
ScePT: Scene-consistent, Policy-based Trajectory Predictions for Planning

Yuxiao Chen1 Boris Ivanovic1 Marco Pavone1,2
1NVIDIA Research 2Stanford University

{yuxiaoc, bivanovic, mpavone}@nvidia.com, pavone@stanford.edu

Abstract

Trajectory prediction is a critical functionality of au-
tonomous systems that share environments with uncon-
trolled agents, one prominent example being self-driving
vehicles. Currently, most prediction methods do not en-
force scene consistency, i.e., there are a substantial amount
of self-collisions between predicted trajectories of differ-
ent agents in the scene. Moreover, many approaches gen-
erate individual trajectory predictions per agent instead of
joint trajectory predictions of the whole scene, which makes
downstream planning difficult. In this work, we present
ScePT, a policy planning-based trajectory prediction model
that generates accurate, scene-consistent trajectory predic-
tions suitable for autonomous system motion planning. It
explicitly enforces scene consistency and learns an agent
interaction policy that can be used for conditional predic-
tion. Experiments on multiple real-world pedestrians and
autonomous vehicle datasets show that ScePT matches cur-
rent state-of-the-art prediction accuracy with significantly
improved scene consistency. We also demonstrate ScePT’s
ability to work with a downstream contingency planner.

1. Introduction
Predicting the future motion of uncontrolled agents is

critical to the safety of autonomous systems that interact
with them. A prominent example is self-driving cars, where
the ego-vehicle shares the road with other road users such
as vehicles, pedestrians, and cyclists. The prediction task
is difficult as humans are notoriously uncertain and incon-
sistent. For example, it is well-known that humans demon-
strate multimodal behaviors in the context of driving, such
as being simultaneously able to maintain their current lane,
change lanes, yield, or overtake in the future. As a re-
sult, early works on human driving behavior prediction [37]
were not accurate enough to be used in an autonomous ve-
hicle’s motion planning stack. To remedy this, many re-
searchers have been developing phenomenological meth-
ods, i.e., methods that learn the behavior of agents from a
wealth of data (e.g., [2, 28, 29, 44]), to great effect.

In a typical autonomy stack, the trajectory prediction
module is followed by a planning module which takes the

Figure 1. An illustration of ScePT’s output, comprised of multi-
modal trajectory predictions for each agent. Different stroke type
(solid, dashed, dotted) represents the different modes of the scene-
consistent joint trajectory prediction. Agents in a scene are par-
titioned into highly-interacting cliques, an example of which is
visualized with yellow dashed lines.

predicted trajectories of surrounding agents and plans the
ego-motion accordingly. With this downstream planner in
mind, several requirements, in addition to prediction accu-
racy, emerge, and are discussed in detail below.

1.1. Desiderata

Typical features desired for a trajectory prediction model
include high prediction accuracy, fast inference speed, and
calibrated uncertainties. When predictions are subsequently
consumed by a downstream planner, the following features
are also critical for overall system performance:
Compatibility: Trajectory predictions for different agents
in a scene should be compatible with each other within a
single joint prediction. In particular, collisions among pre-
dicted trajectories should be rare, as collisions are them-
selves rare in reality.
Tractable Joint Trajectory Prediction: As mentioned pre-
viously, the future motion of the agents can be multimodal.
In a scene consisting of multiple agents, if the multimodal
predictions are generated for individual nodes, a down-
stream motion planner needs to consider all combinations
of these trajectory predictions. Since the number of modes
grows exponentially with the number of agents, the planner

1

ar
X

iv
:2

20
6.

13
38

7v
1

 [
cs

.A
I]

 1
8

Ju
n

20
22

is quickly overwhelmed. Alternatively, the motion plan-
ner could take a conservative approach and avoid all pre-
dicted trajectories, yet often at the price of compromised
planning performance (e.g., bringing the robot to a stand-
still if all plans seem to collide). As a result, we desire
multimodal, joint predictions of all agents with a limited,
but fully-representative number of modes such that a down-
stream planner can perform contingency planning.
Time Consistency: With a downstream planner, the motion
plan heavily depends on the prediction results. To ensure
smooth motion plans, predictions should not change signif-
icantly between subsequent time steps if the scene itself has
not changed drastically in the meantime. As a result, sam-
pling should be avoided as predictions may change signif-
icantly between time steps, causing discontinuity in the re-
sulting motion plans which may hurt planning performance
and safety.
Conditioning: Conditioning is the operation of fixing one
or multiple agents’ future trajectories and predicting the re-
sulting distribution of other agents’ future trajectories. Con-
ditional prediction is useful for motion planning (condi-
tioned on the ego agent’s motion plan) and for understand-
ing interactions between agents. Conditioning is available
in several existing works such as [42], yet requires explicit
modeling. Ideally, conditional distributions would be gen-
erated without requiring structural changes to the model.

1.2. Contributions
In this work we present ScePT, a trajectory forecast-

ing method that generates joint trajectory predictions for
multiple interacting agents. Our contributions are three-
fold: First, we propose predicting the futures of cliques of
agents rather than individuals or the scene graph as a whole
(Sec. 3.1), and present a neural network architecture to do
so (Sec. 3.2). Second, we leverage insights from motion
planning and propose a policy network that autoregressively
rolls out closed-loop trajectory predictions via a GNN that
models agent-to-agent interactions and maps them to con-
trol inputs (Sec. 3.3). Finally, we improve output sample di-
versity by augmenting our loss function with a tunable risk
measure that determines weights between trajectory sam-
ples during training (Sec. 3.6).

When evaluated on large-scale, real-world pedestrian
and driving datasets, ScePT reduces the dimensionality
necessary to capture scene-level multimodality (Sec. 4.1);
achieves significant improvements in the scene consistency
of its predictions, as measured by collision rate (Sec. 4.2);
and easily enables counterfactual analyses (Sec. 4.3); all
of which are critical for simulation (Sec. 4.3), downstream
planning (Sec. 4.4), and verification of autonomous vehicle
performance.

