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Abstract

We train embodied neural networks to plan and navigate
unseen complex 3D environments, emphasising real-world
deployment. Rather than requiring prior knowledge of the
agent or environment, the planner learns to model the state
transitions and rewards. To avoid the potentially hazardous
trial-and-error of reinforcement learning, we focus on dif-
ferentiable planners such as Value Iteration Networks (VIN),
which are trained offline from safe expert demonstrations.
Although they work well in small simulations, we address
two major limitations that hinder their deployment. First,
we observed that current differentiable planners struggle
to plan long-term in environments with a high branching
complexity. While they should ideally learn to assign low
rewards to obstacles to avoid collisions, these penalties are
not strong enough to guarantee collision-free operation. We
thus impose a structural constraint on the value iteration,
which explicitly learns to model impossible actions and noisy
motion. Secondly, we extend the model to plan exploration
with a limited perspective camera under translation and fine
rotations, which is crucial for real robot deployment. Our
proposals significantly improve semantic navigation and ex-
ploration on several 2D and 3D environments, succeeding
in settings that are otherwise challenging for differentiable
planners. As far as we know, we are the first to successfully
apply them to the difficult Active Vision Dataset, consisting
of real images captured from a robot.1

1. Introduction

Continuous advances in robotics have enabled robots to
be deployed to a wide range of scenarios, from manufactur-
ing in factories and cleaning in households, to the emerging
applications of autonomous vehicles and delivery drones [2].
Improving their autonomy is met with many challenges, due
to the difficulty of planning from uncertain sensory data. In
classical robotics, the study of planning has a long tradi-

1Code available: https://github.com/shuishida/calvin

Figure 1. (1st column) Input images seen during a run of our
method on AVD (Sec. 5.2.2). This embodied neural network has
learned to efficiently explore and navigate unseen indoor environ-
ments, to seek objects of a given class (highlighted in the last
image). (2nd-3rd columns) Predicted rewards and values (resp.),
for each spatial location (higher for brighter values). The unknown
optimal trajectory is dashed, while the robot’s trajectory is solid.

tion [46], using detailed knowledge of a robot’s configura-
tion and sensors, with little emphasis on learning from data.
An almost orthogonal approach is to use deep learning, an
intensely data-driven, non-parametric approach [12]. Mod-
ern deep neural networks excel at pattern recognition [42],
although they do not offer a direct path to planning applica-
tions. While one approach would be to parse a scene into
pre-defined elements (e.g. object classes and their poses)
to be passed to a more classical planner, an end-to-end ap-
proach where all modules are learnable has the chance to
improve with data, and be adaptable to novel settings with
no manual tuning. Because of the data-driven setup, a deep
network has the potential to learn behaviour that leverages
the biases of the environment, such as likely locations for
certain types of rooms. Value Iteration Networks (VINs) [45]
emerged as an elegant way to merge classical planning and
data-driven deep networks, by defining a differentiable plan-
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ner. Being sub-differentiable, like all other elements of a
deep network, allows the planner to include learnable ele-
ments, trained end-to-end from example data. For example,
it can learn to identify and avoid obstacles, and to recognise
and seek classes of target objects, without explicitly labelled
examples. However, there are gaps between VIN’s idealised
formulation and realistic robotics scenarios, which some
works address [13, 23]. The CNN-based VIN [45] considers
that the full environment is visible and expressible as a 2D
grid. As such, it does not account for embodied (first-person)
observations in 3D spaces, unexplored and partially-visible
environments, or the mismatch between egocentric observa-
tions and idealised world-space discrete states.

In this paper we address these challenges, and close the
gap between current differentiable planners and realistic
robot navigation applications. Our contributions are:

1. A constrained transition model for value iteration, fol-
lowing a rigorous probabilistic formulation, which explicitly
models illegal actions and task termination (Sec. 4.1). This
is our main contribution.

2. A 3D state-space for embodied planning through the
robot’s translation and rotation (Sec. 4.2.1). Planning
through fine-grained rotations is often overlooked (Sec. 2),
requiring better priors for transition modelling (Sec. 4.1.2).

3. A trajectory reweighting scheme that addresses the unbal-
anced nature of navigation training distributions (Sec. 4.1.5).

4. We demonstrate for the first time that differentiable plan-
ners can learn to navigate in both complex 3D mazes, and
the challenging Active Vision Dataset [1], with images from
a real robot platform (Sec. 5.2.2). Thus our method can be
trained with limited data collected offline, as opposed to
limitless data from a simulator as in prior work.

Sec. 2 discusses related work, while Sec. 3 gives a short
introduction to differentiable planning. Sec. 4 presents our
technical proposals, and Sec. 5 evaluates them.

2. Related work

Planning and reinforcement learning. Planning in fully-
known deterministic state spaces was partially solved by
graph-search algorithms [10,16,24–26,43]. A Markov Deci-
sion Process (MDP) [3,44] considers probabilistic transitions
and rewards, enabling planning on stochastic models and
noisy environments. With known MDPs, Value Iteration
achieves the optimal solution [3, 44]. Reinforcement Learn-
ing (RL) focuses on unknown MDPs [31, 31, 38, 47, 48].
Model-free RL systems are reactive; a policy (i.e. a generic
plan) is built over a long period of trial and error, and will
be specific to the training environment (there is no online
planning). This makes them less ideal for robotics, where
risky failures must be avoided, and new plans (policies) must
be created on-the-fly in new environments. Model-based RL

methods attempt to learn an MDP and often use it for plan-
ning online [9, 14, 15, 21, 22]. The environment is assumed
to provide a reward signal at every step in both cases.
Deep networks for navigation. Several works have made
advances into training deep networks for navigation. The
Neural Map [36] is an A2C [31] agent (thus reactive) that
reads and writes to a differentiable memory (i.e. a map).
Similarly, Mirowski et al. [30] train reactive policies which
are specific to an environment. The Value Prediction Net-
work [35] learns an MDP and its state-space from data, and
plans with a single roll-out over a short horizon. Hausknecht
et al. [18] add recurrence to deep Q-learning to address
partially-observable environments, but considering only
single-frame occlusions. Several works treat planning as
a non-differentiable module, and focus on training neural
networks for other aspects of the navigation system. Savi-
nov et al. [39] do this by composing siamese networks and
value estimators trained on proxy tasks, and use an initial
map built from footage of a walk through the environment.
Active Neural SLAM [6] trains a localisation and mapping
component (outputting free space and obstacles), a policy
network to select a target for the non-differentiable plan-
ner, and another to perform low-level control. Subsequent
work [5] complemented this map with semantic segmen-
tation. This map is different from ours, which consists of
embeddings learned by a differentiable planner, and so are
not constrained to correspond to annotated labels. The later
two works navigate successfully in large simulations of 3D-
scanned environments, and were transferred to real robots.
Imitation learning. To avoid learning by trial-and-error,
Imitation Learning instead uses expert trajectories. Inverse
Reinforcement Learning (IRL) [20, 33, 50, 51] achieves this
by learning a reward function that best explains the expert tra-
jectories. However, this generally leads to a difficult nested
optimisation and is an ill-posed problem, since many reward
functions can explain the same trajectory.
Differentiable planning. Tamar et al. [45] introduced the
Value Iteration Network (VIN) for Imitation Learning, which
generates a plan online (with value iteration) and back-
propagates errors through the plan to train estimators of the
rewards (Sec. 3.1). VINs were also applied to localisation
from partial observations by Karkus et al. [23], but assuming
a full map of the environment. Lee et al. [27] replaced the
maximum over actions in the VI formula with a LSTM. The
evaluation included an extension to rotation, but assuming
a fully-known four directional view for every gridded state,
which is often not available in practice. A subtle difference
is that they handle rotation by applying a linear policy layer
to the hidden channels of a 2D state-space grid, which is less
interpretable than our 3D translation-rotation grid.

