentation [5] and object detection
[28] networks, the segmentation-based and point detection-
based methods typically achieve state-of-the-art lane detec-
tion performance. The segmentation-based methods [21,22,
41] exploit the foreground texture cues to segment the lane
pixels and decode these pixels into line instances via heuris-
tics. The point detection-based methods [15, 33, 39] typi-
cally adopt the R-CNN framework [9, 28], and detect lane
lines by detecting a dense series of points (e.g., every 10
pixels in the vertical axis). Both kinds of approaches repre-
sent lane lines via indirect proxies (i.e., segmentation maps
and points). To handle the learning of holistic lane lines,
under cases of occlusions or adverse weather/illumination
conditions, they have to rely on low-efficiency designs, such
as recurrent feature aggregation (too heavy for this real-
time task) [22, 41], or a large number of heuristic anchors
(> 1000, which may be biased to dataset statistics) [33].

On the other hand, there are only a few methods [19, 32]
proposed to model the lane lines as holistic curves (typi-
cally the polynomial curves, e.g., x = ay3 + by2 + cy+ d).
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While we expect the holistic curve to be a concise and el-
egant way to model the geometric properties of lane line,
the abstract polynomial coefficients are difficult to learn.
Previous studies show that their performance lag behind
the well-designed segmentation-based and point detection-
based methods by a large margin (up to 8% gap to state-of-
the-art methods on the CULane [22] dataset). In this paper,
we aim to answer the question of whether it is possible to
build a state-of-the-art curve-based lane detector.

We observe that the classic cubic Bézier curves, with
sufficient freedom degrees of parameterizing the deforma-
tions of lane lines in driving scenes, remain low computa-
tion complexity and high stability. This inspires us to pro-
pose to model the thin and long geometric shape proper-
ties of lane lines via Bézier curves. The ease of optimiza-
tion from on-image Bézier control points enables the net-
work to be end-to-end learnable with the bipartite matching
loss [38], using a sparse set of lane proposals from sim-
ple column-wise Pooling (e.g., 50 proposals on the CU-
Lane dataset [22]), without any post-processing steps such
as the Non-Maximum Suppression (NMS), or hand-crafted
heuristics such as anchors, hence leads to high speed and
small model size. In addition, we observe that lane lines
appear symmetrically from a front-mounted camera (e.g.,
between ego lane lines, or immediate left and right lanes).
To model this global structure of driving scenes, we further
propose the feature flip fusion, to aggregate the feature map
with its horizontally flipped version, to strengthen such co-
existences. We base our design of feature flip fusion on
the deformable convolution [42], for aligning the imper-
fect symmetries caused by, e.g., rotated camera, changing
lane, non-paired lines. We conduct extensive experiments
to analyze the properties of our method and show that it
performs favorably against state-of-the-art lane detectors on
three popular benchmark datasets. Our main contributions
are summarized as follows:

• We propose a novel Bézier curve-based deep lane de-
tector, which can model the geometric shapes of lane
lines effectively, and be naturally robust to adverse
driving conditions.

• We propose a novel deformable convolution-based fea-
ture flip fusion module, to exploit the symmetry prop-
erty of lanes observed from front-view cameras.

• We show that our method is fast, light-weight, and ac-
curate through extensive experiments on three popular
lane detection datasets. Specifically, our method out-
performs all existing methods on the LLAMAS bench-
mark [3], with the light-weight ResNet-34 backbone.

2. Related Work
Segmentation-based Lane Detection. These methods rep-
resent lanes as per-pixel segmentation. SCNN [22] formu-

lates lane detection as multi-class semantic segmentation
and is the basis of the 1st-place solution in TuSimple chal-
lenge [1]. It’s core spatial CNN module recurrently aggre-
gates spatial information to complete the discontinuous seg-
mentation predictions, which then requires heuristic post-
processing to decode the segmentation map. Hence, it has
a high latency, and only struggles to be real-time after an
optimization of Zheng et al. [41]. Others explore knowl-
edge distillation [13] or generative modeling [8], but their
performance merely surpasses the seminal SCNN. More-
over, these methods typically assume a fixed number (e.g.,
4) of lines. LaneNet [21] leverages an instance segmenta-
tion pipeline to deal with a variable number of lines, but it
requires post-inference clustering to generate line instances.
Some methods leverage row-wise classification [26, 40],
which is a customized down-sampling of per-pixel segmen-
tation so that they still require post-processing. Qin et al.
[26] propose to trade performance for low latency, but their
use of fully-connected layers results in large model size.

In short, segmentation-based methods all require heavy
post-processing due to the misalignment of representations.
They also suffer from the locality of segmentation task, so
that they tend to perform worse under occlusions or extreme
lighting conditions.
Point Detection-based Lane Detection. The success of ob-
ject detection methods drives researchers to formulate lane
detection as to detect lanes as a series of points (e.g., every
10 pixels in the vertical axis). Line-CNN [15] adapts classic
Faster R-CNN [28] as a one-stage lane line detector, but it
has a low inference speed (<30 FPS). Later, LaneATT [33]
adopts a more general one-stage detection approach that
achieves superior performance.

However, these methods have to design heuristic lane an-
chors, which highly depend on dataset statistics, and require
the Non-Maximum Suppression (NMS) as post-processing.
On the contrary, we represent lane lines as curves with a
fully end-to-end pipeline (anchor-free, NMS-free).
Curve-based Lane Detection. The pioneering work [37]
proposes a differentiable least squares fitting module to fit a
polynomial curve (e.g., x = ay3 + by2 + cy + d) to points
predicted by a deep neural network. The PolyLaneNet [32]
then directly learns to predict the polynomial coefficients
with simple fully-connected layers. Recently, LSTR [19]
uses transformer blocks to predict polynomials in an end-
to-end fasion based on the DETR [4].

Curve is a holistic representation of lane line, which nat-
urally eliminates occlusions, requires no post-processing,
and can predict a variable number of lines. However, their
performance on large and challenging datasets (e.g., CU-
Lane [22] and LLAMAS [3]) still lag behind methods of
other categories. They also suffer from slow convergence
(over 2000 training epochs on TuSimple), high latency ar-
chitecture (e.g., LSTR [19] uses transformer blocks which
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n Bézier Polynomial
2nd 0.653 0.945
3rd 0.471 0.558
4th 0.315 0.330

Table 1. Comparison of n-order Bézier curves and polynomials
(x =

∑n
i=0 aiy

i) on TuSimple [1] test set (lower is better). Since
the official metrics are too lose to show any meaningful difference,
we use the fine-grained LPD metric following [32].

are difficult to optimize for low latency). We attribute their
failure to the difficult-to-optimize and abstract polynomial
coefficients. We propose to use the parametric Bézier curve,
which is defined by actual control points on the image co-
ordinate system1, to address these problems.
Bézier curve in Deep Learning. To our knowledge, the
only known successful application of Bézier curves in deep
learning is the ABCNet [20], which uses cubic Bézier curve
for text spotting. However, their method cannot be directly
used for our tasks. First, this method still uses NMS so
that it cannot be end-to-end. We show in our work that
NMS is not necessary so that our method can be an end-
to-end solution. Second, it calculates L1 loss directly on
the sparse Bézier control points, which results in difficul-
ties of optimization. We address this problem in our work
by leveraging a fine-grained sampling loss. In addition, we
propose the feature flip fusion module, which is specifically
designed for the lane detection task.