2. Related Work
Early trajectory prediction works were predominantly

ontological, positing structure about an agent’s decision-

making process, exemplified by social force models [22,
33], hidden Markov models [27], and the intelligent driver
model [45]. However, limited by their expressibility, these
models cannot scale to complicated scenarios despite ex-
tensive tuning. To remedy this, many researchers have been
developing phenomenological methods, i.e., methods that
focus on learning the behavior of agents from a wealth of
data. Several notable works include the Social LSTM [2],
GAIL [28], MFP [44], and DESIRE [29]. Since the tra-
jectory prediction problem is intrinsically a sequence-to-
sequence modeling task, recent works commonly apply Re-
current Neural Networks (RNNs) [10,21,29,40,42,44] and
Transformers [31, 34, 50], achieving strong results.

Another core facet of trajectory prediction is accounting
for the interactions between agents and the scene geome-
try. Two common choices to model agent interactions are
Graph Neural Networks (GNNs) and Convolutional Neu-
ral Networks (CNNs). GNN-based methods [10, 42, 48, 52]
construct scene graphs with agents as nodes and their inter-
action as edges, performing message passing to congregate
information. CNN-based methods [4, 16, 19, 26, 34, 36, 51]
typically rasterize scene information into layers of images
such as Birds Eye View (BEV) images and velocity im-
ages to encode information. In general, CNN-based meth-
ods have a fixed computation complexity (usually being
faster than GNN-based methods) and preserve geometric
information about the scene. GNN-based methods can be
viewed as a “sparse” representation of the scene and allow
for more complicated features, yet their computation com-
plexity scales at least linearly with the number of agents,
and geometric information may be lost without the use of
special structures [9].

Once scene information is gathered and encoded, gener-
ative models such as GANs [21,40] and CVAEs [18,29,42]
are typically used to produce multimodal trajectory predic-
tions. Of these, CVAE models are the most common choice
due to their performance and ease of training. CVAEs with
continuous latent spaces [10, 48, 52] enjoy stronger expres-
sivity, but require sampling to obtain predictions, removing
any time consistency in sequential outputs. On the other
hand, a discrete latent space [42, 44] does not require sam-
pling, but is less expressive and more likely to suffer from
mode collapse.

Since trajectory prediction usually concerns multiple
agents in a scene, the issue of scene consistency emerges,
i.e., predictions of different agents should not collide with
each other or with static obstacles. For models that pur-
sue only high prediction accuracy, especially agent-centric
models, scene consistency is usually poor. To remedy this,
[17, 21] use pooling to model interaction between agents
in the encoder, [52] introduces a group-level encoder with
clustered agents sharing a group mode, and [10] learns a
scene interaction model via message passing. Comparing
to the encoder, coupled decoding is more difficult as the fu-
ture trajectories are not known. [32] uses fictitious play to

2

roll out predictions and gradually improve prediction qual-
ity, [44] performs autoregressive decoding, building subse-
quent predictions on prior steps of prediction. [9] uses a
message-passing procedure to search for most likely joint
trajectories, yet only predicts a single mode. To the best
of our knowledge, most existing methods do not model the
agents as policy planners with observations, cost functions,
and actuation inputs, all while explicitly enforcing scene
consistency.

For autonomous vehicles which involve a downstream
planner, it is also important to consider multimodality, i.e.,
the possibility for multiple distinct futures. However, the
number of modes cannot be too large so as not to overwhelm
the downstream planner. [12] generates a set of motion
primitives that are deemed possible and constrain the plan-
ner to avoid them. [24] represents multimodal predictions as
mixtures of linear dynamics (as opposed to tracklets), sim-
plifying incorporation in downstream planning. To achieve
a wide coverage of modes with a limited computational bud-
get, several diversity sampling techniques have been pro-
posed. [49] proposes using determinantal point processes
for diverse latent sampling, [23] uses the farthest point sam-
pling algorithm, and [15] apply a reparameterization trick
with coefficients given by a GNN. Overall, most existing
diversity sampling techniques are designed for continuous
latent spaces. In this work, we introduce a new risk-based
loss modification that yields output diversity for a discrete
latent space with only a small number of samples.

3. ScePT
ScePT1 is a discrete CVAE model that outputs joint tra-

jectory predictions for multiple agents in a scene, ensuring
high scene consistency in its predictions by reasoning about
each agent’s motion policy and the influence of their neigh-
bors.

Nomenclature. Throughout the paper, we use the terms
node and agent interchangeably, which may be a vehicle, a
pedestrian, a cyclist, or other kinds of road users. We use s
to denote an agent’s state and e an edge between two nodes.
Since our model is a CVAE, we follow standard terminol-
ogy in the CVAE literature, i.e., x denotes the conditioning
variable, y the observed variable, and z the hidden latent
variable. We use bold font to denote variables associated
with a group of nodes, e.g., a clique. For example, for a
clique consisting of nodes 1 through N , z1, ...zN are the la-
tent variables of each of the nodes and z = [z1, ...zN] is the
latent variable of the clique.

3.1. Preprocessing
To maintain scene consistency, ScePT is a scene-centric

model, i.e., its output predictions are the joint trajectories
of multiple nodes in a scene. Given a scene with multi-
ple nodes, a spatiotemporal scene graph is generated where

1Code available at https://github.com/nvr-avg/ScePT

nodes represent agents and edges represent their interac-
tions. We use agents’ closest future distance as a proxy for
interaction, propagating forward each node according to a
constant velocity model Φ0:T

ai=0(si), where Φtai=0 is the flow
operator that maps the initial state to the future states t time
steps ahead with the action ai of node i set to 0 and T is the
prediction horizon. The closest future distance between two
agents is defined as

dij = min
t∈[0,T]

Dis(Φtai=0(si),Φ
t
ai=0(sj)), (1)

where Dis is the Euclidean distance between the two agents.
We then define the scene graph adjacency matrix as

Aij =

{
0, dij > d0(ηi, ηj)

d0(ηi,ηj)
dij

dij ≤ d0(ηi, ηj)
,

where ηi is the type of node i (e.g., vehicle, cyclist, pedes-
trian) and d0 is a distance threshold which is fixed for each
edge type.

With the scene graph determined by the adjacency ma-
trix, in contrast to models that keep all nodes in a single
graph [10,44], we partition the scene graph into cliques with
a maximum size (fixed as a parameter). We do this to re-
duce the dimensionality of the product latent space, which
scales exponentially with the size of the graph, causing pre-
diction accuracy to deteriorate if too large (see Sec. 4.5 for
further discussion). While weighted graph partitioning is
NP-hard, there are many off-the-shelf algorithms, and we
use the well-known Louvain algorithm due to its strong
performance [6]. After partitioning, every pair of nodes
within a clique is connected (despite the distance threshold)
to form a clique. Node histories are then collected and fed
to ScePT. Node states and dynamics are explained in detail
in Appendix A.2. When available, we also utilize the map
information and the relative position to the closest lane.