Most previous work on deploying VIN to robots [34, 40]
assume an occupancy map and goal map rather than learn-
ing the map embedding and goal themselves from data. To
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the best of our knowledge, Gupta et al.’s Cognitive Mapper
and Planner (CMP) [13] is the only work which evaluated a
differentiable planner on real-world data using map embed-
dings learned end-to-end. CMP uses a hierarchical VIN [45]
to plan on larger environments, and updates an egocentric
map. It handles rotation as a warping operation external to
the VIN (i.e. it plans in a 2D translation state-space, not 3D
translation-rotation space). Warping an egocentric map per
update achieves scalability at the cost of progressive blurring
of the embeddings. CMP was evaluated for rotations of 90°
and deterministic motion, rather than noisy translation and
rotation. Our 3D translation-rotation space and learned tran-
sition model allows smooth trajectories with finer rotations.
CMP also requires gathering new trajectories online during
training (with DAgger [37]), while ours is trained solely with
a fixed set of training trajectories, foregoing the need for a
simulator and the associated domain gap.

3. Background
A Markov Decision Process (MDP) [3, 44] formalises

sequential decision-making. It consists of states s ∈ S (e.g.
locations), actions available at each state a ∈ A(s), a reward
function R(s, a, s′) to be maximised (e.g. reaching the tar-
get), and a transition probability P (s′|s, a) (the probability
of the next state s′ given the current state s and action a). The
objective of an agent is to learn a policy π(a|s), specifying
the probability of choosing action a for any state s, chosen to
maximise the expected return Gt at every time step t. A re-
turn is a sum of discounted rewards, Gt =

∑∞
k=0 γ

kRt+k+1,
where a discount factor γ ∈ (0, 1) prevents divergences of
the infinite sum. The value function Vπ(s) = Eπ[Gt|st = s]
evaluates future returns from a state, while the action-value
function Qπ(s, a) = Eπ[Gt|st = s, at = a] considers
both a state and the action taken. An optimal policy π∗
should then maximise the expected return for all states, i.e.
∀s ∈ S, v∗(s) = maxπ vπ(s). Value Iteration (VI) [3, 44]
is an algorithm to obtain an optimal policy, by alternating a
refinement of both value (V ) and action-value (Q) function
estimates in each iteration k. When s and a are discrete, Q(k)

and V (k) can be implemented as simple tables (tensors). In
particular, we will consider as states the cells of a 2D grid,
corresponding to discretised locations in an environment, i.e.
s = (i, j) ∈ S = {1, . . . , N}2. Furthermore, transitions are
local (only to coordinates offset by δ ∈ K = {−1, 0, 1}2):

Q(k)
a,s =

∑
δ∈K

Pa,δ,s

(
Ra,δ,s + γV

(k−1)
s+δ

)
∀a ∈ A(s), with V (k)

s = max
a∈A(s)

Q(k)
a,s, (1)

Note that to avoid repetitive notation s and δ are 2D indices,
so V is a 2D matrix and both R and P are 5D tensors. The
policy π

(k)
s = argmaxa∈AQ

(k)
a,s simply chooses the action

Figure 2. (left) A 2D maze, with the target in yellow. (middle)
Values produced by the VIN for each 2D state (actions are taken
towards the highest value). Higher values are brighter. The correct
trajectory is dashed, the current one is solid. The agent (orange
circle) is stuck due to the local maximum below it. (right) Same
values for our method, CALVIN. There are no spurious maxima,
and the values of walls are correctly considered low (dark).

with the highest action-state value. While the sum in Eq. 1
resembles a convolution, the filters (P ) are space-varying
(depend on s = (i, j)), so it is not directly expressible as
such. Eq. 1 represents the “ideal” VI for local motion on a
2D grid, without further assumptions.

3.1. Value Iteration Network

While VI guarantees the optimal policy, it requires that
the functions for transition probability P and reward R are
known (e.g. defined by hand). Tamar et al. [45] pointed
out that all VI operations are (sub-)differentiable, and as
such a model of P and R can be trained from data by back-
propagation. For the case of planning on a 2D grid (naviga-
tion), they related Eq. 1 to a CNN, as:

Q(k)
a,s =

∑
δ∈K

(
PR
a,δR̂s+δ + PV

a,δV
(k−1))
s+δ

)
,

∀a ∈ A, with V (k)
s = max

a∈A
Q(k)

a,s, (2)

where PR, PV ∈ RA×|K| are two learned convolutional
filters that represent the transitions (P in Eq. 1), and R̂ is
a predicted 2D reward map. Note that A is independent of
s, i.e. all actions are allowed in all states. This turns out
to be detrimental (see next paragraph). The reward map R̂
is predicted by a CNN, from an input of the same size that
represents the available observations. In Tamar et al.’s exper-
iments [45], the observations were a fully-visible overhead
image of the environment, from which negative rewards such
as obstacles and positive rewards such as navigation targets
can be located. Each action channel in A corresponds to a
move in the 2D grid, typically 8-directional or 4-directional.
Eq. 2 is attractive, because it can be implemented as a CNN
consisting of alternating convolutional layers (Q) and max-
pooling along the actions (channels) dimension (V ).
Motivating experiment. Since the VIN allows all actions
at all states (A does not depend on s), collisions must be
modelled as states with low rewards. In practice, the VIN
does not learn to forbid such actions completely, resulting in
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propagation of values from states which cannot be reached
directly due to collision along the way. We verified this ex-
perimentally, by training a VIN according to Tamar et al. [45]
on 4K mazes (see Sec. 5 for details). We then measured, for
each state, whether the predicted scores for all valid actions
are larger than those for all invalid actions (i.e. collisions).
Intuitively, this means the network always prefers free space
over collisions. Surprisingly, we found that this was not true
for 24.6% of the states. For a real-world robot to work reli-
ably, this is an unacceptably high chance of collisions. As a
comparison, for our method (Sec. 4) this rate is only 1.6%.
In the same experiment, the VIN often gets trapped in local
minima of the value function and does not move (Fig. 2),
which is another failure mode. We aim to fix these issues,
and push VINs towards realistic scenarios. An alternative
would be to employ online retraining (DAgger) [37], which
cannot use solely a fixed set of offline trajectories.