3. BézierLaneNet
3.1. Overview

Preliminaries on Bézier Curve. The Bézier curve’s for-
mulation is shown in Equation (1), which is a parametric
curve defined by n+ 1 control points:

B(t) =

n∑
i=0

bi,n(t)Pi, 0 ≤ t ≤ 1, (1)

where Pi is the i− th control point, bi,n are Bernstein basis
polynomials of degree n:

bi,n = Cint
i(1− t)n−i, i = 0, ..., n. (2)

We use the classic cubic Bézier curve (n = 3), which
is empirically found sufficient for modeling lane lines. It
shows better ground truth fitting ability than 3rd order poly-
nomial (Table 1), which is the base function for previous
curve-based methods [19, 32]. Higher-order curves do not
bring substantial gains while the high degrees of freedom
leads to instability. All coordinates for points discussed here
are relative to the image size (i.e., mostly in range [0, 1]).

1Actually control points of Bézier curves can be outside the image, but
statistically that rarely happens in autonomous driving scenes.

+

Figure 2. Pipeline. Feature from a typical encoder (e.g., ResNet) is
strengthened by feature flip fusion, then pooled to 1D and two 1D
convolution layers are applied. At last the network predicts Bézier
curves through a classification branch and a regression branch.

The Proposed Architecture. The overall model architec-
ture is shown in Figure 2. Specifically, we use layer-3 fea-
ture of ResNets [11] as backbone following RESA [41], but
we replace the dilation inside the backbone network by two
dilated blocks outside with dilation rates [4, 8] [6]. This
strikes a better speed-accuracy trade-off for our method,
which leaves a 16× down-sampled feature map with a
larger receptive field. We then add the feature flip fusion
module (Section 3.2) to aggregate opposite lane features.
The enriched feature map (C × H

16 ×
W
16 ) is then pooled to

(C × W
16 ) by average pooling, resulting in W

16 proposals (50
for CULane [22]). Two 1 × 3 1D convolutions are used
to transform the pooled features, while also conveniently
modeling interactions between nearby lane proposals, guid-
ing the network to learn a substitute for the non-maximal
suppression (NMS) function. Lastly, the final prediction is
obtained by the classification and regression branches (each
is only one 1 × 1 1D convolution). The outputs are W

16 × 8

for regression of 4 control points, and W
16 × 1 for existence

of lane line object.

3.2. Feature Flip Fusion

By modeling lane lines as holistic curves, we focus on
the geometric properties of individual lane lines (e.g., thin,
long, and continuous). Now we consider the global struc-
ture of lanes from a front-mounted camera view in driving
scenes. Roads have equally spaced lane lines, which appear
symmetrical and this property is worth modeling. For in-
stance, the existence of left ego lane line should very likely
indicate its right counterpart, the structure of immediate left
lane could help describe the immediate right lane, etc.

To exploit this property, we fuse the feature map with
its horizontally flipped version (Figure 3). Specifically,
two separate convolution and normalization layers trans-
form each feature map, they are then added together before
a ReLU activation. With this module, we expect the model
to base its predictions on both feature maps.

To account for the slight misalignment of camera cap-
tured image (e.g., rotated, turning, non-paired), we apply

3
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Figure 3. Feature flip fusion. Alignment is achieved by calculating
deformable convolution offsets, conditioned on both the flipped
and original feature map. Best viewed in color.

deformable convolution [42] with kernel size 3 × 3 for the
flipped feature map while learning the offsets conditioned
on the original feature map for feature alignment.

We add an auxiliary binary segmentation branch (to seg-
ment lane line or non-lane line areas, which would be re-
moved after training) to the ResNet backbone, and we ex-
pect it to enforce the learning of spatial details. Interest-
ingly, we find this auxiliary branch improves the perfor-
mance only when it works with the feature fusion. This is
because the localization of the segmentation task may pro-
vide a more spatially-accurate feature map, which in turn
supports accurate fusion between the flipped features.

Visualizations are shown in Figure 4, from which we can
see that the flipped feature does correct the error caused by
the asymmetry introduced by the car (Figure 4(a)).

3.3. End-to-end Fit of a Bézier Curve

Distances Between Bézier Curves. The key to learning
Bézier curves is to define a good distance metric measur-
ing the distances between the ground truth curve and pre-
diction. Naively, one can directly calculate the mean L1

distance between Bézier curve control points, as in ABC-
Net [20]. However, as shown in Figure 5(a), a large L1 error
in curvature control points can demonstrate a very small vi-
sual distance between Bézier curves, especially on small or
medium curvatures (which is often the case for lane lines).
Since Bézier curves are parameterized by t ∈ [0, 1], we pro-
pose the more reasonable sampling loss for Bézier curves
(Figure 5(b)), by sampling curves at a uniformly spaced set
of t values (T ), which means equal curve length between
adjacent sample points. The t values can be further trans-
formed by a re-parameterization function f(t). Specifically,
given Bézier curves B(t), B̂(t), the sampling loss Lreg is:

Lreg =
1

n

∑
t∈T
||B(f(t))− B̂(f(t))||1, (3)

where n is the total number of sampled points and is set
to 100. We empirically find f(t) = t works well. This
simple yet effective loss formulation makes our model easy
to converge and less sensitive to hyper-parameters that typ-
ically involved in other curved-based or point detection-

(a)

(b)

Figure 4. Grad-CAM [31] visualization on the last layer of ResNet
backbone. (a) Our model can infer existence of an ill-marked lane
line, from clear markings and cars around the opposite line. Note
that the car is deviated to the left, this scene was not captured with
perfect symmetry. (b) When entire road lacks clear marking, both
sides are used for a better prediction. Best viewed in color.

based methods, e.g., loss weighting for endpoints loss [19]
and line length loss [33] (see Figure 5(b,c)).
Bézier Ground Truth Generation. Since lane datasets
are currently annotated by on-line key points, we need the
Bézier control points for the above sampling loss. Given
the annotated points {(kxi , kyi)}mi=1 on one lane line, where
(kxi , kyi) denotes the 2D-coordinates of the i-th point. Our
goal is to obtain control points {Pi(xi, yi)}ni=1. Similar
to [20], we use least squares fitting to solve this equation:

b0,n(t0) · · · bn,n(t0)
b0,n(t1) · · · bn,n(t1)

...
. . .

...
b0,n(tm) · · · bn,n(tm)



P0

P1

...
Pn

 =


kx0

ky0
kx1

ky1
...

