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Figure 1. Learning From Unlabeled Data Facilitates Scalable Navigation Decision-Making. Our goal is to develop robust, generalized,
and easily deployable decision-making policies for navigation. Our key insight is to make use of the hours of freely available and highly
diverse navigation data from the web in order to augment the knowledge and robustness of an initially trained navigation policy.

Abstract

Effectively utilizing the vast amounts of ego-centric nav-
igation data that is freely available on the internet can ad-
vance generalized intelligent systems, i.e., to robustly scale
across perspectives, platforms, environmental conditions,
scenarios, and geographical locations. However, it is dif-
ficult to directly leverage such large amounts of unlabeled
and highly diverse data for complex 3D reasoning and plan-
ning tasks. Consequently, researchers have primarily fo-
cused on its use for various auxiliary pixel- and image-
level computer vision tasks that do not consider an ulti-
mate navigational objective. In this work, we introduce
SelfD, a framework for learning scalable driving by utiliz-
ing large amounts of online monocular images. Our key
idea is to leverage iterative semi-supervised training when
learning imitative agents from unlabeled data. To handle
unconstrained viewpoints, scenes, and camera parameters,
we train an image-based model that directly learns to plan
in the Bird’s Eye View (BEV) space. Next, we use unla-

beled data to augment the decision-making knowledge and
robustness of an initially trained model via self-training.
In particular, we propose a pseudo-labeling step which en-
ables making full use of highly diverse demonstration data
through “hypothetical” planning-based data augmentation.
We employ a large dataset of publicly available YouTube
videos to train SelfD and comprehensively analyze its gen-
eralization benefits across challenging navigation scenar-
ios. Without requiring any additional data collection or
annotation efforts, SelfD demonstrates consistent improve-
ments (by up to 24%) in driving performance evaluation on
nuScenes, Argoverse, Waymo, and CARLA.

1. Introduction

How can we learn generalized models for robust vision-
based navigation in complex and dynamic settings? While
humans can effortlessly transfer general navigation knowl-
edge across settings and platforms [37, 48, 54, 55], cur-

rent real-world development of navigation agents gener-
ally deploys within a fixed pre-assumed setting (e.g., ge-



ographical location, use-case) and carefully calibrated sen-
sor configurations. Consequently, each autonomy use-case
generally requires its own prohibitive data collection and
platform-specific annotation efforts [4, 6, 19, 58, 81]. Due
to such development bottlenecks, brittle navigation models
trained in-house by various developers (e.g., Tesla’s Au-
topilot [24], Waymo’s Driver [4], Amazon’s Astro [71],
Fedex’s Roxo [26], etc.) are easily confounded by the im-
mense complexity of the real-world navigation task, e.g.,
rare scenarios, novel social settings, geographical locations,
and camera mount perturbations. Yet, every minute, a vast
amount of highly diverse and freely available ego-centric
navigation data containing such scenarios is uploaded to
the web. In this paper, we work towards effectively utiliz-
ing such freely available demonstration data to improve the
efficiency, safety, and scalability of generalized real-world
navigation agents.

There are two key challenges to employing the large
amounts of unconstrained and unlabeled online data for
training robust vision-based navigation policies. First,
while online images may be collected in various layouts
and camera settings, existing monocular-based prediction
and decision-making methods tend to rely on restrictive as-
sumptions of planar scenes [23,72] and known camera pa-
rameters [13,29,43,57,61,73,79]. Towards a dataset and
platform-agnostic navigation agent, our proposed architec-
ture does not explicitly rely on such assumptions. Second,
due to safety-critical requirements, methods for learning
decision-making in complex navigation settings generally
also assume access to highly curated benchmarks with clean
annotations [4,7,10,13,17,20,27,34,66,76]. Consequently,
such methods must be revisited when learning from unla-
beled and diverse internet videos, e.g., with various qual-
ity demonstrations [76]. To effectively utilize such data,
we propose to leverage recent advances in iterative semi-
supervised learning [8,40,62]. Yet, as such techniques are
studied within pixel and image-level tasks [14,30,43], their
utility for learning complex and safety-critical 3D reasoning
and planning tasks is not well-understood.

Contributions: Motivated by how humans are able to ef-
fortlessly learn and adapt various skills using online videos,
our SelfD approach introduces three main contributions.
First, to facilitate learning from unconstrained imagery, we
develop a model for mapping monocular observations di-
rectly to a Bird’s Eye View (BEV) planning space (i.e.,
without requiring camera calibration). Second, we intro-
duce a novel semi-supervised learning approach incorporat-
ing self-training with “hypothetical” data augmentation. We
demonstrate the proposed sampling step to be essential for
making use of highly diverse demonstration data. Third, we
perform a set of novel cross-dataset experiments to analyze
the ability of an initially trained decision-making model to
self-improve its generalization capabilities using minimal

assumptions regarding the underlying data. We evaluate
across various datasets with complex navigation and harsh
conditions to demonstrate state-of-the-art model generaliza-
tion performance.

2. Related Work

Observational Imitation Learning: Our key idea is to
leverage the scale and diversity of easily available online
ego-centric navigation data to learn a robust conditional im-
itation learning policy [13, 17]. While learning from la-
beled demonstrations can significantly simplify the chal-
lenging vision-based policy learning task [3,06, 11, 12,31,

,41,44,49,50, 54,58, 60, 80, 83, 84], observed images in
our settings are not labeled with corresponding actions of
a demonstrator. We therefore work to generalize current
conditional imitation learning (CIL) approaches [13, 17, 18]
to learn, from unlabeled image observations, an agent that
can navigate in complex urban scenarios. To address this
challenging observational learning task, prior work has re-
cently explored introducing various restrictive assumptions,
including access to a hand-designed reward function [9], an
interactive environment for on-policy data collection [68],
or demonstrator optimality [68, 69]. Moreover, due to un-
constrained and dynamic scenes in our settings, learning
an inverse model [9, 67-09] (i.e., the visual odometry task
of recovering actions from observation sequences) becomes
challenging and may result in noisy trajectories. To facil-
itate scalable training from diverse data sources, our pro-
posed semi-supervised learning approach does not leverage
such assumptions. Nonetheless, our resulting model can
also be used to bootstrap other methods for policy training,
e.g., model-based or model-free reinforcement learning ap-
proaches [12,44,53,70].