4. Proposed method
We propose a transition model that accounts for illegal

actions and termination. We then extend it to embodied plan-
ning (rigid 3D motion and partially-observed environments).

4.1. Augmented navigation state-action space

In this section we will derive a probabilistic transition
model from first principles, with only two assumptions and
no extra hyper-parameters. The first assumption is local-
ity and translation invariance of the agent motion, which
was introduced in the VIN to allow efficient learning with
shared parameters. Unlike the VIN, we will decompose the
transition model P (s′|s, a) into two components: the agent
motion model P̂ (s′−s|a), which is translation invariant and
shared across states (depending only on the spatial differ-
ence between states s′ − s); and an observation-dependent
predictor Â(s, a) ∈ [0, 1] which evaluates whether action a
is available from state s, to disqualify illegal actions.

In robotics, it is essential that the agent understands that
the current task has been completed to move on to the next
one. Since in small environments there is a high chance that
a randomly-acting agent will stumble upon the target, An-
derson et al. [2] suggested that an explicit termination action
must be taken at the target to finish successfully. Therefore,
in addition to positional states, we assume a success state W
(“win”) that is reached only by triggering a termination ac-
tion D (“done”), and a failure state F (“fail”) that is reached
upon triggering an incorrect action. We denote the reward for
reaching F as RF , and the translation-invariant rewards as
R̂(a, s′ − s). For simplicity, we consider the reward for suc-
cess a special case of R̂(a, s′−s) where a = D and s′ = W .
With these assumptions, the reward function R(s, a, s′) is:

R(s, a, s′) =

{
R̂F , s′ = F

R̂(a, s′ − s), s′ ̸= F.
(3)

Together with the agent motion model P̂ (s′ − s|a), action
validity predictor Â(s, a) and the definition of a failure state
F , the transition model P (s′|s, a) can be derived as Eq. 4:

P (s′|s, a) =

{
1− Â(s, a), s′ = F

Â(s, a)P̂ (s′ − s|a), s′ ̸= F.
(4)

From the above, we calculate the reward R(s, a) by marginal-
ising over the neighbour states s′:

R(s, a) =
∑
s′

P (s′|s, a)R(s, a, s′) (5)

= R̂F (1− Â(s, a)) + Â(s, a)
∑
s′

P̂ (s′ − s|a)R̂(a, s′ − s)

Finally, Eq. 5 can be plugged into Eq. 1 to obtain our pro-
posed value iteration’s Q(s, a):

Q(s, a) = R(s, a) + γIa∈A
∑
s′

P (s′|s, a)V (s′) (6)

= R(s, a) + γÂ(s, a)Ia ̸=D

∑
s′

P̂ (s′ − s|a)V (s′)

where I is an indicator function. Eq. 5 and 6 essentially
express a constrained VI, which models the case of an MDP
on a grid with unknown illegal states and termination at
a goal state. The inputs to this model are three learnable
functions — the motion model P̂ (s′ − s|a), the action va-
lidity Â(s, a) (i.e. obstacle predictions), and the rewards
R̂(a, s′ − s) and R̂F . These are implemented as CNNs with
the observations as inputs (R̂F is a single learned scalar). All
the constraints follow from a well-defined world-model, with
very interpretable predicted quantities, unlike previous pro-
posals [27, 45]. We named this method Collision Avoidance
Long-term Value Iteration Network (CALVIN).

4.1.1 Training

Similarly to Tamar et al. [45], we train our method with a
softmax cross-entropy loss L, comparing an example trajec-
tory {(st, a∗t ) : t ∈ T} with predicted action scores Q(s, a):

min
P̂ , Â, R̂

1
|T |

∑
t∈T wtL (Q(st), a

∗
t ) , (7)

where Q(s) is a vector with one element per action (Q(s, a)),
and wt is an optional weight that can be used to bias the loss
if wt ̸= 1 (Sec. 4.1.5). Example trajectories are shortest
paths computed from random starting points to the target
(also chosen randomly). Note that the learned functions can
be conditioned on input observations. These are 2D grids of
features, with the same size as the considered state-space (i.e.
a map of observations), which is convenient since it enables
P̂ , Â and R̂ to be implemented as CNNs.

4



4.1.2 Transition modelling

Similarly to the VIN (Eq. 2), the motion model P̂ (s′ − s|a)
is implemented as a convolutional filter P̂ ∈ R|A|×|K|, so
it only depends on the relative spatial displacement s′ − s
between the two states s and s′. We can use the transitions
already observed in the example trajectory to constrain the
model, by adding a cross-entropy loss term L(P̂ (a∗t ), st+1−
st) for each step in the example trajectory. After training, the
filter P̂ (s′ − s|a) will consist of a distribution over possible
state transitions for each action (visualised in Fig. 5).

4.1.3 Action availability

Although the available actions Â could, in theory, be learned
completely end-to-end, in practice we found that addi-
tional regularisation is necessary. If we had a reliable log-
probability of each action being taken, Âlogit(s, a), then by
thresholding it at some point Âthresh(s) we would distinguish
between available and unavailable actions. Using a sigmoid
function σ as a soft threshold, we can write this as:

Â(s, a) = σ(Âlogit(s, a)− Âthresh(s)). (8)

Both Âlogit(s, a) and Âthresh(s) are predicted by the network,
given the observations at each time step. In order to ground
the probabilities of each action being taken, we encourage
the actions Âlogit(st) to match the example trajectory ac-
tion a∗t for all steps t, with an additional cross-entropy loss
L(Âlogit(s), a

∗). Note that there is no additional ground
truth supervision – we use strictly the same data as a VIN.