...
kxm

kym

 , (4)

{ti}mi=0 ∈ [0, 1]. Considering m >> n and the linear in-
dependence of b, it can be efficiently solved by a pseudo-
inverse of the leftmost matrix (mostly full column rank).
Different from [20], we do not set P0 and Pn to original
endpoints, which leads to better quality labels.
Label and Prediction Matching. After obtaining the
ground truth, in training, we perform a one-to-one assign-
ment between G labels and N predictions (G < N ) us-
ing optimal bipartite matching, to attain a fully end-to-
end pipeline. Following Wang et al. [38], we find a G-
permutation of N predictions π ∈ ΠN

G that formulates the
best bipartite matching:

π̂ = arg max
π∈ΠN

G

G∑
i

Qi,π(i), (5)

Qi,π(i) =
(
p̂π(i)

)1−α
·
(

1− L1

(
bi, b̂π(i)

))α
, (6)
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(a) (b) (c)

Figure 5. Lane loss functions. (a) The L1 distance of control
points is not highly correlated with the actual distance between
curves. (b) The proposed sampling loss is one unified distance
metric by t-sampling. (c) Typical loss for polynomial regression
[19], at least 3 separate losses are required: y-sampling loss, y
start point loss, y end point loss.

where Qi,π(i) ∈ [0, 1] represents matching quality of the i-
th label with the π(i)-th prediction, based on L1 distance
between curves bi, b̂π(i) (sampling loss) and class score
p̂π(i). α is set to 0.8 by default. The above equations can be
efficiently solved by the well-known Hungarian algorithm.

Wang et al. [38] also use a spatial prior that restricts the
matched prediction to a spatial neighborhood of the label
(object center distance, the centerness prior in FCOS [35]).
However, since lots of lanes are long lines with a large
slope, this centerness prior is not useful. See Appendix E
for more investigations on matching priors.
Overall Loss. Other than Bézier curve sampling loss, there
is also the classification loss Lc for the lane object classi-
fication (existence) branch. Since the imbalance between
positive and negative examples is not as severe in lane de-
tection as in object detection, instead of the focal loss [16],
we use the simple weighted binary cross-entropy loss:

Lcls = −(y log(p) + w(1− y) log(1− p)), (7)

where w is the weighting for negative samples, which is
set to 0.4 in all experiments. The loss Lseg for the binary
segmentation branch (Section 3.2) takes the same format.

The overall loss is a weighted sum of all three losses:

L = λ1Lreg + λ2Lcls + λ3Lseg, (8)

where λ1, λ2, λ3 are set to 1, 0.1, 0.75, respectively.

4. Experiments
4.1. Datasets

To evaluate the proposed method, we conduct experi-
ments on three well-known datasets: TuSimple [1], CU-
Lane [22] and LLAMAS [3]. TuSimple dataset was col-
lected on highways with high-quality images, under fair

Dataset Train Val Test Resolution #Lines
TuSimple [1] 3268 358 2782 720× 1280 ≤ 5
CULane [22] 88880 9675 34680 590× 1640 ≤ 4
LLAMAS [3] 58269 20844 20929 717× 1276 ≤ 4∗

Table 2. Details of datasets. *Number of lines in LLAMAS dataset
is more than 4, but official metric only evaluates 4 lines.

weather conditions. CULane dataset contains more com-
plex urban driving scenarios, including shades, extreme il-
luminations, and road congestion. LLAMAS is a newly
formed large-scale dataset, it is the only lane detection
benchmark without public test set labels. Details of these
datasets can be found in Table 2.

4.2. Evalutaion Metics

For CULane [22] and LLAMAS [3], the official metric
is F1 score from [22]:

F1 =
2 · Precision · Recall

Precision + Recall
, (9)

where Precision = TP
TP+FP and Recall = TP

TP+FN . Lines
are assumed to be 30 pixels wide, prediction and ground
truth lines with pixel IoU over 0.5 are considered a match.

For TuSimple [1] dataset, the official metrics include
Accuracy, false positive rate (FPR), and false negative rate
(FNR). Accuracy is computed as Npred

Ngt
, where Npred is the

number of correctly predicted on-line points and Ngt is the
number of ground truth on-line points.

4.3. Implementation Details

Fair Comparison. To fairly compare among different state-
of-the-art methods, we re-implement representative meth-
ods [19, 22, 41] in a unified PyTorch framework. We Also
provide a semantic segmentation baseline [5] originally pro-
posed in [22]. All our implementations do not use val set in
training, and tune hyper-parameters only on val set. Some
methods with reliable open-source codes are reported from
their own codes [26, 32, 33]. For platform sensitive met-
ric Frames-Per-Second (FPS), we re-evaluate all reported
methods on the same RTX 2080 Ti platform. More de-
tails for implementations and FPS tests are in Appendices A
to C.
Training. We train 400, 36, 20 epochs for TuSimple, CU-
Lane, and LLAMAS, respectively (training of our model
takes only 12 GPU hours on a single RTX 2080 Ti), and the
input resolution is 288×800 for CULane [22] and 360×640
for others, following common practice. Other than these,
all hyper-parameters are tuned on CULane [22] val set and
remain the same for our method across datasets. We use
Adam optimizer with learning rate 6× 10−4, weight decay
1 × 10−4, batch size 20, Cosine Annealing learning rate
schedule as in [33]. Data augmentation includes random
affine transforms, random horizontal flip, and color jitter.
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CULane [22] TuSimple [1]

Method Ep. Total Normal Crowd Night No
line Shadow Arrow Dazzle

light Curve Cross ↓ train+val Ep. Acc. FPR ↓ FNR ↓

Segmentation-based

Baseline (ResNet-18)* 12 65.30 85.45 62.63 61.04 33.88 51.72 78.15 53.05 59.70 1915 50 94.25 0.088 0.089
Baseline (ResNet-34)* 12 69.92 89.46 66.66 65.38 40.43 62.17 83.18 58.51 63.00 1713 50 95.31 0.064 0.062
Baseline (ResNet-101)* 12 71.37 90.11 67.89 67.01 43.10 70.56 85.09 61.77 65.47 1883 50 95.19 0.062 0.062
SCNN (ResNet-18) [22]* 12 72.19 90.98 70.17 66.54 43.12 66.31 85.62 62.20 65.58 1808 50 94.77 0.075 0.074
SCNN (ResNet-34) [22]* 12 72.70 91.06 70.41 67.75 44.64 68.98 86.50 61.57 65.75 2017 50 95.25 0.063 0.063
SCNN (ResNet-101) [22]* 12 73.58 91.10 71.43 68.53 46.39 72.61 86.87 61.95 67.01 1720 50 95.69 0.052 0.050
UFLD (ResNet-18) [26]** 50 68.4 87.7 66.0 62.1 40.2 62.8 81.0 58.4 57.9 1743 - − − − −
UFLD (ResNet-34) [26]** 50 72.3 90.7 70.2 66.7 44.4 69.3 85.7 59.5 69.5 2037 - − − − −
RESA (ResNet-18) [41]* 12 72.90 91.23 70.57 67.16 45.24 68.01 86.56 64.32 66.19 1679 50 95.24 0.069 0.057
RESA (ResNet-34) [41]* 12 73.66 91.31 71.80 67.54 46.57 72.74 86.94 64.46 67.31 1701 50 95.15 0.069 0.059
RESA (ResNet-101) [41]* 12 74.04 91.45 71.51 69.01 46.54 75.83 87.75 63.90 68.24 1522 50 95.56 0.058 0.051