3.2. Encoder
With cliques in hand, agents’ state and edge (relative

states between agents) histories are encoded into feature
vectors via LSTMs. Instead of associating each node
with a latent variable distribution that is independent of its
neighbors, our encoder models the joint latent distribution.
Specifically, each agent is equipped with a discrete latent
variable zi with cardinality N , making the joint latent vari-
able of the clique simply z = [z1, z2, ...zn]. This means that
the cardinality of the joint latent space grows exponentially
with the number of nodes in the clique, and is the reason
why we limit clique size.

ScePT represents the distribution of the joint latent vari-
able as a Gibbs distribution consisting of node factors and
edge factors,

logP(z) ∝
∑
i

fi(xi, zi) +
∑
eij∈E

fij(xi, xj , zi, zj), (2)

3

https://github.com/nvr-avg/ScePT

Figure 2. Factor graph with individual agent latent variables as
variable nodes and factor nodes which are functions of the con-
nected variable nodes. Factor nodes are comprised of individual
agent and agent-agent interaction factors, e.g., f1 is a function
of z1 while f12 is a function of z1 and z2. All factor nodes are
summed to obtain the log likelihood.

where xi is the state history of node i and fi is the node fac-
tor of node i, which is a feedforward neural network map-
ping xi and zi to a real number. fij is the edge factor of
the node pair i, j, also a feedforward network, and E is the
set of edges. The log-likelihood can be computed by con-
structing a factor graph [1], which is a bipartite graph with
variable nodes and factor nodes. An example factor graph
is shown in Fig. 2. Normalization is done by summing up
all possible valuations of z (since Z is discrete).

While the joint latent space’s cardinality scales exponen-
tially with clique size, we found that probability mass typi-
cally concentrates on only a few (< 10) modes.

3.3. Decoder

Our decoder design is inspired by the motion planning
process, i.e., we view each agent as a motion planner and
emulate their planning process to output trajectory predic-
tions. A typical motion planner takes a reference trajec-
tory, i.e., the desired motion, and adjusts it to satisfy con-
straints (e.g., collision avoidance) and minimize a specified
cost function. Inspired by this process, the structure of our
policy net is visualized in Fig. 3.

The inputs to the policy net are the current states of the
clique nodes, their reference trajectories sdes, and the clique
latent z. Reference trajectories are generated via Gated Re-
current Unit (GRU) networks that take the state history en-
coding, map encoding, and latent variable z as input. The
current node states are then compared with the reference tra-
jectories to obtain the tracking error ∆s and the next way-
point in the local coordinate frame ∆s+.

To model an edge, we pair its two node states together
and feed the state pair into a pre-encoding network (fully
connected) and then an LSTM cell. For each node, depend-
ing on the graph structure, there may be a varying number
of neighbors. To encode a variable number of neighbors, all
of a node’s edges are condensed into a single observation
encoding via an attention network [14]. The observation en-
coding, latent variable, and tracking error are then concate-
nated and fed to a fully connected action network to obtain
the node’s control action prediction a. Here, we assume that
the node’s dynamics are differentiable functions of the state
and control input, which is true for common agent types

Figure 3. Our autoregressive policy network architecture. For each
node, neighboring node states are pooled with an attention mecha-
nism, the resulting encoding then generates control inputs together
with the reference trajectory. The control inputs pass through the
agent dynamics to produce position predictions and the process
repeats for subsequent timesteps.

Figure 4. Overview of ScePT: Node history and map information
are collected for all nodes within a clique and passed through a
Gibbs distribution to generate the discrete joint latent distribution.
The policy net (decoder) then generates closed-loop trajectory pre-
dictions given latent samples.

such as vehicles (e.g., Dubin’s car model [20]) and pedes-
trians (single or double integrators). The state prediction is
then fed back to the state vector and this process repeats.

The overall structure of ScePT is shown in Fig. 4. The
encoder takes the LSTM-encoded state and edge history as
well as the CNN-encoded local map, and generates a dis-
crete Gibbs distribution over the clique latent variable. The
latent variable, together with the state history and map en-
codings, is used to generate the desired trajectory for each
node via GRUs. The desired trajectories and latent variable
are then passed to the policy net to obtain closed-loop tra-
jectory predictions.

3.4. Conditioning via policy learning

As mentioned in Sec. 1.1, conditioned prediction is an
important capability. Conditioning was performed in pre-
vious works [25, 42] by explicitly encoding the ego future

4

trajectory in the encoder. However, assuming that only one
agent can be conditioned on makes use cases such as driv-
ing simulation difficult, as one would need to train explicit
conditioning models for each pair of agents. By compari-
son, PRECOG [38] simply needs to set the latent variable
of the robot to produce future-conditional predictions. Sim-
ilarly, ScePT does not require any structural change to pro-
duce conditional predictions since it learns agents’ inter-
action policies. Conditional predictions are generated by
simply fixing the trajectory roll-outs of conditioned agents
and outputting the trajectory predictions of the rest of the
agents in the clique. Since a fixed future trajectory does not
fall into any latent mode, we remove any factors concerning
conditioned nodes from the Gibbs distribution factor graph.

3.5. Training
Following standard CVAE training [43], our objective is

the Evidence Lower Bound (ELBO) loss:

ELBO = Ez∼Q(z|x,y)[log(P (y|x, z))]

− βDKL(Q(z|x,y)||P (z|x)),
(3)

where z is the clique latent variable, y is the future trajec-
tories of all nodes, and x is the conditional variable, con-
sisting of node and edge history, map encoding, and lane
information for all nodes in the clique. For the likelihood
cost, we assume Gaussian noise around the predicted tra-
jectory for each mode, resulting in a 2-norm loss,

Ez∼Q(z|x,y)[log(P (y|x, z))]

=
∑
z∈Z

Q(z|x,y)||fy(x, z)− yGT (x)||2, (4)

where fy(x, z) is the trajectory prediction from the decoder
and yGT (x) is the ground truth.