4.1.4 Fully vs. partially observable environments

Some previous works [27,45] assume that the entire environ-
ment is static and fully observable, which is often unrealis-
tic. Partially observable environments, involving unknown
scenes, require exploring to gather information and are thus
more challenging. We account for this with a simple but sig-
nificant modification. Note that Q(st) in Eq. 7 depends on
the learned functions (CNNs) P̂ , Â and R̂ through Eq. 6, and
these in turn are computed from the observations. We extend
the VIN framework to the case of partial observations by en-
suring that Q(st|O≤t) depends only on the observations up
to time t, O≤t. This means that the VIN recomputes a plan
at each step t (since the observations are different), instead
of once for a whole trajectory. Unobserved locations have
their features set to zero, so in practice knowledge of the en-
vironment is slowly built up during an expert demonstration,
which enables exploration behaviour to be learned.

4.1.5 Trajectory reweighting

Exploration provides observations O≤t of the same locations
at different times (Sec. 4.1.4). We can thus augment Eq. 7

with these partial observations as extra samples. The sum in
Eq. 7 becomes

∑
t′∈T

∑
t∈T1:t′

wtL (Q(st|O≤t′), a
∗
t ). For

long trajectories, the training data then becomes severely
unbalanced between exploration (target not visible) and ex-
ploitation (target visible), with a large proportion of the
former (90% of the data in Sec. 5.1.2). We addressed this
by reweighting the samples. We set wt = βdt/maxj∈T βdj

in Eq. 7, i.e. a geometric decay scaling with the topological
distance to the target dt. Since expert trajectories are shortest
paths, this simplifies to wt = β|T |−t.

4.2. Embodied navigation in 3D environments

Embodied agents such as robots have a pose in 3D space,
which for non-holonomic robots limits their available actions
(e.g. moving forward or rotating), and their observations.

4.2.1 Embodied pose states (position and orientation)

To address the first limitation, we augment the 2D state-space
with an extra dimension, which corresponds to Θ discretised
orientations: S = {1, . . . , N}2 × {1, . . . ,Θ}. This can be
achieved by directly adding one extra dimension to each
spatial tensor in Eq. 5 and 6. A table of tensor sizes is in
Appendix A. Note that the much larger state-space makes
long-term planning more difficult to learn. We observed
that when naively augmenting the state-space in this way,
the models fail to learn correct motion kernels P̂ (s′ − s|a).
This further reinforces the need for an auxiliary motion loss
(Sec. 4.1.2), which overcomes this obstacle, and may explain
why prior works did not plan through fine-grained rotations.

4.2.2 3D embeddings for geometric reasoning

To aggregate image information (CNN embeddings) on to
the 2D grid (map) where VIN performs planning, we follow
the same strategy as MapNet [19]. Each embedding is associ-
ated with a 3D point in world-space via projective geometry,
assuming that the camera poses and depths are known (as
assumed in prior work [4, 13, 27, 28, 45], which can be es-
timated from monocular vision [32]). The embeddings of
3D points from all past frames that fall into each cell of the
world-space 2D grid are aggregated with mean-pooling. Due
to the use of PointNet [7] aggregation on cells of a lattice,
we named this Lattice PointNet (LPN). A self-contained
description is in Appendix A. The LPN has some appealing
properties in our context of navigation: 1) it allows reasoning
about far away, observed but yet unvisited locations; 2) it
fuses multiple observations of the same location, whether
from different points-of-view or different times.
Memory-efficient mapping. Temporal aggregation during
rollout can be computed recursively as et,i,j,k/nt,i,j,k for
et,i,j,k = et−1,i,j,k + e′t,i,j,k and nt,i,j,k = nt−1,i,j,k +
n′
t,i,j,k, where e′t,i,j,k is the summed embedding for the
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Table 1. Navigation success rate (fraction of trajectories that reach
the target) on unseen 2D mazes. Partial observations (exploring
an environment gradually) and embodied navigation (translation-
rotation state-space) are important yet challenging steps towards
full 3D environments.

Standard loss Reweighted loss (ours)

Env. VIN GPPN CALVIN VIN GPPN CALVIN

Full obs. 75.6±20.6 91.3±8.1 99.0±1.0 77.5±26.6 96.6±4.0 99.7±0.5

Partial 3.6±0.6 8.5±3.5 48.0±5.2 1.7±1.7 11.25±3.7 92.2±1.3

Embod. 11.0±1.0 14.5±2.1 90.0±7.9 15.2±3.6 28.5±3.5 93.7±6.2

points in cell (i, j, k) at time t, and n′
t,i,j,k is the number of

points per cell. Only the previous map et−1,i,j,k and previ-
ous counts nt−1,i,j,k must be kept, not all past observations.
Thus at run-time the memory cost is constant over time,
allowing unbounded operation (unlike methods that do not
have an explicit map [39]).

4.3. Limitations

Our main contribution is to improve the VIN algorithm
itself (sec. 3.1) with correct termination, transition and avail-
ability probabilistic models, which is orthogonal to works
which build on top of VIN. We assume the agent’s pose,
depth image and the camera parameters to be known. Other
dynamic objects in the environment are not modelled.

5. Experiments

In this section we will gradually build up the capabilities
of our method with the proposals from Sec. 4, comparing it to
various baselines on increasingly challenging environments,
and leading up to unseen real-world 3D environments.

5.1. 2D grid environments

We start with 2D environments, where the observations
are top-down views of the whole scene, and which thus
do not require dealing with perspective images (Sec. 4.2.2).
Since Tamar et al. [45] obtain near-perfect performance in
their 2D environments, after reproducing their results we fo-
cused on 2D mazes, which are much more challenging since
they require frequent backtracking to navigate if exploration
is required. The 15× 15 mazes are generated using Wilson’s
algorithm [49], and an example can be visualised in Fig. 3.
The allowed moves A are to any of the 8 neighbours of a
cell. As discussed in Sec. 4, a termination action D must be
triggered at the target to successfully complete the task. The
target is placed in a free cell chosen uniformly at random,
with a minimum topological distance from the (random) start
location equal to the environment size to avoid trivial tasks.

Figure 3. Our method on 2D mazes (Sec. 5.1.3). (left) Input
visualisation: unexplored cells are dark, the target is yellow (just
found by the agent), and a black arrow shows the agent’s position
and orientation. (middle) Close-up of predicted rewards (higher
values are brighter) inside the white rectangle of the left panel. The
3D state-space (position/orientation) is shown, with rewards for
the 8 orientations in a radial pattern within each cell (position).
Explored cells have low rewards, with the highest reward at the
target. (right) Close-up of predicted values. They are higher facing
the direction of the target. Obstacles (black border) have low values.