Point detection-based

FastDraw (ResNet-18) [25] − − − − − − − − − − − X 7 94.9 0.061 0.047
CurveLanes-NAS-S [39] 12 71.4 88.3 68.6 66.2 47.9 68.0 82.5 63.2 66.0 2817 - − − − −
CurveLanes-NAS-M [39] 12 73.5 90.2 70.5 68.2 48.8 69.3 85.7 65.9 67.5 2359 - − − − −
CurveLanes-NAS-L [39] 12 74.8 90.7 72.3 68.9 49.4 70.1 85.8 67.7 68.4 1746 - − − − −
LaneATT (ResNet-18) [33]** 15 74.88 90.98 72.78 68.61 48.23 69.68 85.44 65.43 63.18 1163 X 100 95.57 0.036 0.030
LaneATT (ResNet-34) [33]** 15 76.42 91.94 74.76 70.32 49.17 77.68 88.14 65.92 68.07 1323 X 100 95.63 0.035 0.029
LaneATT (ResNet-122) [33]** 15 76.79 91.50 76.04 70.43 50.29 75.96 86.16 68.99 63.99 1265 X 100 96.10 0.056 0.022

Curve-based

PolyLaneNet (EfficientNet-B0) [32]** − − − − − − − − − − − X 2695 93.36 0.094 0.093
LSTR (ResNet-18, 1×) [19]* − − − − − − − − − − − 2000 95.06 0.049 0.042
LSTR (ResNet-18, 2×) [19]* 150 68.72 86.78 67.34 59.92 40.10 59.82 78.66 56.63 56.64 1166 - − − − −
BézierLaneNet (ResNet-18) 36 73.67 90.22 71.55 68.70 45.30 70.91 84.09 62.49 58.98 996 400 95.41 0.053 0.046
BézierLaneNet (ResNet-34) 36 75.57 91.59 73.20 69.90 48.05 76.74 87.16 69.20 62.45 888 400 95.65 0.051 0.039

Table 3. Results on test set of CULane [22] and TuSimple [1]. *reproduced results in our code framework, best performance from three
random runs. **reported from reliable open-source codes from the authors.

Testing. No post-processing is required for curve methods.
Standard Gaussian blur and row selection post-processing
is applied to segmentation methods. NMS is used for
LaneATT [33], while we remove its post-inference B-Spline
interpolation in CULane [22], to align with our framework.

4.4. Comparisons

Overview. Experimental results are shown in Tables 3
and 4. TuSimple [1] is a small dataset that features clear-
weather highway scenes and has a relatively easy metric,
most methods thrive in this dataset. Thus, we mainly focus
on the other two large-scale datasets [3, 22], where there
is still a rather clear difference between methods. For high-
performance methods (> 70% F1 on CULane [22]), we also
show efficiency metrics (FPS, Parameter count) in Table 5.
Comparison with Curve-based Methods. As shown in
Tables 3 and 4, in all datasets, BézierLaneNet outper-
forms previous curve-based methods [19, 32] by a clear
margin, advances the state-of-the-art of curve-based meth-
ods by 6.85% on CULane [22] and 6.77% on LLAMAS
[3]. Thanks to our fully convolutional and fully end-to-
end pipeline, BézierLaneNet runs over 2× faster than LSTR
[19]. LSTR has a speed bottleneck from transformer archi-
tecture, the 1× and 2× model have FPS 98 and 97, respec-
tively2. While curves are difficult to learn, our method con-
verges 4-5× faster than LSTR. For the first time, an elegant
curve-based method can challenge well-designed segmen-
tation methods or point detection methods on these datasets

2The original 420 FPS report from LSTR paper [19], is throughput with
batch size 16, detailed discussions in Appendix A.

while showing a favorable trade-off, with an acceptable
convergence time.
Comparison with Segmentation-based Methods. These
methods tend to have a low speed due to recurrent feature
aggregation [22, 41], and the use of high-resolution feature
map [5, 22, 41]. BézierLaneNet outperforms them in both
speed and accuracy. Our small models even compare favor-
ably against RESA [41] and SCNN [22] with large ResNet-
101 backbone, surpassing them in CULane [22] with a clear
margin (1 ∼ 2%). On LLAMAS [3], where the dataset re-
stricts testing on 4 center lines, the segmentation approach
shows strong performance (Table 4). Nevertheless, our
ResNet-34 model still outperforms SCNN by 0.92%.

UFLD [26] reformulates segmentation to row-wise clas-
sification on a down-sampled feature map to achieve fast
speed, at the cost of accuracy. Compared to us, UFLD
(ResNet-34) is 0.9% lower on CULane Normal, while
7.4%, 3.0%, 3.2% worse on Shadow, Crowd, Night, re-
spectively. Overall, our method with the same backbones
outperforms UFLD by 3 ∼ 5%, while being faster on
ResNet-34. Besides, UFLD uses large fully-connected lay-
ers to optimize latency, which causes a huge model size (the
largest in Table 5).

A drawback for all segmentation methods is the weaker
performance on Dazzle Light. Per-pixel (or per-pixel grid
for UFLD [26]) segmentation methods may rely on infor-
mation from local textures, which is destroyed by extreme
exposure to light. While our method predicts lane lines as
holistic curves, hence robust to changes in local textures.
Comparison with Point Detection-based Methods. Xu et
al. [39] finds a series of point detection-based models with
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LLAMAS [3]

Method Ep. F1 Precision Recall
Segmentation-based

Baseline (ResNet-34)* 18 93.43 92.61 94.27
SCNN (ResNet-34) [22]* 18 94.25 94.11 94.39

Point detection-based

LaneATT (ResNet-18) [33]** 15 93.46 96.92 90.24
LaneATT (ResNet-34) [33]** 15 93.74 96.79 90.88
LaneATT (ResNet-122) [33]** 15 93.54 96.82 90.47

Curve-based

PolyLaneNet (EfficientNet-B0) [32]** 75 88.40 88.87 87.93
BézierLaneNet (ResNet-18) 20 94.91 95.71 94.13
BézierLaneNet (ResNet-34) 20 95.17 95.89 94.46

Table 4. Results from LLAMAS [3] test server.

neural architecture search techniques called CurveLanes-
NAS. Despite its complex pipeline and extensive architec-
ture search for the best accuracy-FLOPs trade-off, our sim-
ple ResNet-34 backbone model (29.9 GFLOPs) still sur-
passes its large model (86.5 GFLOPs) by 0.8% on CULane.
CurveLanes-NAS also performs worse under occlusions,
a similar drawback as the segmentation methods without
recurrent feature fusion [5, 26]. As shown in Table 3,
with similar model capacity compared to our ResNet-34
model, CurveLanes-NAS-M (35.7 GFLOPs) is 1.4% worse
on Normal scenes, but the gap on Shadow and Crowd are
7.4% and 2.7%.