Semi-Supervised Learning for Navigation: CIL gener-
ally involves learning from known actions of human ex-
perts [17, 18, 60], which is not applicable to our settings.
Yet, the recent work of Chen et al. [ 13] utilizes a multi-stage
training step, where a privileged (i.e., ‘teacher’) CIL agent
is employed to provide supervision to a non-privileged (i.e.,
‘student’) visuomotor CIL agent. As the privileged agent
is given access to extensive ground truth information about
the world in training and testing, it produces highly plausi-
ble and clean trajectories. In contrast, SelfD leverages the
same visuomotor architecture as teacher and student. We
also train in inherently noisy settings, as teacher inference is
performed on diverse out-of-distribution image data and not
on the original training dataset. Consequently, our approach
goes beyond prior policy distillation approaches to handle
scenarios where supervision by the teacher model may be
potentially noisy and unsafe. We also note the relationship
between such distillation and semi-supervised training via
pseudo-labeling [8,40,45,62,64]. However, as far as we are



aware, we are the first to develop a pseudo-labeling based
self-training method for learning safe driving policies from
complex scenes with diverse navigation data, camera per-
spectives, geographical locations, and weathers. In contrast,
prior work [40, 62] emphasizing semi-supervised learning
for image- and object-level recognition tasks [&, 78] has
limited utility for complex decision-making tasks as further
discussed in Sec. 4.

Self-Supervised Visual Learning: Our approach aims to
directly leverage experience from large amounts of unla-
beled video data to learn complex 3D navigation. An al-
ternative approach to our proposed semi-supervised frame-
work involves learning visual representations from the large
unlabeled data [15,28,30,33,46,47,56,65]. These generic
representations can then be transferred to the policy learn-
ing task [30]. However, visual representation learning from
unlabeled data often rely on various auxiliary image-level
data augmentation strategies [2, 52, 74, 82], e.g., Jigsaw or
Colorization [30] tasks, that are indirect to the ultimate nav-
igation task. Thus, such methods are limited in utility for
elaborate spatial navigation tasks in dynamic settings. In-
deed, the utility of image augmentation-based methods be-
yond navigation in simple static environments (e.g., [30])
has yet to be demonstrated, i.e., for autonomous driving. In
contrast, SelfD’s learning and augmentation strategies di-
rectly optimize for BEV (map) planning. Moreover, our
approach is orthogonal to the aforementioned studies as in-
direct visual tasks can be leveraged as further pre-training
prior to the proposed self-supervised pseudo-labeling step.

3. Method

Our goal is to facilitate training driving policies at scale.
To efficiently make use of the broad and diverse experience
found in large amounts of unlabeled videos, we follow three
main steps. We first propose to use a monocular image-
based behavior cloning planner that reasons directly in the
BEV (Sec. 3.3). Our proposed planner can therefore bet-
ter generalize across arbitrary perspectives. Next, we intro-
duce a data augmentation step for obtaining multiple plausi-
ble pseudo-labels when self-training over unlabeled internet
data (Sec. 3.4). Finally, we re-train the model over the larger
dataset to learn a more robust and generalized vision-based
navigation policy (Sec. 3.5).

3.1. Problem Setting

We consider the task of learning from observations x =
(I,v,¢) € X of a single front camera image I € R *Hx3,
ego-vehicle speed v € R, and a categorical navigational
command ¢ € N (e.g., turn left, turn right, and for-
ward [17]). Our agent learns to map such observations to a
navigational decision. In general, the decision may either be
a low-level vehicle control action [18] (e.g., steering, throt-

tle) or a desired future trajectory relative to the ego-vehicle,
i.e., set of K waypoints y € Y [13,49] in the BEV (map)
space. In the latter case, future waypoints may be paired
with a hand-specified or learned motion controller to pro-
duce the low-level action [13,49]. In this work, we focus on
the latter representation due to its interpretability and gen-
eralizability [49]. Thus, our goal is to obtain a waypoint
prediction function fg: X — ), with learnable parameters
0 c RY ie., the decision-making policy. Without loss
of generality, we will slightly augment the output space of
this function in Sec. 3.3. Next, we build on recent advances
in driving policy learning, in particular CIL [13, 17, 18], to
develop a general approach for learning to drive from unla-
beled data.

Conditional Imitation Learning: Navigational demon-
strations can be collected by logging the sensor data of a
manually operated system, as often done by researchers and
developers. Such demonstrations can then be utilized for
training decision-making policies through various learning
techniques [1,4, 16, 17,54,58,63]. In its most straightfor-
ward implementation, training the mapping function fg can
be simplified to supervised learning via an i.i.d. data as-
sumption [5,58]. More robust policies can be trained by go-
ing beyond such schemes, e.g., through online and interac-
tive learning strategies [54,59,63]. In our work, we leverage
off-line demonstrations and do not assume access to an in-
teractive environment. Nonetheless, our proposed data aug-
mentation techniques in Sec. 3.4 can significantly improve
policy robustness, as will be demonstrated in Sec. 4.

Given a collected dataset of observations and corre-
sponding actions, D = {(x;,y:)}X,, supervised training
can be achieved by optimizing an imitation objective

miniemize E(x,y)~p [L(Y, fo(x))] Q)

with £ being a suitable loss function, e.g., L regression
distance to the waypoint targets. Despite widespread use in
academia [18, 35,77] and industry [4, 6], the standard CIL
formulation significantly limits scalability. Specifically, ap-
proaches for imitation learning generally require having di-
rect access to optimal target action labels. Consequently,
they cannot be applied towards learning from the vast and
diverse unlabeled data that is uploaded online.