5.1.1 Fully-known environment with positional states

Baselines and training. For the first experiment, we com-
pare our method (CALVIN) with other differentiable plan-
ners: the VIN [45] and the more recent GPPN [27], on
fully-observed environments. Other than using mazes in-
stead of convex obstacles, this setting is close to Tamar
et al.’s [45]. The VIN, GPPN and CALVIN all use 2-layer
CNNs to predict their inputs (details in Appendix A). All net-
works are trained with 4K example trajectories in an equal
number of different mazes, using the Adam optimiser with
the optimal learning rate chosen from {0.01, 0.005, 0.001},
until convergence (up to 30 epochs). Navigation success
rates (fraction of trajectories that reach the target) for epochs
with minimum validation loss are reported. Our reweighted
loss (Sec. 4.1.5) is equally applicable to all differentiable
planners, so we report results both with and without it.
Results. Table 1 (first row) shows the navigation success
rate, averaged over 3 random seeds (and the standard de-
viation). The VIN has a low success rate, showing that it
does not scale to large mazes. GPPN achieves a high success
rate, and CALVIN performs near-perfectly. This may be
explained by the GPPN’s higher capacity, as it contains a
LSTM with more parameters. Nevertheless, CALVIN has
a more constrained architecture, so its higher performance
hints at a better inductive bias for navigation. It is interesting
to note that the proposed reweighted loss has a beneficial
effect on all methods, not just CALVIN. With the correct
data distribution, any method with sufficient capacity can
fit the objective. This shows that addressing the unbalanced
nature of the data is an important, complementary factor.

5.1.2 Partially observable environment

Setting. Next, we compare the same methods in unknown
environments, where the observation maps only contain ob-
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Table 2. Navigation success rate on unseen 3D mazes (MiniWorld).
Note that the baselines do not generalise to larger mazes.

CNN backbone LPN backbone (ours)

Size A2C PPO VIN GPPN CALVIN (ours)

3× 3 98.7±1.9 81.0±26.9 90.3±3.1 91.3±4.7 97.7±1.7

8× 8 23.6±4.9 14.7±6.2 41.2±9.5 33.3±8.6 69.2±5.3

served features up to the current time step (sec. 4.1.4). To
simulate local observations, we perform ray-casting to iden-
tify cells that are visible from the current position, up to 2
cells away. Example observations are in Appendix A.

Results. In this case, the agent has to take significantly
more steps to explore compared to a direct route to the target.
From Tab. 1 (2nd row) we can see that partial observabil-
ity causes most methods to fail catastrophically. The sole
exception is CALVIN with the reweighted loss (proposed),
which performs well. Note that to succeed, an agent must
acquire several complex behaviours: directing exploration to
large unseen areas; backtracking from dead ends; and seek-
ing the target when seen. Our method displays all of these
behaviours (see Appendix A for visualisations). While the
model initially assigns high values to all unexplored states,
as soon as the target is in view, the model assigns a high
value to the target state and its neighbours. Since only a
combination of CALVIN and a reweighted loss works at all,
we infer that a correct inductive bias and a balanced data
distribution are both necessary for success.

5.1.3 Embodied navigation with orientation

Setting. Now we consider embodied navigation, where
transitions depend on the agent’s orientation (sec. 4.2.1). We
augment the state-space of all methods (Sec. 4.2.1) with 8
orientations at 45° intervals, and allow 4 move actions A:
forward, backward, and rotating in either direction.

Results. In Tab. 1 (3rd row) we observe that VIN and GPPN
perform slightly better, but still have a low chance of success.
CALVIN outperforms them by a large margin. We also
visualise a typical run in Fig. 3 (refer to the caption for more
detailed analysis). One advantage of CALVIN displayed in
Figs. 2 and 3 is that values and rewards are fully interpretable
and play the expected roles in value iteration (Eq. 1). Less
constrained architectures [27,45] insert operators that deviate
from the value iteration formulation, and thus lose their
interpretability as rewards and values (cf . Appendix A).

5.2. 3D environments

Having validated embodied navigation and exploration,
we now integrate the Lattice PointNet (LPN, Sec. 4.2.2) to
handle first-person views of 3D environments.

5.2.1 Synthetically-rendered environments

Dataset. We used the MiniWorld simulator [8], which al-
lowed us to easily generate 3D maze environments with
arbitrary layouts. Only a monocular camera is considered
(not 360° views [27]). The training trajectories now consist
of first-person videos of the shortest path to the target, vi-
sualised in Fig. 4. We randomly generate 1K trajectories
in mazes on either small (3 × 3) or large (8 × 8) grids by
adding or removing walls at the boundaries of this grid’s
cells. Note that the maze’s layout and the agent’s location do
not necessarily align with the 2D grids used by the planners
(as in [27]). Thus, planning happens on a fine discretisation
of the state-space (30× 30 for small mazes and 80× 80 for
large ones, with 8 orientations). This allows smooth motions
and no privileged information about the environment. Both
translation and rotation are perturbed by Gaussian noise,
forcing all agents to model uncertain dynamics.
Baselines and training. We compare several baselines:
two popular RL methods, A2C [31] and PPO [41], as well
as the VIN, GPPN and the proposed CALVIN. Since A2C
and PPO are difficult to train if triggering the “done” action
is strictly required, we relaxed the assumption, allowing the
agent to terminate once it is in close proximity to the target.
All methods use as a first stage a simple 2-layer CNN (details
in Appendix A). Since this CNN was not enough to get
the VIN, GPPN and CALVIN to work well (see Appendix
A), they all use our proposed LPN backbone. We could
not include GPPN’s strategy of taking as input views at all
possible states [27], due to the high memory requirements
and the environment not being fully visible (only local views
are available). Other training details are identical to Sec. 5.1.
Results. In Tab. 2 we observe that, although the RL methods
are successful in small mazes, their reactive policies cannot
scale to large mazes. CALVIN succeeds reliably even for
longer trajectories, outperforming the others. It is interesting
to note that the proposed LPN backbone is important for
all differentiable planners, and it allows them to achieve
very high success rates for small environments (though our
CALVIN method performs slightly better). We show an
example run of our method in Fig. 4, where it found the target
after an efficient exploration period, despite not knowing its
location and never encountering this maze before.

Figure 5 visualises the learnt state transitions P̂ (s′ −
s|a) for the move forward action in CALVIN. We observe
that the learning mechanism outlined in Sec. 4.1.2 works
even for transitions with added noise, which is the case for
MiniWorld experiments. The network learns to propagate
values probabilistically from the possible next states.

5.2.2 Indoor images from a real-world robot

Finally, we tested our method on real images obtained with
a robotic platform.
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Figure 4. Example results on MiniWorld (Sec. 5.2.1). Left to right:
input images, predicted rewards and values. The format is as in
Fig. 1. Notice the high reward on unexplored regions, replaced
with a single peak around the target when it is seen (last row).