Recently, LaneATT [33] achieves higher performance
with a point detection network. However, their design is
not fully end-to-end (requires Non-Maximal Suppression
(NMS)), based on heuristic anchors (>1000), which are cal-
culated directly from the dataset’s statistics, thus may sys-
tematically pose difficulties in generalization. Still, with
ResNet-34, our method outperforms LaneATT on the LLA-
MAS [3] test server (1.43%), with a significantly higher
recall (3.58%). We also achieve comparable performance
to LaneATT on TuSimple [1] using only the train set, and
only∼ 1% worse on CULane. Our method performs signif-
icantly better in Dazzle Light (3.3% better), comparably in
Night (0.4% lower). It also has a lower False Positive (FP)
rate on Crossroad scenes (Cross), even though LaneATT
shows an extremely low-FP characteristic (large Precision-
Recall gap in Table 4). Methods that rely on heuristic an-
chors [33] or heuristic decoding process [22,26,39,41] tend
to have more false predictions in this scene. Moreover, the
NMS is a sequential process that could have unstable run-
time in real-world applications. Even when NMS was not
evaluated on real inputs, our models are 29%, 28% faster,
have 2.9×, 2.3× fewer parameters, compared to LaneATT
on ResNet-18 and ResNet-34 backbones, respectively.

To summarize, previous curve-based methods (Poly-
LaneNet [32], LSTR [19]) have significantly worse perfor-
mance. Fast methods trades either accuracy (UFLD [26]) or
model size (UFLD [26], LaneATT [33]) for speed. Accurate

Method FPS ↑ Params (M) ↓
Segmentation-based (ignored post-processing time)

Baseline (ResNet-101) 27 43.56
SCNN (ResNet-18) [22] 21 12.63
SCNN (ResNet-34) [22] 21 22.74
SCNN (ResNet-101) [22] 14 44.15
UFLD (ResNet-34) [26] 144 71.58
RESA (ResNet-18) [41] 68 6.61
RESA (ResNet-34) [41] 54 11.99
RESA (ResNet-101) [41] 25 31.46

Point detection-based (ignored NMS time in real images)

LaneATT (ResNet-18) [33] 165 12.02
LaneATT (ResNet-34) [33] 117 22.13
LaneATT (ResNet-122) [33] 26 8.55

Curve-based (entirely end-to-end)

BézierLaneNet (ResNet-18) 213 4.10
BézierLaneNet (ResNet-34) 150 9.49

Table 5. FPS (image/s) and model size. All FPS results are tested
with 360 × 640 random inputs on the same platform. Here only
shows models with > 70% CULane [22] F1 score.

methods either discards the end-to-end pipeline (LaneATT
[33]), or entirely fails the real-time requirement (SCNN
[22], RESA [41]). While our BézierLaneNet is fully end-
to-end, fast (>150 FPS), light-weight (<10 million parame-
ters) and maintains consistent high accuracy across datasets.

4.5. Analysis

Although we develop our method by tuning on the val
set, we re-run ablation studies with ResNet-34 backbone
(including our full method) and report performance on the
CULane test set for clear comparison.

Curve representation F1
Cubic Bézier curve baseline 68.89
3rd Polynomial baseline 1.49

BézierLaneNet 75.41
3rd Polynomial from BézierLaneNet 5.01

Table 6. Curve representations. Baselines directly predict curve
coefficients without feature flip fusion.

Importance of Parametric Bézier Curve. We first replace
the Bézier curve prediction with a 3rd order polynomial,
adding auxiliary losses for start and end points. As shown
in Table 6, polynomials catastrophically fail to converge in
our fully convolutional network, even when trained with
150 epochs (details in Appendix B.8). Then we consider
modifying the LSTR [19] to predict cubic Bézier curves,
the performance is similar to predicting polynomials. We
conclude that heavy MLP may be necessary to learn polyno-
mials [19, 32], while predicting Bézier control points from
position-aware CNN is the best choice. The transformer-
based LSTR decoder destroys the fine spatial information,
suppresses the advancement of curve function.
Feature Flip Fusion Design. As shown in Table 7, feature
flip fusion brings 4.07% improvement. We also find that
the auxiliary segmentation loss can regularize and increase
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CP SP Flip Deform Seg F1
X 63.74

X 68.89
X X 65.82
X X 70.28
X X X 72.96
X X X 73.97
X X X X 75.41

Table 7. Ablations. CP: Control point loss [20]. SP: The proposed
sampling loss. Flip: The feature flip fusion module. Deform:
Employ the deformable convolution in feature flip fusion. Seg:
Auxiliary segmentation loss.

the performance further, by 2.45%. It is worth noting that
auxiliary loss only works with feature fusion, it can lead to
degenerated results when directly applied on the baseline
(−3.07%). A standard 3 × 3 convolution performs worse
than deformable convolution, by 2.68% and 1.44%, before
and after adding the auxiliary segmentation loss, respec-
tively. We attribute this to the effects of feature alignment.
Bézier Curve Fitting Loss. As shown in Table 7, replacing
the sampling loss by direct loss on control points lead to in-
ferior performance (−5.15% in the baseline setup). Inspired
by the success of IoU loss in object detection. We also im-
plemented a IoU loss (formulas in Appendix D) for the con-
vex hull of Bézier control points. However, the convex hull
of close-to-straight lane lines are too small, the IoU loss is
numerically unstable, thus failing to facilitate the sampling
loss.

Model Aug F1
LSTR (ResNet-18, 2×) [19] X 68.72
LSTR (ResNet-18, 2×) [19] 39.77(−28.95)

BézierLaneNet (ResNet-34) X 75.41
BézierLaneNet (ResNet-34) 55.11(−20.30)

Table 8. Augmentation ablations. Aug: Strong data augmentation.

Importance of Strong Data Augmentation. Strong data
augmentation is defined by a series of affine transforms and
color distortions, the exact policy may slightly vary for dif-
ferent methods. For instance, we use random affine trans-
form, random horizontal flip, and color jitter. LSTR [19]
also uses random lighting. Default augmentation includes
only a small rotation (3 degrees). As shown in Table 8,
strong augmentation is essential to avoid over-fitting for
curve-based methods.

For segmentation-based methods [5, 22, 41], we fast val-
idated strong augmentation on the smaller TuSimple [1]
dataset. All shows a 1 ∼ 2% degradation. This suggests
that they may be robust due to per-pixel prediction and
heuristic post-processing. But they highly rely on learn-
ing the distribution of local features such as texture, which
could become confusing by strong augmentation.

4.6. Limitations and Discussions

Curves are indeed a natural representation of lane lines.
However, their elegance in modeling inevitably brings a
drawback. It is difficult for the curvature coefficients to
generalize when the data distribution is highly biased (al-
most all lane lines are straight lines in CULane). Our Bézier
curve approach has already alleviated this problem to some
extent and has achieved an acceptable performance (62.45)
in CULane Curve. On datasets such as TuSimple and LLA-
MAS [1, 3], where the curvature distribution is fair enough
for learning, our method achieves even better performance.
To handle broader corner cases, e.g., sharp turns, blockages
and bad weather, datasets such as [30,34,39] may be useful.