Conditional Imitation Learning from Observations: To
make full use of unlabeled data in demonstrations contain-
ing diverse navigational experience, we develop a frame-
work for Conditional Imitation Learning from Observations
(CILfO), i.e., assuming only data of the form ¢ = {I,},.
Within this more generalized yet difficult learning task, a
key challenge lies in recovering suitable label targets y,
navigational command ¢ and speed ¥ to construct a dataset



over which Eqn. | can then be used to train a policy.

Initial Data Assumption: In order to address the chal-
lenging CILfO learning task, our key idea is to leverage
a small labeled dataset to learn an initial policy mapping
using human expert demonstrations. We then sample from
this trained function to obtain pseudo-labels [40] over the
unlabeled data. This assumption is reasonable considering
that there are several publicly available driving datasets with
included action labels [7,27,34,75]. Alternatively, a prelim-
inary dataset with a novel platform setup or use-case may be
initially collected.

Sequential Data Assumption: We note that although se-
quential video data is used in our ablation, our generic and
scalable CILfO formulation does not assume access to tem-
poral data. The reason for this is three-fold. First, while se-
quential observations may be potentially beneficial for dis-
ambiguation of various decision-making factors [21], gen-
eralization results for learning temporal sensorimotor driv-
ing policies have been inconclusive [21, 50, 72]. Second,
while sequential data is assumed in most prior observational
imitation learning settings [9, 68] recovering the underlying
demonstration actions (e.g., using monocular visual odom-
etry [73]) in arbitrary scenes is challenging. Due to the dif-
ficulty and noise in sequential action recovery, our proposed
single-frame formulation in Sec. 3.2 is shown to signifi-
cantly outperform such baselines in Sec. 4. Third, we do
not make any assumptions regarding the optimality of the
demonstrations in the unlabeled dataset I/ [51, 69]. Con-
sequently, our generalized method is suitable for scalable
learning from videos with complex scenes, environmental
conditions, arbitrary viewpoints, and diverse demonstration
quality. As our learning task lies well beyond the capabil-
ities of existing CIL and observational methods, we next
develop a generalized training method for leveraging un-
constrained and unlabeled demonstration data.

3.2. SelfD Overview

Through a semi-supervised policy training process, our
proposed SelfD navigation policy model can be learned in
three summarized steps:

1. Use a small, labeled domain-specific dataset D to learn
an initial observations-to-BEV policy fg via imitation.

2. Obtain a large pseudo-labeled dataset D by leveraging
sampling from fg.

3. Pre-train a generalized policy fg on D and fine-tune on
the clean labels of D.

Note that we re-use the parameter symbol 6 throughout
the steps to simplify notation. Our iterative semi-supervised
training enables effectively augmenting the knowledge and
robustness of an initially trained policy. As described

next, our proposed initial step facilitates learning a platform
and perspective-agnostic policy during subsequent training
steps by directly reasoning in a BEV planning space.

3.3. BEV Plan Network

In this section, we propose a suitable output represen-
tation to account for arbitrary cameras, viewpoints and
scene layouts. Current monocular planners generally pre-
dict waypoints in the image plane to align with an input
image [13,49]. The waypoints are then transformed to a
BEV plan using carefully calibrated camera intrinsic and
extrinsic (e.g., rotation, height) parameters [13]. Thus, pol-
icy models are often trained and evaluated within a fixed
pre-assumed setup. In contrast, SelfD predicts a future plan
parameterized by waypoints in the BEV plan space directly.
Based on our experiments in Sec. 4, we demonstrate this
choice to be crucial for real-world planning across settings.
The predicted generalized BEV waypoints can be paired
with a low-level controller, e.g., a PID controller [13, 49].
Due to the difficulty in learning a monocular-to-BEV plan
mapping, we follow recent work in confidence-aware learn-
ing [38] to train an augmented model fo: X — YV xR
with quality estimates o € R. Our training loss function in
Eqn. 1 is defined as

L= ﬁplan + )\‘Cqualily 3)

where Ly is the Ly distance between ground-truth and
predicted waypoints, Lguaiy iS a binary cross-entropy
loss [38, 78], and the A hyper-parameter balances the tasks.

3.4. “What If” Pseudo-Labeling of Unlabeled Data

Given a set of unlabeled images U/, we sample from the
trained conditional policy fg in a semi-supervised training
process. While the speed and command inputs to fg can be
recovered through visual odometry techniques [73], these
result in highly noisy trajectories in our online video set-
tings (discussed in Sec. 4). As the demonstrations in our
data may be unsafe or difficult to recover, we propose to
leverage a single-frame pseudo-labeling mechanism. Our
key insight is to employ the conditional model fg to gener-
ate multiple hypothetical future trajectories in a process re-
ferred to as “what if” augmentation. Beyond resolving the
missing speed and command inputs, our proposed augmen-
tation provides additional supervision, i.e., a conditional
agent that better reasons on what it might need to do, for in-
stance, if it had to turn left instead of right at an intersection
(Fig. 2). In contrast to related work in policy learning and
distillation [13], sampling from the teacher agent is more
challenging as the agent is not exposed to extensive 3D per-
ception knowledge about the world and is being evaluated
outside of its training settings.