We also add a collision penalty, specified in detail in Ap-
pendix A.3, as a regularization term to penalize incompat-
ible predictions, the influence of which will be further dis-
cussed in Sec. 4.5. Other types of regularization, e.g., ride
comfort, can also be added since the node dynamics are ex-
plicitly included in the policy net.
Sampling the Latent Space. While our discrete latent
space is enumerable, the cardinality of Z grows expo-
nentially with the clique size. Thus, it is sometimes not
tractable to decode all modes. To remedy this, we apply
diversity sampling. Specifically, we take the Ng highest
probability modes and randomly sampleNr modes from the
rest. When the total cardinality of Z is less than Ng + Nr,
all modes are selected. The sample probabilities are then
normalized so that the expected loss does not collapse to 0.

3.6. Mode Collapse and Diverse Sampling
Discrete CVAEs for trajectory prediction are prone to

mode collapse, i.e., the decoder tends to predict similar tra-
jectories under different modes since the likelihood cost is a

weighted sum of 2-norm errors and the average prediction is
likely to be a local minimum. Mode collapse has been dis-
cussed in previous works and tackled by methods such as
Multiple-Trajectory Prediction (MTP) loss [16], using prior
knowledge [11,19], and assigning modes by classifying the
ground truth into categories [31]. Our approach maintains
the expected loss function, but introduces CVaR as a new
way to avoid mode collapse.
Conditional Value at Risk (CVaR) [39] is a risk measure
commonly used in finance and optimization, defined as

CVaR1−α(X) = inf
η∈R
{η +

1

α

∫ ∞
−∞

[x− η]+P (x)}

= min
0≤P ′(x)≤ 1

αP (x),
∫
P ′(x)dx=1

EP ′ [X],
(5)

where P is the probability distribution ofX and α tunes the
level of risk-averseness. CVaR is the mean of the lowest α-
percentile values of x under P . At the limits of α, α → 0
yields the essential infimum of X and α = 1 yields E[X].

The second line in (5) is the dual form of CVaR, which
can be understood as shifting the distribution P to P ′ under
the constraint that P ′ has to be a proper distribution and
for all x, P ′(x) ≤ 1

αP (x). Inspired by the dual form, we
modify the expectation loss in (4) to

min
0≤Q′(z)≤ 1

αQ(z|x,y),
∑
Q′(z)=1

Ez∼Q′ [||fy(x, z)−yGT (x)||2],

(6)
which is the best α-percentile loss value among the discrete
modes. This CVaR loss does not force all modes to match
the ground truth, only those that are already close, directly
preventing mode collapse. Compared to common usages of
risk measures which typically focus on the worst outcomes,
we use CVaR to focus on the best predictions to maintain
output diversity. During training, α is used to trade-off the
model’s focus on encoder accuracy vs diversity, see Ap-
pendix A.4 for details. In addition to incorporating CVaR,
we also use a greedy algorithm to diversely sample the prod-
uct latent space, see Appendix A.5 for further details.

4. Experiments
We evaluate the performance of ScePT on the tasks of

pedestrian and vehicle motion prediction. In particular, we
make use of the well-known ETH [35], UCY [30], and
nuScenes [7] datasets.
Metrics. We use the common Average and Final Displace-
ment Error (ADE/FDE) metrics to measure the quality of
trajectory predictions. Since our outputs are multimodal,
we adopt the Best-of-N (BoN) extension and take the N
highest probability modes from the encoder to compute
BoN ADE/FDE values. The sampling process in ScePT is
different from prior works with continuous latent spaces as
we do not randomly sample from the latent distribution, but
rather pick theN modes deemed most likely by the encoder.
As a result, when the number of samples is larger than the

5

Figure 5. FDE of the ETH dataset under varying numbers of sam-
ples, the most significant improvement is seen at 3 samples.

number of possible clique modes (i.e., N > |Z|), we take
only |Z| samples.

4.1. Pedestrian Motion Prediction
The ETH (containing ETH and Hotel scenes) [35] and

UCY (containing Univ, Zara1 and Zara2 scenes) [30]
datasets are widely-used benchmarks for pedestrian motion
prediction. Together, they contain 9,514 unique pedestrians
in many challenging, interactive real-world scenarios.

For all pedestrian datasets, the maximum clique size is 5
and each node’s latent space cardinality is 6. The ADE/FDE
results are shown in Tables 1 (deterministic) and 2 (multi-
modal). While ScePT is designed mainly for autonomous
driving, it performs remarkably well on pedestrian datasets,
achieving the best or second-best performance among state-
of-the-art models in the field. In particular, ScePT outper-
forms prior methods on most datasets in ADE, yet performs
slightly worse in UCY scenes in terms of FDE. The likely
reason is that the UCY datasets are much denser than ETH,
forcing ScePT to partition the large scene graph into small
cliques. Once partitioned, interactions between cliques are
ignored, hurting prediction accuracy. Using a larger maxi-
mum clique size, however, would cause the joint latent car-
dinality to be too large and further deteriorate performance.
Even in these cases, ScePT still performs on par with state-
of-the-art prediction methods.

Fig. 5 shows the FDE of the ETH dataset under different
numbers of samples, Due to our use of CVaR in the loss
function, ScePT is able to generate diverse modes. After
only 3 samples, our method’s predictions are already very
accurate. We observe this phenomenon across all datasets,
and find that sampling 3 to 5 modes achieves a good balance
of prediction quality and runtime complexity.

4.2. Vehicle Motion Prediction
The nuScenes dataset [8] consists of 1000 driving

scenes, each 20 seconds long and containing up to 23
object classes. To match the nuScenes prediction chal-
lenge set, only vehicles and pedestrians are predicted dur-
ing training and evaluation. Tab. 3 summarizes the predic-
tion accuracy of our method alongside a set of state-of-the-
art approaches. Despite ScePT discarding edges between

Figure 6. ScePT achieves a better collision rate than Trajec-
tron++ [42] without collision cost regularization. With collision
cost regularization, the collision rate becomes virtually zero.

cliques, the prediction accuracy is near the state-of-the-art,
especially in later timesteps. Furthermore, thanks to our
diversity-promoting design, prediction accuracy can be sig-
nificantly improved by adding only 1 or 2 extra modes.