The feature flip fusion is specifically designed for a
front-mounted camera, which is the typical use case of deep
lane detectors. Nevertheless, there is still a strong induc-
tive bias by assuming scene symmetry. In future work, it
would be interesting to find a replacement for this mod-
ule, to achieve better generalization and to remove the de-
formable convolution operation, which poses difficulty for
effective integration into edge devices such as Jetson.

More discussions in Appendix G.

5. Conclusions

In this paper, we have proposed BézierLaneNet: a novel
fully end-to-end lane detector based on parametric Bézier
curves. The on-image Bézier curves are easy to optimize
and naturally model the continuous property of lane lines,
without heavy designs such as recurrent feature aggrega-
tion or heuristic anchors. Besides, a feature flip fusion
module is proposed. It efficiently models the symmetry
property of the driving scene, while also being robust to
slight asymmetries by using deformable convolution. The
proposed model has achieved favorable performance on
three datasets, defeating all existing methods on the pop-
ular LLAMAS benchmark. It is also both fast (>150 FPS)
and light-weight (<10 million parameters).
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Appendix Overview. The Appendix is organized as fol-
lows: Appendix A describes the FPS test protocol and
environments; Appendix B introduces implementation de-
tails for each compared method (including ours in Ap-
pendix B.8); Appendix C provides implementation details
for Bézier curves, including sampling, ground truth gener-
ation and transforms; Appendix D formulates the IoU loss
for Bézier curves and discusses why it failed; Appendix E
explores matching priors other than the centerness prior;
Appendix F shows extra ablation studies on datasets other
than CULane [22], to verify the generalization of feature
flip fusion; Appendix G discusses limitations and recog-
nizes new progress in the field; Appendix H presents quali-
tative results from our method, visualized on three datasets.

A. FPS Test Protocol
Let one Frames-Per-Second (FPS) test trial be the aver-

age runtime of 100 consecutive model inference with its Py-
Torch [24] implementation, without calculating gradients.
The input is a 3x360x640 random Tensor (some use all
1 [33], which does not have impact on speed). Note that all
methods do not use optimization from packages like Ten-
sorRT. We wait for all CUDA kernels to finish before count-
ing the whole runtime. We use Python time.perf counter()
since it is more precise than time.time(). For all methods,
the FPS is reported as the best result from 3 trials.

Before each test trial, at least 10 forward pass is con-
ducted as warm-up of the device. For each new method
to be tested, we keep running warm-up trials of a recorded
method until the recorded FPS is reached again, so we can
guarantee a similar peak machine condition as before.

Evaluation Environment. The evaluation platform is a
2080 Ti GPU (standard frequency), on a Intel Xeon-E3 CPU
server, with CUDA 10.2, CuDNN 7.6.5, PyTorch 1.6.0.
FPS is a platform-sensitive metric, depending on GPU fre-
quency, condition, bus bandwidth, software versions, etc.
Also using 2080 Ti, Tabelini et al. [33] can achieve a better
peak performance for all methods. Thus we use the same
platform for all FPS tests, to provide fair comparisons.

Remark. Note that FPS (image/s) is different from
throughput (image/s). Since FPS restricts batch size to
1, which better simulates the real-time application scenario.
While throughput considers a batch size more than 1. LSTR
[19] reported a 420 FPS for its fastest model, which is ac-
tually throughput with batch size 16. Our re-tested FPS is
98.

B. Specifications for Compared Methods
B.1. Segmentation Baseline

The segmentation baseline is based on DeeplabV1 [5],
originally proposed in SCNN [22]. It is essentially the orig-

inal DeeplabV1 without CRF, lanes are considered as dif-
ferent classes, and a separate lane existence branch (a se-
ries of convolution, pooling and MLP) is used to facilitate
lane post-processing. We optimized its training and testing
scheme based on recent advances [41]. Re-implemented in
our codebase, it attains higher performance than what recent
papers usually report.
Post-processing. First, the existence of a lane is determined
by the lane existence branch. Then, the predicted per-pixel
probability map is interpolated to the input image size. Af-
ter that, a 9× 9 Gaussian blur is applied to smooth the pre-
dictions. Finally, for each existing lane class, the smoothed
probability map is traversed by pre-defined Y coordinates
(quantized), and corresponding X coordinates are recorded
by the maximum probability position on the row (provided
it passes a fixed threshold). Lanes with less than two quali-
fied points are simply discarded.
Data Augmentation. We use a simple random rotation with
small angles (3 degrees), then resize to input resolution.

B.2. SCNN

Our SCNN [22] is re-implemented from the Torch7 ver-
sion of the official code. Advised by the authors, we added
an initialization trick for the spatial CNN layers, and learn-
ing rate warm-up, to prevent gradient explosion caused by
recurrent feature aggregation. Thus, we can safely adjust
the learning rate. Our improved SCNN achieves signifi-
cantly better performance than the original one.

Some may find reports of 96.53 accuracy of SCNN on
TuSimple. However, that was a competition entry trained
with external data. We report SCNN with ResNet back-
bones, trained with the same data as other re-implemented
methods in our codebase.
Post-processing. Same as Appendix B.1.
Data Augmentation. Same as Appendix B.1.

B.3. RESA

Our RESA [41] is implemented based on its published
paper. A main difference to the official code release is we
do not cutout no-lane areas (in each dataset, there is a cer-
tain height range for lane annotation). Because that trick
is dataset specific and not generalizable, we do not use that
for all compared methods. Other differences are all vali-
dated to have better performance than the official code, at
least on the CULane val set.
Post-processing. Same as Appendix B.1.
Data Augmentation. Same as Appendix B.1. The original
RESA paper [41] also apply random horizontal flip, which
was found ineffective in our re-implementation.

B.4. UFLD

Ultra Fast Lane Detection (UFLD) [26] is reported from
their paper and open-source code. Since TuSimple FP and
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FN information is not in the paper, and training from source
code leads to very high FP rate (almost 20%), we did not
report their performance on this dataset. We adjusted its
profiling scripts to calculate number of parameters and FPS
in our standard.
Post-processing. Since this method uses gridding cells
(each cell is equivalent to several pixels in a segmentation
probability map), each point’s X coordinate is calculated
as the expectation of locations (cells from the same row),
i.e. a weighted average by probability. Differently from
segmentation post-processing, it is possible to be efficiently
implemented.
Data Augmentation. Augmentations include random rota-
tion and some form of random translation.

B.5. PolyLaneNet

PolyLaneNet [32] is reported from their paper and open-
source code. We added a profiling script to calculate num-
ber of parameters and FPS in our standard.
Post-processing. This method requires no post-processing.
Data Augmentation. Augmentations include large random
rotation (10 degrees), random horizontal flip and random
crop. They are applied with a probability of 10

11 .

B.6. LaneATT

LaneATT [33] is reported from their paper and open-
source code. We adjusted its profiling scripts to calculate
parameters and FPS in our standard.
Post-processing. Non-Maximal Suppression (NMS) is im-
plemented by a customized CUDA kernel. An extra inter-
polation of lanes by B-Spline is removed both in testing and
profiling, since it is slowly executed on CPU and provides
little improvement (∼ 0.2% on CULane).
Data Augmentation. LaneATT uses random affine trans-
forms including scale, translation and rotation. While it also
uses random horizontal flip.
Followup. We did not have time to validate the re-
implementation of LaneATT in our codebase, prior the sub-
mission deadline. Therefore, the LaneATT performance is
still reported from the official code. Our re-implementation
indicates that all LaneATT results are reproducible except
for the ResNet-34 backbone on CULane, which is slightly
outside the standard deviation range, but still reasonable.