We repeatedly sample © and ¢ uniformly and rely on
the conditional model to provide pseudo-labels (y,6) =



Speed: 5.24 Speed: 0.05
Score: 0.48 Score: 0.97
Cmd: 1 Cmd: 3

Speed: 0.24 Speed: 2.84
Score: 0.6 Score: 0.42

Cmd: 1 Cmd: 3

Figure 2. “What If”” Hypothetical Pseudo-Labeling. We gen-
erate multiple plausible future trajectories (units are meters in
BEV) as pseudo-labels for each unlabeled frame by sampling the
conditional planner from Sec. 3.3. We depict two scenarios from
our dataset with inference shown for various inputs. Speed is in
meters per second and conditional commands are either left (1),
forward (2), or right (3).

fo(L,0,¢) for additional supervision across all conditional
branches and speed observations. In this manner, querying
the “teacher” model fg enables us to generate various sce-
narios beyond the original demonstration. In particular, as
discussed in Sec. 4, we find self-training strategies to pro-
vide limited generalization gains without this “what if”” data
augmentation step. This augmentation strategy enables our
single-frame pseudo-labeling approach to significantly out-
perform approaches that are more elaborate to train at scale,
as they may involve additional modules relying on approxi-
mating ¥, ¢, and ¢ from video. Finally, to avoid incorporat-
ing potentially noisy trajectories, the corresponding quality
estimates & can be used to process and filter examples in
the pseudo-labeled dataset D.

3.5. Model Pre-Training and Fine-Tuning

As a final training step, we re-train the waypoint network
feo from scratch over the large and diverse dataset D. The
pre-trained policy can then be further fine-tuned over the
original dataset D, thus leveraging the additional knowledge
gained from D to improve its performance. We note that
we employ separate training over the two datasets Dand D
and rely on knowledge transfer through learned represen-
tations as it reduces the need for any careful hyperparam-
eter tuning beyond the overall learning rate. For instance,
Caine et al. [8] empirically demonstrate the importance of
delicately optimizing the ratio of labeled to pseudo-labeled
data when mixing the datasets for a 3D object detection
task, while also showing it to vary among object categories,
e.g., pedestrians vs. vehicles. Thus, through a pre-training
mechanism, we avoid the need to carefully mix the cleanly

labeled and pseudo-labeled datasets [8, 65, 78].

3.6. Implementation Details

We implement our BEV waypoint prediction network
fo leveraging a state-of-the-art conditional sensorimotor
agent [13]. However, as discussed in Sec. 3.2, we do not
assume a fixed known BEV perspective transform. Thus,
we remove the fixed perspective transformation layer which
restricts scalability and replace it with a per-branch BEV
prediction module (see supplementary for additional imple-
mentation and architecture details). During training we use
a learning rate of 1le—3 and resize images to 400 x 225.

4. Experiments
4.1. Experimental Setup

To obtain large amounts of driving data, we downloaded
100 hours of front view driving videos from popular driv-
ing channels on YouTube (across cities, weathers, and times
of day, as shown in Fig. 1). In our real-world evaluation,
we use the nuScenes [7], Waymo [66] and Argoverse [10]
datasets. While nuScenes is a highly instrumented and an-
notated dataset, it is primarily used for perception tasks
without an official benchmark for future waypoint plan-
ning. The recent work by Hu et al. [36] uses a random
split, yet this is not suitable for studying generalization (the
method also employs LiDAR input whereas we do not). We
create a geography-based split into nuScenes Boston (nS-
Boston) and nuScenes Singapore (nS-Singapore) which is
challenging due to the significant domain shift. To further
evaluate generalization, we also utilize the Waymo and Ar-
goverse datasets which were collected across 8 different
cities. Specifically, we construct a future waypoint pre-
diction benchmark from the Waymo perception testing set
and the Argoverse 3D tracking training set. Note that in
our evaluation we do not assume any access to the tar-
get domain’s pseudo-labels, as often done in related re-
search. Overall, our split results in 13K, 11K, 11K, and
26K samples from nS-Boston, nS-Singapore, Argoverse
and Waymo, respectively.

The open-loop real-world evaluation compares predic-
tions to an expert driver in complex interactions (i.e.,
diverse maneuvers, yielding, merging, irregular intersec-
tions). To analyze the impact of the proposed approach
during closed-loop driving, we further perform interactive
on-policy evaluation in CARLA [18,25]. We replicate our
training settings in simulation and predict a final low-level
action by employing a PID controller [13]. In particular, we
train on labeled data from Town 1 and evaluate on Town
2 in regular traffic (following NoCrash [18]). To under-
stand the impact of pseudo-labeling on the close-loop driv-
ing metrics we keep a portion of the training town data for
pseudo-labeling. The evaluation is conducted over 25 pre-



defined routes in Town 2 under four different weathers, one
of which is not seen in annotated data. Additional details
regarding the experimental setup can be found in the sup-
plementary.

Evaluation Metrics: We follow standard open-loop eval-
uation and use Average and Final Ly Displacement Er-
ror (ADE and FDE, respectively) over future waypoints
in the BEV [42]. We also compute a collision rate [35]
which measures collisions along the predicted waypoints
with other vehicles (we are only able to compute this metric
on nuScenes and Argoverse due to the provided annotations
for the surrounding vehicles). In our CARLA experiments
we also report agent Success Rate (SR), Route Completion
(RC), and Collision (Coll.) frequency per 10km.

4.2. Results

Model Architecture: We first analyze the proposed BEV
planning model architecture on the nuScenes cross-town
split. The architecture is then fixed for subsequent ex-
periments. As shown in Table 1, the state-of-the-art CIL
model [13] achieves a 1.86 ADE on the cross-town training
and testing split. We emphasize that the CIL baseline [13]
predicts the waypoints in 2D images and transform the pre-
dicted waypoints into BEV through a perspective transfor-
mation. However, such transformation may not be accu-
rate in the real-world. We can therefore see the benefits of
the BEV planner, even before pseudo-labeling techniques
have been applied. Our proposed BEV planner achieves a
1.14 ADE (a nearly 40% reduction in error compared to
CIL). Given prior work on nuScenes primarily relies on
non-conditional approaches based on LiDAR [35], we also
ablate over different inputs to the model. Intuitively, we
find the speed measurements to be critical to BEV waypoint
prediction. Our proposed BEV planner with both speed
and conditional command input gives the best ADE perfor-
mance on nS-Singapore. We now continue to analyze the
benefits of a semi-supervised learning step to improve pol-
icy performance.