As mentioned in the introduction, scene consistency in
trajectory predictions is critical for planning, even more
so when simulating and verifying the performance of au-
tonomous vehicles. Fig. 6 compares the collision rate
achieved by Trajectron++ [42] and ScePT at different pre-
diction horizons. The collision rate is averaged over all ve-
hicles whose trajectories are predicted by the two models,
including vehicle-to-vehicle and vehicle-to-pedestrian colli-
sions. The result shows that ScePT’s predictions have much
less collisions than Trajectron++, even without collision
cost regularization; becoming virtually zero with regular-
ization. Moreover, the collision rate tends to decrease with
the horizon, implying that collisions at earlier timesteps
may be due to poor initial conditions and that the learned
policy net is able to resolve conflicts in later timesteps.

4.3. Conditioning and Counterfactual Analyses
Conditioning is an important capability, enabling a

downstream planner to obtain trajectory predictions condi-
tioned on ego motion. It is also useful for performing coun-
terfactual, “what if?” analyses. Fig. 7 demonstrates ScePT’s
ability to perform conditional prediction, where the left and
right figures show unconditioned and conditioned predic-
tions, respectively. In the top right, we condition on vehicle
A and C braking at−4m/s2 to a full stop. Accordingly, our
method predicts that (1) vehicle B will brake to avoid a col-
lision, and (2) vehicle D will perform a lane change to avoid
vehicle C. In the bottom right, we condition on vehicle C ac-
celerating at 4m/s2. This causes a chain reaction, making
vehicle B’s prediction swerve to avoid a collision, which
then subsequently affects vehicle A and the two pedestrians
on the bottom left, showing that nodes within a clique are
influenced by all other nodes in that clique.

Interestingly, the policy learned from the nuScenes
dataset is quite robust to clique size. Our model is currently
trained with a maximum clique size of 4, but we evaluated
it with sizes as large as 8. Even in such cases, the model

6

Dataset S-LSTM [2] S-ATTN [46] Trajectron++ [42] ScePT
ETH 1.09/2.35 0.39/3.74 0.71/1.66 0.19/1.33
Hotel 0.79/1.76 0.29/2.64 0.22/0.46 0.18/1.12
Univ 0.67/1.40 0.33/3.92 0.44/1.17 0.19/1.19
Zara1 0.47/1.00 0.20/0.52 0.30/0.79 0.18/1.10
Zara2 0.56/1.17 0.30/2.13 0.23/0.59 0.19/1.20

Average 0.71/1.54 0.30/2.59 0.38/0.93 0.19/1.19

Table 1. ADE/FDE in meters, using the most likely mode. Bold/italic font indicates the best/second-best value. Lower is better.

Dataset S-GAN [21] SoPhie [40] MATF [51] Trajectron++ [42] ScePT
ETH 0.81/1.52 0.70/1.43 1.01/1.75 0.39/0.83 0.10/0.65
Hotel 0.72/1.61 0.76/1.67 0.43/0.80 0.12/0.21 0.13/0.77
Univ 0.60/1.26 0.54/1.24 0.44/0.91 0.20/0.44 0.12/0.65
Zara1 0.34/0.69 0.30/0.63 0.26/0.45 0.15/0.33 0.13/0.77
Zara2 0.42/0.84 0.38/0.78 0.26/0.57 0.11/0.25 0.14/0.81

Average 0.58/1.18 0.54/1.15 0.48/0.90 0.19/0.41 0.12/0.73

Table 2. Best-of-20 ADE/FDE in meters. Bold/italic font indicates the best/second-best value. Lower is better.

Method @1s @2s @3s @4s
S-LSTM [2, 9] 0.47 - 1.61 -

CSP [9, 18] 0.46 - 1.50 -
CAR-Net [9, 41] 0.38 - 1.35 -

SpAGNN [9] 0.35 - 1.23 -
Trajectron++ [42] 0.07 0.45 1.14 2.20

Ours 0.44 0.93 1.63 2.58
Ours (Best-of-2) 0.41 0.83 1.44 2.20
Ours (Best-of-3) 0.40 0.80 1.36 2.14

Table 3. ScePT’s prediction accuracy on nuScenes vehicles nearly
matches state-of-the-art methods. Furthermore, thanks to its
diversity-promoting design, ScePT’s prediction accuracy can be
drastically improved by adding only 1 or 2 extra modes.

Figure 7. By design, ScePT can produce predictions that are con-
ditioned on any number of agents. Left: Original, unconditioned
predictions. Top Right: Predictions conditioned on vehicles A
and C braking. Bottom Right: Predictions conditioned on vehicle
C accelerating.

is still able to produce reasonable conditioned predictions,
verifying the efficacy of the policy net’s attention network.

4.4. Integration with a Downstream Planner

To demonstrate ScePT’s performance when integrated
with a downstream planner, we feed its predictions to a
downstream model predictive control (MPC)-based planner.
The MPC planner takes the multimodal trajectory predic-
tions into account and performs contingency planning via
branching [3, 13]. Given M joint trajectory predictions, the
MPC plans M corresponding ego trajectories with the ad-
ditional constraint that the first control inputs for all M ego
trajectories must be the same. Formally,

min
{ai0:T−1,s

i
0:T }Mi=1

∑
i

πiJ (ai0:T−1, s
i
1:T)

s.t. sit+1 = Dyn(sit, a
i
t), ∀i, t, ait ∈ A, xit ∈ S,

C(si1:T , yi1:T) ≤ 0, i = 1...,M,

si0 = s0, a
1
0 = a20 = ...aM0 ,

(7)
where πi is the probability of prediction mode i, si and ui

are the planned state and input sequences of the ego vehi-
cle under the i-th mode, J is the cost function, and C is a
constraint (e.g. collision avoidance). Eq. (7) is a nonlinear
optimization problem and is solved with IPOPT [47]. As
an example of runtime, when M = 3, our unoptimized Py-
Torch prediction code executes in less than 240ms and MPC
planning takes less than 60 ms, all on a CPU. Fig. 8 shows
the result of combining ScePT’s predictions with this down-
stream MPC planner, visualizing prediction modes and their
resulting ego motion plans.

4.5. Ablation study

Collision Cost Regularization and Accuracy. As we have
seen in Sec. 4.2, the collision rate of ScePT without the col-
lision penalty already outperforms prior works. When col-
lision penalty is added, the collision rate of ScePT drops

7

Figure 8. The integration of prediction and planning. Black vehi-
cle: ego vehicle; blue vehicles: adjacent vehicles outside the ego
clique; cyan trajectory: planned trajectory (3 modes); green and
brown vehicles: adjacent vehicles within the ego clique; green and
brown trajectories: predicted trajectories (top 3 modes); magenta
circle: pedestrians; red lines: connected nodes within the ego’s
clique.