Dataset. We used the Active Vision Dataset [1] (AVD),
which allows interactive navigation with real image streams,
without synthetic rendering (as opposed to [29]). This is
achieved using monocular RGBD images from 19 indoor
environments, densely collected by a robot on a 30cm grid
and at 30° rotations. The set of over 30K images can be
composed to simulate any trajectory, up to the some spatial
granularity. There are also bounding box annotations of ob-
ject instances, which we use to evaluate semantic navigation.
We use the last four environments as a validation set, and the
rest for training (by sampling 1K shortest paths to the target).
A visualisation is shown in Fig. 1.
Tasks and training. We considered a semantic navigation
task of seeking an object of a learnt class. We chose the most
common class (“soda bottle”) as a target object. Training
follows Sec. 5.2.1.
Results. We report the performances of VIN, GPPN and
CALVIN after 8 epochs of training in Tab. 3. As in Sec. 5.2.1,
they also fail without the LPN, so all results are with the
LPN backbone. A similar conclusion to that for synthetic
environments can be drawn: proper spatio-temporal aggre-
gation of local observations is essential for differentiable
planners to scale realistically. CALVIN achieves a signifi-

Figure 5. Transition model learnt from MiniWorld trajectories
for the move forward action at each discretised orientation, at 45°
intervals. Higher values are brighter, and lower values are darker
(purple for a probability of 0).

Table 3. Navigation success rate on the Active Vision Dataset, with
real robot images taken in indoor spaces. The task is to navigate
to an object of a learned class. All methods use the proposed LPN
backbone, as they fail without it.

Subset VIN GPPN CALVIN (ours)

Training 61.6±4.5 50.6±9.2 70.3±4.9

Validation 45.0±1.0 44.0±3.5 47.6±6.0

cantly higher success rate on the training set than the other
methods. On the other hand, while it has higher mean vali-
dation success, the high variance of this estimate does not
allow the result to be as conclusive as for training. We can
attribute this to the small size of AVD in general, and of
the validation set in particular, which contains only 3 differ-
ent indoor scenes. Nevertheless, this shows that CALVIN
learns effective generic strategies to seek a specific object,
and that VIN and GPPN equipped with a similar backbone
can achieve partial success in several training environments.

6. Discussion

We analysed several shortcomings of current differen-
tiable planners, with the goal of deploying to real robot
platforms. We found that they can be addressed by highly
complementary solutions: a constrained transition model
(CALVIN) correctly incorporates illegal actions (as opposed
to simply discouraging them via rewards) and task termina-
tion; a 3D state-space accounts for robot orientation; a LPN
backbone efficiently fuses spatio-temporal information; and
trajectory reweighting addresses unbalanced training data.
We provide empirical evidence in several settings, including
on images of unseen environments from a real robot.

Although deep networks hold promise for making navi-
gation more robust under uncertainty, their uninterpretable
failure modes mean that they are not yet mature enough
for safety-critical applications, and more research to close
this gap is still needed. Vehicle applications are especially
important, due to the high masses and velocities involved.
We propose a more interpretable MDP structure for VINs,
and train our model solely with safe offline demonstrations.
However, their reliability is far from guaranteed, and comple-
mentary safety systems in hardware must be considered in
any deployment. In addition to further improving robustness
to failures, future work may investigate more complex tasks,
such as natural language commands, and study the effect of
sensor drift on navigation performance.
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Appendix A.
A.1. Implicit assumptions of the VIN architecture

Differences between VIN and the idealised VI on a grid.
Comparing eq. 1 in sec. 3 to eq. 2 in sec. 3.1, we note
several differences:
1. The VIN value estimate V takes the maximum action-
value Q across all possible actions A, even illegal ones
(e.g. moving into an obstacle). Similarly, the Q estimate is
also updated even for illegal actions. In contrast, VI only
considers legal actions for each state (cell), i.e. A(i, j).
2. The VIN reward R̂ is assumed independent of the action.
This means that, for example, a transition between two states
cannot be penalised directly; a penalty must be assigned to
one of the states (regardless of the action taken to enter it).
3. The VIN transition probability is expanded into 2 terms,
PR which affects the reward and PV which affects the esti-
mated values. This decoupling means that they do not enjoy
the physical interpretability of VI’s P (i.e. probability of
state transitions), and rewards and values can undergo very
different transition dynamics.
4. Unlike the VI, the VIN considers the state transition
translation-invariant. This means that it cannot model obsta-
cles (illegal transitions) using P , and must rely on assigning
a high penalty to the reward R̂ of those states instead.

A.2. Implementation details

A.2.1 Embodied pose states

One of our contributions is extending the VIN framework to
accommodate embodied pose states, i.e. states which encode
both position and orientation. We achieve this by augmenting
the 2D state-space with an extra dimension for orientations.
Table 4 shows correspondences between tensor dimensions
of the positional method and the embodied method for each
component of the architecture. X and Y are the size of the
internal spatial discretisation of the environment, M is the
internal discretisation of the orientation, A is the number of
actions, and K is the kernel dimension for spatial locality.

Note that the value iteration step in CALVIN performs
a 2D convolution of P̂ over a 2D value map in the case of
positional states and a 3D convolution over a 3D value map
with orientation in the case of embodied pose states. In the
embodied case, the second dimension of P̂ corresponds to
the orientation of the current state, and the third dimension
corresponds to that of the next state.

A.2.2 3D embeddings for geometric reasoning

Since the learnable functions (P̂ , Â and R̂) in our proposed
method (and other VIN-based methods) are 2D CNNs, their
natural input is a 2D grid of m-dimensional embeddings,
denoted etij ∈ Rm, for time t and discrete world-space co-
ordinates (i, j). This can be interpreted as a spatio-temporal

Table 4. Comparison of individual components in the implemen-
tation of CALVIN for positional states and for embodied pose
states.

Positional Embodied
State s (x, y) (θ, x, y)
VI step Conv2d Conv3d
V (s) X × Y M ×X × Y
Q(s, a) A×X × Y A×M ×X × Y

Â(s, a) A×X × Y A×M ×X × Y

P̂ A×K ×K A×M ×M ×K ×K

R̂ A×K ×K A×M ×M ×K ×K

map tensor. We then wish to project and aggregate useful se-
mantic information from an image It, extracted by a CNN ϕ,
into this tensor. This requires both knowledge of the camera
position ct and rotation matrix Rt, which we assume follow-
ing previous work [13, 27, 45] (and which can be estimated
from monocular vision [32]). Spatial projection also requires
knowing (or estimating) the depths dt(p) of each pixel p in
It (either with a RGBD camera as in our experiments, or
monocular depth estimation [11]). We can then write the
homogenous 3D coordinates of each pixel p in the absolute
reference frame using projective geometry [17]:

[xt(p), yt(p), zt(p), 1] = ct +RtK [p1, p2, dt(p), 1]
⊤
,
(9)

where K is the camera’s intrinsics matrix. Given these ab-
solute coordinates of pixel p, we can calculate the closest
map embedding etij to it, and thus aggregate the CNN em-
beddings ϕ (It) associated with all pixels close to a map cell.
Inspired by PointNet [7], we choose mean-pooling for ag-
gregation. Since we have spatial aggregation, we can easily
extend this framework to work spatio-temporally, aggregat-
ing information from past frames t′ ≤ t. More formally:

etij = avgt′≤t {ϕp (It′) : τi ≤ xt′(p) < τ(i+ 1),

τj ≤ yt′(p) < τ(j + 1),

τk ≤ zt′(p) < τ(k + 1), p ∈ It′} (10)

where τ is the absolute size of each square grid cell, avg av-
erages the elements of a set, and ϕp (It′) retrieves the CNN
embedding of image It′ for pixel p. Due to the similarity
between Eq. 10 and a PointNet embedded on a 2D lattice,
we named it Lattice PointNet (LPN). Other than the lattice
embedding, there are other major differences from the Point-
Net: we apply it spatio-temporally with a causal constraint
(t′ ≤ t), and the downstream predictors that take it as input
(P̂ (et), Â(et) and R̂(et)) are 2D CNNs that can reason spa-
tially in the lattice, as opposed to the PointNet’s unstructured
multi-layer perceptrons [7]. A related proposal for SLAM
used spatial max-pooling but more complex LSTMs/GRUs
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for temporal aggregation [4, 19]. Another related work on
end-to-end trainable spatial embeddings uses egospherical
memory [28].

A.2.3 Architectural design of Lattice PointNet

The Lattice PointNet described in Appendix A.2.2 consists
of three stages: a CNN that extracts embeddings from ob-
servations in image-space (image encoder), a spatial ag-
gregation step (eq. 10 in sec. 4.2.2) that performs mean
pooling of embeddings for each map cell, and another CNN
that refines the map embedding (map encoder). The image
encoder consists of two CNN blocks, each consisting of
the following layers in order: optional group normalisation,
2D convolution, dropout, ReLU and 2D max pooling. The
map encoder consists of 2D convolution, dropout, ReLU,
optional group normalisation, and finally, another 2D convo-
lution. The number of channels of each convolutional layer
are (80, 80, 80, 40) for MiniWorld and (40, 40, 40, 20) for
AVD respectively. The point clouds can consume a signifi-
cant amount of memory for long trajectories. Hence, we use
the most recent 40 frames for the 8× 8 MiniWorld maze.

The input to the LPN is a 3-channel RGB image for
the MiniWorld experiment, and a 128-channel embedding
extracted using the first 2 blocks of ResNet18 pre-trained on
ImageNet for the AVD experiment.

A.2.4 Architectural design of the CNN backbone

This CNN backbone is used in a control experiment in Ap-
pendix A.4.2 to show the effectiveness of the LPN backbone.
In contrast to LPN which performs spatial aggregation of
embeddings, the CNN backbone is a direct application of an
encoder-decoder architecture that transforms image-space
observations into map-space embeddings. Gupta et al. [13]
employed a similar architecture to obtain their map embed-
dings. While they use ResNet50 as the encoder network, we
used a simple CNN for the MiniWorld experiment to match
the result obtained with LPN.

The CNN backbone consists of three stages: a CNN en-
coder, two fully-connected layers with ReLU to transform
embeddings from image-space to map-space, and a CNN
decoder. The encoder consists of 3 blocks of batch normali-
sation, 2D convolution, dropout, ReLU and 2D max pooling,
and a final block with just batch normalisation and 2D convo-
lution. The number of channels of each convolutional layer
are (64, 128, 128, 128), respectively.

The fully-connected layers take in an input size of 128×
5× 7, reduces it to a hidden size of 128, and outputs either
128×5×5 for the smaller maze or 128×4×4 for the larger
maze, which is then passed to the decoder.

The decoder consists of 3 blocks of batch normalisa-
tion, 2D deconvolution, dropout and ReLU, and a final
block with just 2D deconvolution. The number of channels

of each deconvolution layers are (128, 128, 64, 20), respec-
tively. The output size of the decoder depends on the map
resolution, hence we chose appropriate strides, kernel sizes
and paddings in the decoder network to match the output
sizes of 30× 30 and 80× 80. This approach is not scalable
to maps with high resolution or with arbitrary size, which is
one of the drawbacks of this approach.

A.3. Experiment setup

A.3.1 Expert trajectory generation

Expert trajectories are generated by running an A* [16]
planner from the start state to the target state. We assigned
Euclidean costs to every transition in the 2D grid environ-
ments, and a cost of 1 per move for the MiniWorld and AVD
environments. In the case of MiniWorld, an additional cost
is assigned to locations near obstacles to ensure that the
trajectories are not in close proximity to the walls.

A.3.2 Hyperparameter choices

Similarly to VIN [45] which uses a 2-layer CNN to pre-
dict the reward map, and GPPN [27], which uses a 2-layer
CNN to produce inputs to the LSTM, CALVIN uses a 2-
layer CNN as an available actions predictor Â(s, a). For
each experiment, we chose the size of the hidden layer from
{40, 80, 150}. 150 was used for all the grid environments,
80 for MiniWorld and 40 for AVD, partially due to memory
constraints.

VIN has an additional hyperparameter for the number
of hidden action channels, which we set to 40, which is
sufficiently bigger than the number of actual actions in all
of our experiments. While the kernel size K for VIN and
CALVIN were set to 3 for experiments in the grid environ-
ment, it was noted in [27] that GPPN works better with
larger kernel size. Therefore, we chose the best kernel size
out of {3, 5, 7, 9, 11} for GPPN. For experiments on Mini-
World and AVD, there are state transitions with step size of
2, hence we chose K = 5 for VIN and CALVIN.

The number of value iteration steps k was chosen from
{20, 40, 60, 80, 100}. For trajectory reweighting, β was cho-
sen from {0.1, 0.25, 0.5, 0.75, 1.0}.

A.3.3 Rollout at test time

We test the performance of the model by running navigation
trials (rollouts) on a randomly generated environment. At
every time step, the model is queried the set of Q-values
{Q(s, a) : a ∈ A} for the current state s, and an action
which gives the maximum predicted Q value is taken.

While VIN is trained with V (0) initialised with zeros, in
a true Value Iteration algorithm, the value function must con-
verge for an optimal policy to be obtained. To help the value
function converge faster under a time and compute budget,
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we initialise the value function with predicted values from
the previous time step at test time with online navigation.