Pseudo-Labeling Approaches: We consider various ap-
proaches for leveraging the unlabeled YouTube data (we
select 10 driving hours for the ablation). To emphasize gen-
eralization, we do not pseudo-label the unseen test datasets
or incorporate their unlabeled samples into the self-training
in any way. We report waypoint prediction performance
before and after the final fine-tuning step on nS-Boston
across all test sets. As shown in Table 2, pre-training over
the pseudo-labeled YouTube data and fine-tuning on the
clean dataset consistently improves ADE, FDE, and colli-
sion metrics across evaluation settings. We see how leverag-
ing a state-of-the-art Visual Odometry (VO) model [73] as
a teacher for SelfD instead of the proposed pseudo-labeling
mechanism results in reduced performance. As recovering

Table 1. Model Architecture. The CIL baseline [13] predicts
waypoints in the image and relies on perspective transform with
known camera calibration, while our proposed monocular-to-BEV
planner does not have access to camera intrinsic or extrinsic pa-
rameters. All models are trained on nuScenes Boston and evalu-
ated on nuScenes Singapore.

Models ‘ Command Speed ‘ ADE (meters)
CIL Baseline [13] | v v o 1.86
4.77
v 4.64
BEYV Planner v 133
v v 1.14

the camera motion in dynamic scenes with unknown cam-
era parameters is difficult, leveraging this model results in
noisy and unsafe trajectories. While we find limited util-
ity in leveraging temporal data, this may be alleviated by
improved visual odometry methods in the future. As such
methods become more robust to arbitrary settings, they may
be integrated to complement our method, e.g., to leverage
both rollouts as well as the proposed data augmentation. We
also find our pre-training pipeline to improve over mixing-
based approaches [65].

What If Augmentation: Results in Table 2 demonstrate
how self-training without the proposed data augmentation
results in limited gains. Here, we experiment with pseudo-
labeling using various sampling strategies for speed mea-
surements and conditional commands. In addition to uni-
form and prior-based sampling (determined empirically
based on the training data), we also report findings using the
visual odometry [73] model estimates for the speed and con-
ditional command. We find uniform sampling to outperform
more informed prior and visual odometry-based sampling
due to the extensive speed profile and multi-branch supervi-
sion it provides. We can see how a model learned through
self-training but without such powerful augmentation (i.e.,
SelfD without What if in Table 2) results in worse perfor-
mance compared to the baseline BEV planning model, e.g.,
1.18 vs. 1.14 ADE and 2.23 vs. 2.16 FDE. We also find
the augmentation to improve safety of the predicted trajec-
tories, as shown by reduced collision rates. This is affirmed
in our closed-loop evaluation shown in Table 5.

Generalization to Harsh Settings: We stress test SelfD
in Table 3 under the most challenging subsets across the
datasets, as selected by video episodes collected in certain
environmental conditions. Interestingly, we find SelfD to
efficiently reduce error on nighttime conditions, which is
only seen in YouTube videos. However, as nS-Boston al-
ready contains some scenes with cloudy and light rain set-
tings, the improvement on rainy conditions on Waymo is



Table 2. Pseudo-Labeling Approaches. We compare various pseudo-labeling approaches by varying the underlying sampling mechanism

for the speed and conditional inputs. These may either be estimated with visual odometry [

] (i.e., SelfD without “what if” augmentation)

or sampled from a prior distribution (i.e., uniformly or with a prior). We find uniform sampling to work best as a form of data augmentation.
We also compare to a baseline using a state-of-the-art visual odometry method for pseudo-labels. Note that DVO-based approaches utilize
sequential video data while the rest are single-frame. “Coll.” refers to collision rate and “nS” to nuScenes (see Sec. 4.1).

Method nS-Singapore Argoverse ‘Waymo

ADE FDE Coll. (%) ADE FDE Coll. (%) ADE FDE

BEV Planner (nS-Boston) | 114 216 950 | 107 216 1650 | 217 387

SelfD (VO) 4.63 8.07 12.91 4.35 7.54 31.87 5.16 9.02

Pre-Trained SelfD (w/o What If) 1.32 2.45 10.02 1.27 2.46 13.92 243 4.28

(YouTube) SelfD (What If-Prior) 1.19 2.40 10.01 1.12 2.34 16.51 2.10 3.94

SelfD (What If-Uniform) 1.19 2.28 10.10 1.13 2.28 15.70 2.24 4.01

FixMatch [65] 1.18 2.22 12.02 1.10 2.24 15.20 2.18 3.88

. SelfD (VO) 1.09 2.09 9.33 1.03 2.11 17.52 2.01 3.62
Fine-Tuned

(YouTube & nS-Boston) SelfD (w/o What If) 1.18 2.23 9.34 1.09 2.18 16.26 2.03 3.62

SelfD (What If-Prior) 1.09 2.10 9.47 1.00 2.06 15.71 2.10 3.73

SelfD (What If-Uniform) 1.00 1.93 9.30 0.99 2.05 14.20 1.65 3.02

Table 3. Generalization to Harsh Conditions. We analyze the impact of SelfD on generalization from nS-Boston to specific environmental
conditions. We compute the performance over domain subsets within each dataset. While insightful for the larger nuScenes and Waymo
splits, we note that this splits leads to a small dataset on Argoverse with limited insights.