B.7. LSTR

LSTR [19] is re-implemented in our codebase. All
ResNet backbone methods start from ImageNet [14] pre-
training. While LSTR [19] use 256 channels ResNet-18
for CULane (2×), 128 channels for other datasets (1×),
which makes it impossible to use off-the-shelf pre-trained
ResNets. Although whether ImageNet pre-training helps
lane detection is still an open question. Our reported perfor-
mance of LSTR on CULane, is the first documented report

of LSTR on this dataset. With tuning of hyper-parameters
(learning rate, epochs, prediction threshold), bug fix (the
original classification branch has 3 output channels, which
should be 2), we achieve 4% better performance on CU-
Lane than the authors’ trial. Specifically, we use learning
rate 2.5 × 10−4 with batch size 20. 150 and 2000 epochs,
0.95 and 0.5 prediction thresholds, for CULane and TuSim-
ple. The lower threshold in TuSimple is due to the official
test metric, which significantly favors a high recall. How-
ever, for real-world applications, a high recall leads to high
False Positive rate, which is undesired.

We divide the curve loss weighting by 10 with our
LSTR-Beizer ablation, since there were 100 sample points
with both X and Y coordinates to fit, that is a loss scale
about 10 times the original loss (LSTR loss takes summa-
tion of point L1 distances instead of average). This modu-
lation achieves a similar loss landscape to original LSTR.
Post-processing. This method requires no post-processing.
Data Augmentation. Data augmentation includes Poly-
LaneNet’s (Appendix B.5), then appends random color dis-
tortions (brightness, contrast, saturation, hue) and random
lighting by a light source calculated from the COCO dataset
[17]. That is by far the most complex data augmentation
pipeline in this research field, we have validated that all
components of this pipeline helps LSTR training.
Remark. The polynomial coefficients of LSTR are un-
bounded, which leads to numerical instability (while the bi-
partite matching requires precision), and high failure rate
of training. The failure rate of fp32 training on CULane
is ∼ 30%. This is circumvented in BézierLaneNet, since
our L1 loss can be bounded to [0, 1] without influence on
learning (control points easily converges to on-image).

B.8. BézierLaneNet

BézierLaneNet is implemented in the same code frame-
work where we re-implemented other methods. Same as
LSTR, the default prediction threshold is set to 0.95, while
0.5 is used for TuSimple [1].
Post-processing. This method requires no post-processing.
Data Augmentation. We use augmentations similar to
LSTR (Appendix B.7). Concretely, we remove the ran-
dom lighting from LSTR (to strictly avoid using knowledge
from external data), and replace the PolyLaneNet 10

11 chance
augmentations with random affine transforms and random
horizontal flip, like LaneATT (Appendix B.6). The ran-
dom affine parameters are: rotation (10 degrees), transla-
tion (maximum 50 pixels on X, 20 on Y), scale (maximum
20%).
Polynomial Ablations. For the polynomial ablations (Table
7), we modified the network to predict 6 coefficients for 3rd
order Polynomial (4 curve coefficients and start/end Y co-
ordinates). Extra L1 losses are added for the start/end Y co-
ordinates similar to LSTR [19]. With extensive tryouts (ad-
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justing learning rate, loss weightings, number of epochs),
even at the full BézierLaneNet setup, with 150 epochs on
CULane, the models still can not converge to a good enough
solution. In other word, not precise enough to pass the
CULane metric. The sampling loss on polynomial curves
can only get to 0.02, which means 0.02 × 1640pixels =
32.8pixels average X coordinate error on training set. CU-
Lane requires a 0.5 IoU between curves, which are enlarged
to 30 pixels wide, thus at least around 10 pixels average er-
ror is needed to get meaningful results. By loosen up the
IoU requirement to 0.3, we can get F1 score 15.82 for “3rd
Polynomial from BézierLaneNet”. Although the reviewing
committee suggested adding simple regularization for this
ablation to converge, regretfully we failed to do this.

C. Bézier Curve Implementation Details

Fast Sampling. The sampling of Bézier curves may seem
tiresome due to the complex Bernstein basis polynomials.
To fast sample a Bézier curve by a series of fixed t values,
simply pre-compute the results from Bernstein basis poly-
nomials, thus only one simple matrix multiplication is left.
Remarks on GT Generation. The ground truth of Bézier
curves are generated with least squares fitting, a common
technique for polynomials. We use it for its simplicity and
the fact that it already shows near-perfect lane line fitting
ability (99.996 and 99.72 F1 score on CULane test and
LLAMAS val, respectively). However, it is not an ideal
algorithm for parametric curves. There is a whole research
field for fitting Bézier curves better than least squares [23].
Bézier Curve Transform. Another implementation diffi-
culty on Bézier curves is how to apply affine transform (for
transforming ground truth curves in data augmentation).
Mathematically, affine transform on the control points is
equivalent to affine transform on the entire curve. However,
translation or rotation can move control points out of the
image. In this case, a cutting of Bézier curves is required.
The classical De Casteljau’s algorithm is used for cutting an
on-image Bézier curve segment. Assume a continuous on-
image segment, valid sample points with minimum bound-
ary t = t0, maximum boundary t = t1. The formula to cut a
cubic Bézier curve defined by control points P0,P1,P2,P3

to its on-image segment P ′0,P ′1,P ′2,P ′3, is derived as:

P ′0 = u0u0u0P0 + (t0u0u0 + u0t0u0 + u0u0t0)P1

+ (t0t0u0 + u0t0t0 + t0u0t0)P2 + t0t0t0P3,

P ′1 = u0u0u1P0 + (t0u0u1 + u0t0u1 + u0u0t1)P1

+ (t0t0u1 + u0t0t1 + t0u0t1)P2 + t0t0t1P3,

P ′2 = u0u1u1P0 + (t0u1u1 + u0t1u1 + u0u1t1)P1

+ (t0t1u1 + u0t1t1 + t0u1t1)P2 + t0t1t1P3,

P ′3 = u1u1u1P0 + (t1u1u1 + u1t1u1 + u1u1t1)P1

+ (t1t1u1 + u1t1t1 + t1u1t1)P2 + t1t1t1P3,

(10)

where u0 = 1 − t0, u1 = 1 − t1. This formula can be
efficiently implemented by matrix multiplication. The pos-
sibility of noncontinuous cubic Bézier segment on lane de-
tection datasets is extremely low and thus ignored for sim-
plicity. If it does happen, Equation (10) will not change
the curve, while our network can also predict out-of-image
control points, which still fit the on-image lane segments.

D. IoU Loss for Bézier Curves
Here we briefly introduce how we formulated the IoU

loss between Bézier curves. Before diving into the algo-
rithm, there are two preliminaries.