We set a limit to the maximum number of steps taken by
the agent, which were 200 for the fully-known 15× 15 grid,
500 for the partially known grid, 300 for MiniWorld (3× 3),
1000 for MiniWorld (8× 8), and 100 for AVD.

A.4. Additional experiments

A.4.1 Ablation study of removing loss components

CALVIN is trained on three additive loss components: a loss
term for the predicted Q-values LQ (sec.4.1.1), a loss term
for the transition models LP (sec.4.1.2), and a loss term for
the action availability LA (sec.4.1.3). We assessed the con-
tribution of each loss component to the overall performance.

We conducted the experiments on the partially observable
grid environment (sec. 5.1.2). The results in Tab. 5 indicate
that all loss components, in particular the transition model
loss, contributes to the robust performance of the network.

Table 5. Navigation success rate of CALVIN in partially observable
2D mazes with loss components removed.

Loss LQ + LP + LA LQ + LP LQ + LA

Success rate 92.2 84.1 8.3

A.4.2 Comparison of LPN against CNN backbone

We compared our proposed LPN backbone against a typical
encoder-decoder CNN backbone as a component that maps
observations to map embeddings. We evaluated the perfor-
mance of the two methods for VIN, GPPN and CALVIN. In
Tab. 6, we observe that LPN backbone is highly effective,
especially for larger environments where long-term planning
based on spatially aggregated embeddings is necessary.

Table 6. Navigation success rate on unseen 3D mazes (MiniWorld).
Most methods do not generalise to larger mazes. The proposed
LPN demonstrates robust performance in larger unseen mazes.

CNN backbone LPN backbone (ours)

Size VIN GPPN CALVIN VIN GPPN CALVIN

3× 3 89.4 73.1 75.2 90.3 91.3 97.7

8× 8 0.6 18.3 8.6 41.2 33.3 69.2

A.5. Example rollout in a partially observable maze

We present an example of a trajectory taken by CALVIN
at runtime, with corresponding observation maps and pre-
dicted values in Figure 6. At each rollout step, CALVIN
performs inference on the best action to take based on its
current observation map. No information about the location
of the target is given until it is within view of the agent. This

Figure 6. Example rollout of CALVIN after 21 steps (left column),
43 steps (middle column) and 65 steps (right column). CALVIN
successfully terminated at 65 steps. (top row) Input visualisation:
unexplored cells are dark, the discovered target is yellow. The
correct trajectory is dashed, the current one is solid. The orange
circle shows the position of the agent. (bottom row) Predicted
values (higher values are brighter). Explored cells have low values,
while unexplored cells and the discovered target are assigned high
values.

makes the problem challenging, since the agent may have to
take significantly more steps compared to an optimal route
to reach the target. In this example, the agent managed to
backtrack every time it encountered a dead end, successfully
reaching the target after 65 steps. The model initially as-
signs high values to all unexplored states. When the target
comes into view, the model assigns a high probability to the
availability of the “done” action at the corresponding state.
The agent learns a sufficiently high reward for a success-
ful termination so that the “done” action is triggered at the
target.

A.6. Comparison of embodied navigation

For visual comparison of CALVIN, VIN and GPPN, we
generated a maze and performed rollouts using each of the
algorithms, assuming partial observability and embodied
navigation.

A.6.1 Rollout of CALVIN

Figure 7 shows an example of a trajectory taken by CALVIN
at runtime, with corresponding observation maps, predicted
values and predicted rewards for taking the “done” action.
Similarly to Appendix A.5, the agent manages to explore un-
visited cells and backtrack upon a dead end until the target is
discovered. One key difference is that now the agent learns to
predict rewards and values for every discretised orientation
as well as the discretised location. Upon closer inspection,
we observe that the predicted values are higher facing the di-
rection of unexplored cells and towards the discovered target.
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Figure 7. Example rollout of embodied CALVIN after 30 steps (left
column), 60 steps (middle column) and 90 steps (right column).
CALVIN successfully terminated at 91 steps. (first row) Input
visualisation: unexplored cells are dark, the discovered target is
yellow. The correct trajectory is dashed, the current one is solid.
The orange triangle shows the position and the orientation of the
agent. (second row) Predicted rewards (higher values are brighter).
The 3D state-space (position/orientation) is shown, with rewards
for the 8 orientations in a radial pattern within each cell (position).
Explored cells have low rewards, while unexplored cells and the
discovered target are assigned high rewards. (third row) Predicted
rewards averaged over the 8 orientations. (fourth row) Predicted
values following the same convention. Values are higher facing the
direction of unexplored cells and the target (if discovered). (fifth
row) Predicted values averaged over the 8 orientations.

Since rotation is a relatively low cost operation, in this train-
ing example, the network seems to have learnt to assign high
rewards to a particular orientation at unexplored cells, from
which high values propagate. Rewards and values averaged
over orientations yield a more intuitive visualisation.

Figure 8. Example rollout of embodied VIN after 20 steps (left
column), 40 steps (middle column) and 60 steps (right column).
VIN kept oscillating between the same two states after 57 steps.
The convention is the same as for Fig. 6, except that a single reward
map is shared across all orientations. (first row) Input visualisation.
(second row) Predicted rewards. (third row) Predicted rewards
averaged over the 8 orientations. (fourth row) Predicted values.

A.6.2 Rollout of VIN

A corresponding visualisation for VIN is shown in Fig. 8.
Unlike CALVIN’s implementation of rewards (eq. 5 in sec.
4.1) as a function of discretised states and actions, the “re-
ward map” produced by the VIN does not offer a direct
interpretation, as it is shared across all actions as imple-
mented by Tamar et al. [45], and is also shared across all
orientations in the case of embodied navigation. The val-
ues are also not well learnt, with some of the higher values
appearing in obstacle cells. The unexplored cells are not
assigned sufficiently high values to incentivise exploration
by the agent. In this example, the agent gets stuck and starts
oscillating between two orientations after 57 steps.

A.6.3 Rollout of GPPN

Finally, a visualisation for GPPN is shown in Fig. 9. Un-
like VIN and CALVIN, GPPN does not have an explicit
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Figure 9. Example rollout of embodied GPPN after 15 steps (left
column), 30 steps (middle column) and 45 steps (right column).
GPPN revisits the same sequences of states leading to a dead end
after 45 steps. The convention is the same as for Fig. 6. (first row)
Input visualisation. (second row) Predicted rewards. (third row)
Predicted rewards averaged over the 8 orientations.

reward map predictor, but performs value propagation us-
ing an LSTM before outputting a final Q-value prediction.
Similarly to Appendix A.6.2, the values predicted is not
very interpretable, and does not incentivise exploration or
avoidance of dead ends. In this example, the agent keeps
revisiting a dead end that has already been explored in the
first 20 steps.
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