Method nS-Singapore Night | Argoverse Rainy | Argoverse Night | Waymo Rainy | Waymo Night
ADE FDE ADE FDE ADE  FDE ADE FDE | ADE FDE
BEV Planner (nS-Boston) | 1.67 3.05 0.81 1.71 0.78 1.61 070 1.28 | 1.81 325
SelfD (Pre-Trained) 1.73 3.17 0.84 1.85 0.94 1.94 077 142 | 196 3.55
SelfD (Fine-Tuned) 1.28 242 0.79 1.71 0.91 1.80 0.67 132 | 1.53 2.80

Table 4. Impact of Initial Training Dataset. We analyze the
impact of different datasets for training the initial BEV planner
model.

. nS-Singapore
Initial Dataset Method ADE FDE
BEV Planner 1.42 2.58

Argoverse SelfD (w/o FT) 1.38 2.52
SelfD (w/ FT) 1.18 2.23

BEV Planner 1.08 2.03

Waymo SelfD (w/o FT) 1.13 2.14
SelfD (w/ FT) 0.91 1.81

limited. While we show results on similar Argoverse set-
tings for consistency and completeness, our harsh settings
split results in very few samples (in particular for Argov-
erse Night). Hence, results become less meaningful. While
insightful, this experiment demonstrates the difficulty in ob-
taining diverse annotated data, further motivating our SelfD
approach for development and real-world scalability.

Impact of Initial Training Data: We further investigate
the role of the initial training dataset on the pseudo-labeling
step and resulting model generalization performance in

Table 5. Closed-Loop Evaluation in CARLA. We analyze the
impact of the proposed self-training step on closed-loop metrics
of Success Rate (SR), Route Completion (RC), and Collision fre-
quency (Coll.) per 10km.

Method | ADE | | FDE | | SR (%) 1 | RC (%) 1 | Coll. |
CIL Baseline [13] | 0.57 | 1.30 | 16 66.88 | 10.71
BEV Planner 0.66 | 1.32 12 65.66 | 11.33
SelfD (Town 1) 056 | 1.30 | 25 71.84 | 11.51
SelfD (Town 1 &2)| 0.55 | 1.24 | 26 74.50 | 5.18

Table 4. Here, we repeat the experiments by replacing
nS-Boston with Argoverse and Waymo and test on nS-
Singapore (i.e., for direct comparison with Table 2). We
keep all hyper-parameters fixed. While models trained on
different dataset may bias differently the pseudo-labels on
the YouTube dataset, overall we find similar trends in per-
formance regardless of the original training dataset.

Closed-Loop Evaluation in CARLA: We show our anal-
ysis in CARLA in Table 5. We report both open-loop and
closed-loop metrics for completeness. In this experiment,
we train our BEV planner using an annotated portion of
Town 1, and test on Town 2. We note that while our CIL
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Figure 4. Additional Unlabeled Data. Results when increas-
ing the amount of pseudo-labeled YouTube driving data up to 100
hours. As our proposed self-training pipeline facilitates scalable
learning from large amounts of data, the model can continue to
improve with additional YouTube data.

Baseline benefits from the known fixed perspective trans-
form assumption the BEV planner has no knowledge of
camera parameters and must learn it from the data. When
training SelfD using pseudo-labeled data from Town 01, we
achieve a near doubling in the success rate, from 12% to
25%. This increase in model performance using the most
difficult closed-loop evaluation metric highlights the bene-
fits of the proposed approach. We further pseudo-label and
use in pre-training an unlabeled dataset from Town 2 (i.e.,
SelfD - Town 1 & 2), showing additional gains in driving
performance across metrics. This experiment suggests mul-
tiple ways in which the proposed approach may be lever-
aged in real-world generalization and adaptation settings.

Additional YouTube Pre-Training Data: While we lever-
age 10 hours of YouTube data in our ablation analysis,
we provide results with additional YouTube data of up to
100 hours. The results, shown in Fig. 4, suggest further
gains can be made with larger and more diverse pre-training

datasets from the web. As our proposed self-training
pipeline facilitates scalable learning from large amounts of
data, the model may continue to improve with additional
YouTube data. However, this requires further study in the
future, e.g., with respect to larger network capacity.

5. Conclusion

We envision broad and easily deployable autonomous
navigation systems. However, access to resources and data
limits the scope of the brittle autonomous systems today.
Our SelfD approaches enables to significantly improve an
initially trained policy without incurring additional data col-
lection or annotation efforts, i.e., for a new platform, per-
spective, use-case, or ambient settings. Crucially, due to
the proposed underlying model architecture, we do not in-
corporate camera parameters or configuration assumptions
into the monocular inference. As SelfD is self-improving, a
future direction could be to continue and learn from increas-
ingly larger online datasets beyond what is described in our
study. While we emphasized efficient large-scale training in
our model development, how to best extend SelfD to more
explicitly leverage temporal demonstration data is still an
open question which could be studied further in the future.
Finally, beyond complex 3D navigation, it would be inter-
esting to explore the applicability of our proposed training
framework for learning various embodied tasks from unla-
beled web data.

Acknowledgments: We thank the Red Hat Collaboratory
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Appendix A. Implementation and Training

This section details the BEV plan network architecture
and training procedure.

A.1. Network Architecture

Learned BEV Plan Transformation: Fig. 5 contrasts our
proposed BEV plan network architecture with two base-
lines. The first baseline is the implementation of the
waypoint-based CIL [13], as depicted in Fig. 5(a). This
common approach utilizes a conditional command to se-
lect a set of 2D waypoints in the image-plane. The image-
plane waypoints can then be projected to the BEV using
a known perspective transformation. Based on our experi-
ments on nS-Singapore, we find the assumption of a fixed
perspective transform (which may often hold in CARLA)
to degrade BEV projection quality. By learning the image-
to-BEV projection as shown in Fig. 5(b), we find a signif-
icant reduction in ADE on the nS-Singapore test set, from
1.86 for the image-plane CIL baseline [13] to 1.21. Here,
the overall network structure is kept identical with the ex-
ception of a learned projection implemented with 3 Fully-
Connected (FC) layers (first two with Relu and Dropout).
However, while this architecture does not depend on a pre-
calibrated homography matrix, we find this single learned
projection branch to be insufficient for the BEV prediction
task in many real-world scenarios. In particular, a single
branch network may overfit to the main mode of the train-
ing data, i.e., of driving straight, addressed next.