• Polar sort: By anchoring on an arbitrary point in-
side the N-sided polygon with vertices ci(xi, yi)

N
i=1

(normally the mean coordinate between vertices c′ =
( 1
N

∑N
i=1 xi,

1
N

∑N
i=1 yi)), vertices are sorted by its

atan2 angles. This will return a clockwise or coun-
terclockwise polygon.

• Convex polygon area: A sorted convex polygon can
be efficiently cut into consecutive triangles by sim-
ple indexing operations. The convex polygon area is
the sum of these triangles. The area S of triangle
((x1, y1), (x2, y2), (x3, y3)) is: S = 1

2 |x1(y2 − y3) +
x2(y3 − y1) + x3(y1 − y2)|.

Assume we have two convex hulls from Bézier curves
(there are a lot of convex hull algorithms). Now the IoU
between Bézier curves are converted to IoU between con-
vex polygons. Based on the simple fact that the intersec-
tion of convex polygons is still a convex polygon, after po-
lar sorting all the convex hulls and determining the inter-
sected polygon, we can easily formulate IoU calculations
as a series of convex polygon area calculations. The dif-
ficulty lies in how to efficiently determine the intersection
between convex polygon pairs.

Consider two intersected convex polygons, their inter-
section includes two types of vertices:

• Intersections: intersection points between edges.

• Insiders: vertices inside/on both polygons.

For Intersections, we first represent every polygon edge
as the general line equation: ax + by = c. Then, for line
a1x + b1y = c1 and line a2x + b2y = c2, the intersection
(x′, y′) is calculated by:

x′ = (b2c1 − b1c2)/det

y′ = (a1c2 − a2c1)/det,
(11)

where det = a1b2 − a2b1. All (x′, y′) that is on the respec-
tive line segments are Intersections.

For Insiders, there is a certain definition:
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Def. 1 For a convex polygon, point P (x, y) on the same
side of each edge is inside the polygon.

A sorted convex polygon is a series of edges (line seg-
ments defined by P0(x0, y0), P1(x1, y1)), the equation to
decide which side a point is to a line segment is as follows:

sign = (y − y0)(x1 − x0)− (x− x0)(y1 − y0). (12)

sign > 0 means P is on the right side, sign < 0 is the
left side, and sign = 0 means P is on the line segment.
Note that equality is not a stable operation for float com-
putations. But there are simple ways to circumvent that in
coding, which we will not elaborate here.

There are other ways to determine Intersections and In-
siders, but the above formulas can be efficiently imple-
mented with matrix operations and indexing, making it pos-
sible to quickly train networks with batched inputs.

Finally, after being able to compute convex polygon in-
tersections and areas, the Generalized IoU loss (GIoU) is
simply (as in [29]):

input : Two arbitrary convex shapes: A,B ⊆ S ∈ Rn

output: GIoU
1. For A and B, find the smallest enclosing convex object
C, where C ⊆ S ∈ Rn

2. IoU =
|A ∩B|
|A ∪B|

3. GIoU = IoU − |C\(A ∪B)|
|C|

Union is computed as A ∪ B = A + B − A ∩ B. The
enclosing convex object C can be computed as the convex
hull of two convex polygons, or upper-bounded by a enclos-
ing rectangle. We implement the IoU computation purely
in PyTorch [24], the runtime for our implementation is only
about 5× the runtime of rectangle IoU loss computation.

However, lane lines are mostly straight based on road de-
sign regulations [7, 36]. This leads to extremely small con-
vex hull area for Bézier curves, thus introduces numerical
instabilities in optimization. Although succeeded in a toy
polygon fitting experiment, we currently failed to observe
the loss’s convergence to help learning on lane datasets.

E. GT and Prediction Matching Prior

Figure 6. Logits activation statistics (1× W
16

) on CULane [22].

Instead of the centerness prior, we explore a local maxi-
mum prior, i.e., restricts matched prediction to have a local

maximum classification logit. This prior can facilitate the
model to understand the spatially sparse structure of lane
lines. As shown in Figure 6, the learned feature activation
for classification logits exhibits a similar structure as an ac-
tual driving scene.

F. Extra Results

TuSimple [1] LLAMAS [3]
Bézier Baseline 93.36 95.27
+ Feature Flip Fusion 95.26 (+1.90) 96.00 (+0.73)

Table 9. Ablation study on TuSimple (test set Accuracy) and LLA-
MAS (val set F1), before and after adding the Feature Flip Fusion
module. Reported 3-times average with the ResNet-34 backbone,
since ablations often are not stable enough on these datasets to
exhibit a clear difference between methods.

G. Discussions
There exists a primitive application of lane detectors

from lateral views to estimate the distance to the border
of the drivable area [10], which contradicts the use of fea-
ture flip fusion. In this case, possibly a lower order Bézier
curve baseline (with row-wise instead of column-wise pool-
ing) would suffice. This is out of the focus of this paper.
Recent Progress. Recently, others have explored alterna-
tive lane representation or formulation methods that do not
fully fit in the three categories (segmentation, point detec-
tion, curve). Instead of the popular top-down regime, [27]
propose a bottom-up approach that focus on local details.
[18] achieve state-of-the-art performance, but the complex
conditional decoding of lane lines results in unstable run-
time depending on the input image, which is not desirable
for a real-time system.

H. Qualitative Results
Qualitative results are shown in Figure 7, from our

ResNet-34 backbone models. For each dataset, 4 results are
shown in two rows: first row shows qualitative successful
predictions; second row shows typical failure cases.
TuSimple. As shown in Figure 7(a), our model fits high-
way curves well, only slight errors are seen on the far side
where image details are destroyed by projection. Our typi-
cal failure case is a high FP rate, mostly attributed to the use
of low threshold (Appendix B.8). However, in the bottom-
right wide road scene, our FP prediction is actually a mean-
ingful lane line that is ignored in center line annotations.
CULane. As shown in Figure 7(b), most lanes in this
dataset are straight. Our model can make accurate predic-
tions under heavy congestion (top-left) and shadows (top-
right, shadow cast by trees). A typical failure case is inaccu-
rate prediction under occlusion (second row), in these cases
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(a) TuSimple [1].

(b) CULane [22].

(c) LLAMAS [3].

Figure 7. Qualitative results from BézierLaneNet (ResNet-34) on val sets. False Positives (FP) are marked by red, True Positives (TP)
are marked by green, ground truth are drawn in blue. Blue lines that are barely visible are precisely covered by green lines. Bézier curve
control points are marked with solid circles. Images are slightly resized for alignment. Best viewed in color, in 2× scale.

one often cannot visually tell which one is better (ground
truth or our FP prediction).
LLAMAS. As shown in Figure 7(c), our method performs
accurate for clear straight-lines (top-left), and also good for
large curvatures in a challenging scene almost entirely cov-

ered by shadow. In bottom-left image, our model fails in
a low-illumination, tainted road. While in the other low-
illumination scene (bottom-right), the unsupervised annota-
tion from LIDAR and HD-map is misled by the white arrow
(see the zigzag shape of the right-most blue line).
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