@1s @2s @3s @4s
With collision penalty 0.44 0.93 1.63 2.58

Without collision penalty 0.40 0.92 1.70 2.71

Table 4. Influence of including collision penalty regularization on
nuScenes vehicle prediction accuracy.

Loss Ablation @1s @2s @3s @4s
With CVaR 0.44 0.93 1.63 2.58

Without CVaR 0.45 0.97 1.74 2.79

Table 5. Influence of CVaR loss on nuScenes prediction FDE.

to virtually zero. Tab. 4 summarizes the effect of includ-
ing the collision penalty on prediction accuracy. We can see
that prediction accuracies are either the same or better af-
ter the collision penalty is added, indicating that avoiding
collisions also produces more accurate outputs.

We also assess conditional predictions without the col-
lision penalty, and collisions are much more likely when
some nodes are assigned errant behavior. For example, the
situation in Fig. 7 (top) results in vehicles B and D hitting
their lead vehicles when predicted by a model trained with-
out collision penalty regularization. This phenomenon im-
plies that, without collision penalty regularization, ScePT is
not able to maintain scene consistency in out-of-distribution
scenarios. Overall, this regularization term forces the model
to maintain scene consistency, making it more robust to out-
of-distribution scenarios.
Effect of α. To study the utility of using CVaR in Eq. (4),
we conduct an ablation study over different values of α. Our
baseline model uses a varying α (initialized at 0.2 and grad-
ually increasing to 1.0 during training). We also train a ver-
sion with constant α = 1.0, in which case the CVaR loss
function is equivalent to the original expectation. Tab. 5
summarizes the results, showing that using CVaR outper-
forms expectation in the original loss function.
Effect of Clique Formation. To assess the sensitivity of
ScePT to the clique forming process, we change the dis-
tance criteria described in Sec. 3.1 to the Euclidean distance
between nodes at the current time. Tab. 6 summarizes the

Distance Ablation @1s @2s @3s @4s
Flow 0.44 0.93 1.63 2.58

t = 0 Euclidean 0.43 0.95 1.70 2.71

Table 6. Influence of distance criteria for clique forming on
nuScenes prediction accuracy (FDE).

Clique Size Ablation @1s @2s @3s @4s
Max clique size 2 0.41 0.90 1.63 2.68
Max clique size 4 0.44 0.93 1.63 2.58
Max clique size 6 0.64 1.27 1.90 2.90

Table 7. Effect of maximum clique size on nuScenes prediction
accuracy (FDE).

results, which shows that the flow distance partition leads to
better performance, yet using a simple Euclidean distance
leads to decent performance.

Another important parameter is the maximum clique
size. Since a node only considers neighbors within its
clique, a small clique size leads to the nodes overlooking
some nearby neighbors that were not partitioned into the
same clique. On the other hand, if a clique gets too big,
the cardinality of the clique’s product latent space becomes
too large, causing problems when sampling greedily. After
experimenting, we found that a maximum clique size of 4
leads to the best result. Tab. 7 summarizes this ablation.

5. Conclusion and Future Work
Summary. This paper presents ScePT, a CVAE-based
model that generates multimodal joint trajectory predictions
with high scene consistency. The encoder uses a Gibbs dis-
tribution to capture interactions between agents and outputs
prediction mode probabilities for a whole clique instead of
individual nodes. The decoder learns agent interaction poli-
cies to generate closed-loop trajectory predictions with high
scene consistency, thanks to an explicit collision penalty
used as regularization during training. Experiments on the
ETH, UCY, and nuScenes datasets show that ScePT is able
to achieve state-of-the-art prediction accuracy with signifi-
cantly improved scene consistency. We also demonstrate its
capability to integrate with a downstream contingency plan-
ner and to generate human-like behaviors via conditioning.
Limitations and Future Work. One important limitation
(and area of future work) of ScePT is its loss of sparsity.
Since the decoder generates predictions concurrently for all
nodes in a clique, one cannot utilize the sparsity of the inter-
action graph to only consider neighbors for each node. This
causes the exponential cardinality of the joint latent space
and forces the size of cliques to be limited. Subsequently,
interactions between nodes in different cliques are ignored,
leading to compromises in accuracy especially when there
are large numbers of crowded agents, such as in the UCY
dataset. Another limitation is the computation time due to
the autoregressive policy net, which could be further im-
proved by more efficient coding and parallelization.

8

References
[1] Pieter Abbeel, Daphne Koller, and Andrew Y Ng. Learning

factor graphs in polynomial time and sample complexity. The
Journal of Machine Learning Research, 7:1743–1788, 2006.
4

[2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,
Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 961–971, 2016. 1, 2, 7

[3] John P Alsterda, Matthew Brown, and J Christian Gerdes.
Contingency model predictive control for automated vehi-
cles. In 2019 American Control Conference (ACC), pages
717–722. IEEE, 2019. 7

[4] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurnet: Learning to drive by imitating the best and synthe-
sizing the worst. arXiv preprint arXiv:1812.03079, 2018. 2

[5] Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera,
and Gregory Shakhnarovich. Diverse m-best solutions in
markov random fields. In European Conference on Com-
puter Vision, pages 1–16. Springer, 2012. 12

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of communities
in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008. 3

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In IEEE/CVF con-
ference on computer vision and pattern recognition (CVPR),
pages 11621–11631, 2020. 5

[8] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11621–11631, 2020. 6

[9] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urta-
sun. Spagnn: Spatially-aware graph neural networks for
relational behavior forecasting from sensor data. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), pages 9491–9497. IEEE, 2020. 2, 3, 7

[10] Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie
Liao, and Raquel Urtasun. Implicit latent variable model for
scene-consistent motion forecasting. In European Confer-
ence on Computer Vision (ECCV), pages 624–641. Springer,
2020. 2, 3

[11] Sergio Casas, Cole Gulino, Simon Suo, and Raquel Urtasun.
The importance of prior knowledge in precise multimodal
prediction. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2295–2302.
IEEE, 2020. 5

[12] Yuxiao Chen, Ugo Rosolia, Chuchu Fan, Aaron D Ames, and
Richard Murray. Reactive motion planning with probabilistic
safety guarantees. arXiv preprint arXiv:2011.03590, 2020. 3