Conditional Multi-Branch Transformation: To accu-
rately project waypoints across various maneuvers, we pro-
pose to leverage conditional projection branches. As shown
in Fig. 5(c), by selecting the BEV waypoints based on the
conditional command, the model can learn more robust pro-
jection for the less frequent turn events and their BEV way-
point structure. Our SelfD experiments therefore utilize the
last network architecture in Fig. 5(c). All three architec-
tures take RGB images, speed, and conditional command as
input. The image is processed through a ResNet-34 back-
bone. Next, the image features are concatenated with the
measured speed and forwarded to deconvolution layers for
computing image-plane waypoint heatmaps followed by a
spatial softmax to determine final waypoints. We next dis-
cuss the training procedure for the network.

Training Details: Throughout the experiments, we initial-
ize our policy model from ImageNet [22]. We optimize the
network using Adam [39] with a batch size of 96 for 128
epochs. The learning rate is set to le—3.

Appendix B. Additional Experimental Results

In this section, we first analyze the impact of different
initial training datasets on self-training and generalization
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Figure 5. BEV Planner Architecture. To handle viewpoint and layout diversity, our proposed model does not assume a fixed known BEV
perspective transform. A multi-branch projection model (c) provides the best results with 1.14 ADE on NS-Singapore in contrast to 1.86
ADE and 1.21 ADE for (a) and (b), respectively. SelfD employs the conditional waypoint projection module (c).

Table 6. SelfD with Different Initial Data. We analyze the impact of the initial pre-training dataset to find consistent trends and improve-
ments in model generalization.

. nS-Boston nS-Singapore Argoverse Waymo
Initial Dataset Method ADE FDE | ADE FDE | ADE FDE | ADE  FDE
BEV Planner 0.79 1.50 - - 1.04 2.07 1.38 2.52
nS-Singapore SelfD (Pre-Trained) 0.95 1.79 - - 1.17 2.28 1.75 3.12
SelfD (Fine-Tuned) 0.74 1.47 - - 1.00 2.07 1.29 245
BEV Planner 1.17 2.11 1.42 2.58 - - 2.16 3.78
Argoverse SelfD (Pre-Trained) 1.17 2.10 1.38 2.52 - - 2.20 3.86
SelfD (Fine-Tuned) 0.85 1.60 1.18 2.23 - - 1.71 3.13
BEV Planner 0.78 1.49 1.08 2.03 1.04 2.06 - -
Waymo SelfD (Pre-Trained) 0.87 1.63 1.13 2.14 1.11 2.19 - -
SelfD (Fine-Tuned) 0.77 1.52 0.91 1.81 0.99 2.06 - -

performance. Secondly, we outline dataset statistics for the
analysis in the main paper regarding harsh evaluation set-
tings. Thirdly, we analyze the benefits of an additional it-
eration of pseudo-labeling with the proposed approach. Fi-
nally, we discuss additional qualitative results for the data
augmentation strategy and model inference.

Impact of Initial Training Data: We further investigate
the impact of different initial training data on the final pol-

icy. Results obtained by initially training with each of the
three datasets, nS-Singapore, Argoverse and Waymo, are
shown in Table 6. Overall, we find that SelfD improves
driving metrics across the settings and datasets regardless
of the initial training data.

Additional Iterations: As shown in Table 7, while the
fine-tuned SelfD model could be used to repeat the pseudo-
labeling process with a more robust model, we do not find



Table 7. Additional Iterations. An additional iteration of pseudo-labeling and re-training provides limited benefits.

Method nS-Singapore Argoverse Waymo

ADE FDE ADE FDE ADE FDE

BEYV Planner (nS-Boston) ‘ 1.14 2.16 1.07 2.16 2.17 3.87

. SelfD (Pre-Trained) 1.19 2.28 1.13 2.28 2.24 4.01
Iteration 1 .

SelfD (Fine-Tuned) 1.00 1.93 0.99 2.05 1.65 3.02

Iteration 2 SelfD (Pre-Trained) 1.00 1.92 1.04 2.10 1.77 3.17

SelfD (Fine-Tuned) 1.07 2.06 1.04 2.12 2.18 3.87

Table 8. Harsh Conditions Data Statistics. Number of driv-
ing episodes within each harsh evaluation condition. Given the
difficulty in obtaining diverse data with annotations, this split is
restrictive for certain scenes and datasets.

Dataset ‘ Total Scenes ‘ Night Scenes ‘ Rainy Scenes
nS-Singapore | 383 | 99 \ 0
Argoverse ‘ 66 ‘ 3 ‘ 1
Waymo \ 150 | 28 \ 9

benefits from such additional iterations. Although perfor-
mance may go up for the pre-trained model due to the less
noisy trajectories, this does not outperform prior results and
no further gains are observed after an additional fine-tuning.

Generalization to Harsh Settings: To gain insights into
the underlying performance of the proposed SelfD ap-
proach, the main paper analyzes additional testing splits,
controlled for weather and ambient conditions. The pro-
posed approach generally improves generalization, e.g.,
from driving in nS-Boston at daytime to nS-Singapore driv-
ing at nighttime. To contextualize the results, we further
provide the resulting statistics for this split in Table 8. nS-
Singapore has 99 night scenes without any rainy scenes.
Waymo has 150 total scenes, 28 of which are night scenes
and 9 are rainy scenes. Argoverse has only three night
scenes and one rainy scenes out of 66 total scenes. Thus,
while less representative, we also show performance on Ar-
goverse subsets for completeness. We also leverage this re-
sults in order to highlight the difficulty in collecting highly
diverse and annotated real-world data. Another interest-
ing observation is the minimal performance gains on rainy
conditions on both Argoverse and Waymo. Upon further
inspection, we realized many of the training scenes in nS-
Boston already have cloudy to light rain weather, thus ben-
efiting less from additional unlabeled data within such set-
tings. As the baseline experiences such conditions in train-
ing it may already perform well within such conditions
without additional pseudo-labeled data. Nonetheless, given
the need for larger and more diverse evaluation sets across
all settings in Table 8, this requires further study by future

work over more representative datasets.