[13] Yuxiao Chen, Ugo Rosolia, Wyatt Ubellacker, Noel Csomay-
Shanklin, and Aaron D Ames. Interactive multi-modal mo-
tion planning with branch model predictive control. arXiv
preprint arXiv:2109.05128, 2021. 7

[14] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. Attention-based mod-
els for speech recognition. arXiv preprint arXiv:1506.07503,
2015. 4

[15] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie Liao,
and Raquel Urtasun. Lookout: Diverse multi-future pre-
diction and planning for self-driving. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
16107–16116, 2021. 3

[16] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,
Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schnei-
der, and Nemanja Djuric. Multimodal trajectory predictions
for autonomous driving using deep convolutional networks.
In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 2090–2096. IEEE, 2019. 2, 5

[17] Nachiket Deo and Mohan M Trivedi. Convolutional social
pooling for vehicle trajectory prediction. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 1468–1476, 2018. 2

[18] Nachiket Deo and Mohan M Trivedi. Multi-modal trajec-
tory prediction of surrounding vehicles with maneuver based
lstms. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1179–1184. IEEE, 2018. 2, 7

[19] Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan
Wu, Huahua Wang, Fang-Chieh Chou, Luisa San Martin,
Song Feng, Rui Hu, Yang Xu, et al. Multixnet: Multiclass
multistage multimodal motion prediction. arXiv preprint
arXiv:2006.02000, 2020. 2, 5

[20] Lester E Dubins. On curves of minimal length with a con-
straint on average curvature, and with prescribed initial and
terminal positions and tangents. American Journal of math-
ematics, 79(3):497–516, 1957. 4

[21] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable trajec-
tories with generative adversarial networks. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2255–2264, 2018. 2, 7

[22] Dirk Helbing and Peter Molnar. Social force model for
pedestrian dynamics. Physical review E, 51(5):4282, 1995.
2

[23] Xin Huang, Stephen G McGill, Jonathan A DeCastro, Luke
Fletcher, John J Leonard, Brian C Williams, and Guy Ros-
man. Diversitygan: Diversity-aware vehicle motion predic-
tion via latent semantic sampling. IEEE Robotics and Au-
tomation Letters, 5(4):5089–5096, 2020. 3

[24] Boris Ivanovic, Amine Elhafsi, Guy Rosman, Adrien
Gaidon, and Marco Pavone. Mats: An interpretable tra-
jectory forecasting representation for planning and control.
Conference on Robot Learning (CoRL), 2020. 3

[25] Boris Ivanovic and Marco Pavone. The trajectron: Proba-
bilistic multi-agent trajectory modeling with dynamic spa-
tiotemporal graphs. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2375–2384, 2019. 4

[26] Alexey Kamenev, Lirui Wang, Ollin Boer Bohan, Ishwar
Kulkarni, Bilal Kartal, Artem Molchanov, Stan Birchfield,
David Nistér, and Nikolai Smolyanskiy. Predictionnet: Real-
time joint probabilistic traffic prediction for planning, con-
trol, and simulation. arXiv preprint arXiv:2109.11094, 2021.
2

9

[27] Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and
Martial Hebert. Activity forecasting. In European confer-
ence on computer vision, pages 201–214. Springer, 2012. 2

[28] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel
Kochenderfer. Imitating driver behavior with generative ad-
versarial networks. In IEEE Intelligent Vehicles Symposium
(IV), pages 204–211. IEEE, 2017. 1, 2

[29] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 336–345, 2017. 1, 2

[30] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski.
Crowds by example. In Computer graphics forum, vol-
ume 26, pages 655–664. Wiley Online Library, 2007. 5, 6

[31] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang,
and Bolei Zhou. Multimodal motion prediction with stacked
transformers. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7577–7586, 2021.
2, 5

[32] Wei-Chiu Ma, De-An Huang, Namhoon Lee, and Kris M
Kitani. Forecasting interactive dynamics of pedestrians with
fictitious play. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 774–782, 2017. 2

[33] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Ab-
normal crowd behavior detection using social force model.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 935–942. IEEE, 2009. 2

[34] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, et al.
Scene transformer: A unified multi-task model for behavior
prediction and planning. arXiv preprint arXiv:2106.08417,
2021. 2

[35] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc
Van Gool. You’ll never walk alone: Modeling social be-
havior for multi-target tracking. In 2009 IEEE 12th Inter-
national Conference on Computer Vision, pages 261–268.
IEEE, 2009. 5, 6

[36] Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton,
Oscar Beijbom, and Eric M Wolff. Covernet: Multimodal
behavior prediction using trajectory sets. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14074–14083, 2020. 2

[37] Thomas A Ranney. Models of driving behavior: a review of
their evolution. Accident analysis & prevention, 26(6):733–
750, 1994. 1

[38] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and
Sergey Levine. Precog: Prediction conditioned on goals
in visual multi-agent settings. In IEEE/CVF International
Conference on Computer Vision (ICCV), pages 2821–2830,
2019. 5

[39] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization
of conditional value-at-risk. Journal of risk, 2:21–42, 2000.
5

[40] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1349–1358,
2019. 2, 7

[41] Amir Sadeghian, Ferdinand Legros, Maxime Voisin, Ricky
Vesel, Alexandre Alahi, and Silvio Savarese. Car-net: Clair-
voyant attentive recurrent network. In European Conference
on Computer Vision (ECCV), pages 151–167, 2018. 7

[42] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible tra-
jectory forecasting with heterogeneous data. In European
Conference on Computer Vision (ECCV), pages 683–700.
Springer, 2020. 2, 4, 6, 7

[43] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. Advances in neural information processing
systems, 28:3483–3491, 2015. 5

[44] Charlie Tang and Russ R Salakhutdinov. Multiple futures
prediction. Advances in Neural Information Processing Sys-
tems, 32:15424–15434, 2019. 1, 2, 3

[45] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Con-
gested traffic states in empirical observations and micro-
scopic simulations. Physical review E, 62(2):1805, 2000.
2

[46] A. Vemula, K. Muelling, and J. Oh. Social attention: Model-
ing attention in human crowds. In International Conference
on Robotics and Automation (ICRA), 2018. 7

[47] Andreas Wächter and Lorenz T Biegler. On the implementa-
tion of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical programming,
106(1):25–57, 2006. 7

[48] Xinshuo Weng, Ye Yuan, and Kris Kitani. Ptp: Parallelized
tracking and prediction with graph neural networks and di-
versity sampling. IEEE Robotics and Automation Letters,
6(3):4640–4647, 2021. 2

[49] Ye Yuan and Kris Kitani. Diverse trajectory forecast-
ing with determinantal point processes. arXiv preprint
arXiv:1907.04967, 2019. 3

[50] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani.
Agentformer: Agent-aware transformers for socio-temporal
multi-agent forecasting. IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 2021. 2

[51] Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi,
Chris Baker, Yibiao Zhao, Yizhou Wang, and Ying Nian Wu.
Multi-agent tensor fusion for contextual trajectory predic-
tion. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12126–12134, 2019. 2, 7

[52] Rui Zhou, Hongyu Zhou, Masayoshi Tomizuka, Jiachen Li,
and Zhuo Xu. Grouptron: Dynamic multi-scale graph con-
volutional networks for group-aware dense crowd trajectory
forecasting. arXiv preprint arXiv:2109.14128, 2021. 2

10

A. Preprocessing and Dynamics
A.1. Pre-encoding of Nodes and Edges

Since all datasets we use provide global coordinates and
headings of the nodes, we first transform the global coor-
dinates of the state history and state future to local frames
fixed at the nodes’ current position. For vehicles with head-
ing angle ψ, we use cos(ψ) and sin(ψ) as features instead
of ψ to prevent the ±2π issue. For every type of nodes,
the raw features are passed through a fully connected layer
as pre-encoding, and the network is shared in all modules
that require state information, i.e., whenever we use state in-
formation, the state vector passes through the pre-encoding
layer first.

For edges, we construct a pre-encoding layer for ev-
ery edge type (e.g., vehicle-vehicle, vehicle-pedestrian,
pedestrian-vehicle, and pedestrian-pedestrian). The pre-
encoding layer extracts raw features from the states of the
two agents then passes them through a fully connected
layer. The raw features contain agents’ relative position and
relative velocity in the local frame as well as their sizes.

A.2. Dynamic Models and Collision Checking
We use a Dubin’s car model for vehicles in the scene

with

s =

XYv
ψ

 , a =

[
v̇

ψ̇

]
, s+ =


X + v cos(ψ)∆t
Y + v sin(ψ)∆t

v + v̇∆t

ψ + ψ̇∆t

 where

v and v̇ are the longitudinal velocity and acceleration, ψ and
ψ̇ are the heading angle and yaw rate.

The pedestrians follow a double integrator model with

s =

XYvx
vy

 , a =

[
v̇x
v̇y

]
, s+ =

X + vx∆t
Y + vy∆t
vx + v̇x∆t
vy + v̇y∆t

 .

Indeed, both models consists of basic differentiable func-
tions that can be incorporated in a neural network. We
also put bound on the inputs v̇ ∈ [−5m/s, 5m/s], ψ̇ ∈
[−1m/s2, 1m/s2], vx, vy ∈ [−5m/s, 5m/s] so that the
generated trajectory predictions are dynamically feasible.

A.3. Collision Check
We model pedestrians as circles with varying radius and

vehicles as rectangles. The collision between pedestrians
is straightforward to check, simply by taking the Euclidean
distance between the two pedestrians. Collisions involving
vehicles are checked in the local coordinate frame of the ve-
hicle. Fig. 9 shows the case with a pedestrian and a vehicle,
and the collision function is

Col(∆X,∆Y,L,W) = max{|∆X| − L

2
, |∆Y | − W

2
}.

Vehicle-to-vehicle collision is a bit tricky since it in-
volves two rectangles. As shown in Fig. 10, we use the

Figure 9. Collision check between a vehicle and a pedestrian

Figure 10. Collision check between two vehicles

four corners to calculate the Col function:

Col(∆X1:4,∆Y1:4, L,W)

= max


|∆X1| −

L

2
, ...|∆X4| −

L

2
,

|∆Y1| −
W

2
, ...|∆Y4| −

L

2

 .

Note that the collision functions are all differentiable (at
least piecewise differentiable), making it convenient to in-
clude them in the training process as regularization.

A.4. Diversity Scheduling during Training

The parameter α serves as a tuning knob to adjust the
tradeoff between encoder accuracy and diversity. Dur-
ing training, we start with a small α so that the decoder
can learn diverse trajectory patterns without mode collapse,
then increase α to improve the encoder’s prediction accu-
racy. When α is above a threshold, we detach the predic-
tion error loss of all modes but the one with the largest Q
in Eq. (4) from the gradient graph to avoid mode collapse.
This allows us to reduce the mode collapse under a small α
while continue to improve the encoder on the mode proba-
bility prediction.

A.5. Diverse Sampling from Product Latent Space

Since P (z|x) is calculated with factor graphs, two clique
modes with similar latent variables, e.g., two z-s that only

11

differ at one node in the clique, may have similar proba-
bilities,causing the greedy sampling result to lose diversity.
This issue is well-known in Markov random fields and we
follow the simple diverse sampling scheme in [5]. To be
specific, we use a greedy algorithm to pick z one by one as

zk+1 = arg max
z∈Z

p(z|x)

s.t. ∀zi, i = 1, ..., k,∆(z, zi) ≥ β,

where ∆ is a distance function, for our setup, ∆(z1, z2) =
|{j|z1j 6= z2j }|, i.e., the number of nodes with dif-
ferent latent variables under z1 and z2. For example,
∆([0, 1, 2], [1, 1, 2]) = 1,∆([1, 0, 0], [2, 1, 0]) = 2.

12

	1 . Introduction
	1.1 . Desiderata
	1.2 . Contributions

	2 . Related Work
	3 . ScePT
	3.1 . Preprocessing
	3.2 . Encoder
	3.3 . Decoder
	3.4 . Conditioning via policy learning
	3.5 . Training
	3.6 . Mode Collapse and Diverse Sampling

	4 . Experiments
	4.1 . Pedestrian Motion Prediction
	4.2 . Vehicle Motion Prediction
	4.3 . Conditioning and Counterfactual Analyses
	4.4 . Integration with a Downstream Planner
	4.5 . Ablation study

	5 . Conclusion and Future Work
	A . Preprocessing and Dynamics
	A.1 . Pre-encoding of Nodes and Edges
	A.2 . Dynamic Models and Collision Checking
	A.3 . Collision Check
	A.4 . Diversity Scheduling during Training
	A.5 . Diverse Sampling from Product Latent Space