‘What If’ Pseudo-Labeling: To provide details into the
proposed data augmentation step, Fig. 6 depicts additional
results when sampling from the planner on the unlabeled
online scenes. We visualize three pseudo-labels for each
driving samples for three different conditional commands
and randomly sampled speed. While traditionally each im-
itation learning data sample is aligned with a single ground
truth action label, the ‘what if” augmentation process pro-
vides additional supervision through many plausible sam-
ples.

Additional Qualitative Results: We provide additional
qualitative results in Fig. 7 to show a comparison of the
proposed SelfD with the baseline model (trained solely on
nS-Boston). As shown in the figure, the baseline model gen-
erally provides as good or worse performance on challeng-
ing tasks of navigating across various turn configurations,
speeds, maneuvers, and environmental conditions. Inter-
estingly, we find SelfD to robustly handle varying speed
ranges, especially at high magnitude. This is depicted in
several instance in Fig. 7, e.g., example in the top-left cor-
ner or the example in the second row and second column.

Appendix C. Limitations

Finally, we discuss several limitations of our study and
model. We begin by considering failure cases as shown in
Fig. 8. The visualization specifically focuses on the case of
very sharp turns, where we demonstrate the limited utility
of the current model. As depicted in the figure, the pro-
posed YouTube-based pre-training pipeline provides very
limited improvement in such conditions compared to the
baseline. While we followed standard definitions of the
conditional commands [13], it is possible that further im-
provements in such settings can be made through introduc-
ing more fine-grained conditional branches. As adding con-
ditional branches results in a significant increase for the size
of the underlying BEV planner model and thus its scalabil-
ity, we focus on extensively analyzing the three-branch ar-
chitecture. Nonetheless, while such architecture may learn



Speed: 1.75 Speed:5.26 Speed: 1.00
30| Score: 0.51 Score: 0.57 Score: 0.42
Cmd: 1 Cmd: 2 Cmd: 3

Speed: 0.32 Speed: 0.89 Speed: 2.35
30 Score: 0.57 Score: 0.52 Score: 0.42
Cmd: 1 Cmd: 2 Cmd: 3

15 -10 -5

Speed: 9.27 Speed: 8.93 Speed: 1.45
30 Score: 0.45 Score: 0.63 Score: 0.42

Cmd: 1 Cmd: 2 Cmd: 3
25 +
20 o
15 -
10 o

5 ;‘.
<15 -10 -5 0 5 10

Speed: 150 Speed: 0.34 Speed: 0.89
30| Score: 0.53 Score: 0.58 Score: 0.43
Cmd: 1 Cmd: 2 Cmd: 3

Speed: 1.46 Speed: 1.71 Speed: 3.27
Score: 0.54 Score: 0.52 Score: 0.41
Cmd: 1 Cmd: 2 Cmd: 3

©
]

25

20

15

10

=15 -10 -5

Speed: 1.39 Speed: 2.88 Speed: 0.33
30 [ Score: 0.55 Score: 0.52  Score: 0.94

Cmd: 1 Cmd: 2 Cmd: 3
25
20
15
10
o 2
5
o.‘.
9% 10 5 o0 5 10

15

Speed: 0.33 Speed: 3.98 Speed: 6.00
30| Score: 0.60 Score: 0.55 Score: 0.34

Cmd:1  Cmd:2  Cmd:3
25
20
15
L]
10 .
Py
5 >
% -1 5 o0 5 10

Speed: 0.01 Speed: 1.2 Speed: 0.88
30| Score: 0.60 Score: 0.52 Score: 0.43
Cmd: 1 Cmd: 2 Cmd: 3

25

20,

15

10

ofe

%95 -0 -5

Figure 6. ‘What If’ Pseudo-Labeling. Additional qualitative examples of ‘What if” pseudo-labeling augmentation.

both sharp and mild turns, we find it to be limited in expres-
siveness under rare conditions. Fundamentally, the pseudo-
labels may also become quite noisy under such instances
thus limiting the benefits of the proposed semi-supervised
learning step. However, even under such difficult settings,
our generalized approach could potentially benefit from ad-
ditional unlabeled data jointly with an increased model ca-
pacity. We leave this to future work.

A related challenge involves robustness over viewpoints
and camera parameters. While prior work generally trains
and tests planning models within the same sensor setup, our
proposed approach takes a step towards more configuration-
invariant navigation. However, the variability in camera
configuration among the evaluation datasets used in our
study is limited, i.e., compared to completely unconstrained
settings. Understanding generalization under such chal-
lenges can also benefit from controllable analysis in the fu-
ture (as was done over weathers and time of day). This can
also take our approach closer to demonstrating utility under
broader embodied tasks, i.e., beyond on-road driving.

5 10 15



Figure 7. Qualitative Results. We plot the performance of SelfD over Waymo (first two rows), Argoverse (middle two rows), and

nS-Singapore (bottom two rows).
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Figure 8. Failure Cases. We visualize BEV waypoint prediction for across datasets (top-left is Waymo, top-right is Argoverse, bottom
row is nS-Singapore). While we do observe general ADE and FDE reductions on difficult turn scenarios, the benefits of our current model
and YouTube dataset are still limited in such settings, as shown by these difficult examples.



