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Abstract

Moiré patterns, appearing as color distortions, severely
degrade image and video qualities when filming a screen
with digital cameras. Considering the increasing demands
for capturing videos, we study how to remove such undesir-
able moiré patterns in videos, namely video demoiréing. To
this end, we introduce the first hand-held video demoiréing
dataset with a dedicated data collection pipeline to ensure
spatial and temporal alignments of captured data. Further,
a baseline video demoiréing model with implicit feature
space alignment and selective feature aggregation is devel-
oped to leverage complementary information from nearby
frames to improve frame-level video demoiréing. More im-
portantly, we propose a relation-based temporal consis-
tency loss to encourage the model to learn temporal con-
sistency priors directly from ground-truth reference videos,
which facilitates producing temporally consistent predic-
tions and effectively maintains frame-level qualities. Ex-
tensive experiments manifest the superiority of our model.
Code is available at https://daipengwa.github.
io/VDmoire_ProjectPage/.

1. Introduction
Video is an important source of entertainment, infor-

mation recording and dissemination through social media.
When photographing a video on a screen, frequency alias-
ing leads to moiré patterns (Fig. 1) which appear as colored
stripes, severely degrading the visual quality and fidelity of
captured contents. Although many research efforts have
been made to remove such moiré patterns in a single im-
age [14,15,25,31,40,55] and attained notable progress with
deep learning [14, 15, 25, 40, 55], video demoiréing is still
an unexplored research problem as far as we know, which is
yet of great significance due to the ubiquity and importance
of video data in our daily life.

This paper investigates the problem of video demoiréing.
Compared to image demoiréing, this task offers more op-
portunities for high-quality frame-level restoration through

*Corresponding Author

tt-20 t+20

O
u

r 
re

su
lt

s
M

o
ir

e
fr

am
es

Figure 1. The first row shows moiré frames at different times, and
the second row shows our demoiréd results. Please see our videos,
which are clean and temporally consistent.

leveraging auxiliary information from nearby video frames
but is yet more challenging as it requires not only frame-
level visual quality but also temporal consistency.

The state-of-the-art image demoiréing method [55] fails
to recover temporally consistent videos due to its inabil-
ity to access temporal information/supervision. Using ex-
isting post-processing methods such as [18, 22]; in doing
so, however, the chance is lost to utilize video informa-
tion for enhancing frame-level quality. Besides, these post-
processing methods are susceptible to artifacts in demoiréd
results, and complicate the system design, leading to in-
creased computational costs. Another widely adopted strat-
egy is to incorporate a flow-based consistency regulariza-
tion [21, 37, 52, 53] on the predicted videos during train-
ing, which encourages aligned pixels from nearby frames
to have the same pixel intensity values. While simple, such
regularization ignores natural intensity changes of pixels in
videos (Fig. 3 (a)), is prone to errors in estimated optical
flows (Fig. 3 (b) and (c)), and has the potential to propa-
gate artifacts of one frame to nearby frames. Consequently,
the improved temporal consistency tends to sacrifice frame-
level quality and fidelity, leading to blurry and low-contrast
results (Fig. 7 (a): blurry textures).

In this work, we present a simple video demoiréing
model to leverage multiple video frames and a new relation-
based consistency loss to improve video-level temporal con-
sistency without sacrificing frame-level qualities. Besides,
we construct the first hand-held video demoiréing dataset to
facilitate further studies on learning-based approaches.

We analyze the characteristics of moiré patterns in
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videos and develop a video demoiréing baseline model fol-
lowing [40, 50, 51] with a selective aggregation scheme to
adaptively combine aligned features and a pyramid archi-
tecture to enlarge the receptive field. The baseline model
can effectively leverage nearby frames for a better frame-
level demoiréing. Deep supervision at different scales is
adopted during training to facilitate model optimization.

Moreover, inspired by the observation that human beings
can perceive video flickering [11] directly from consecu-
tive frames without using explicitly aligned videos, we pro-
pose a simple relation-based temporal consistency loss that
encourages the direct relations (e.g., pixel intensity differ-
ences) of predicted video frames to follow those of ground-
truth frames. In particular, we exploit such relations at
multiple levels, including pixel level using pixel intensity
differences and patch level using intensity statistics (e.g.,
mean) changes considering different patch sizes. Instead
of constraining intensities of aligned pixels to be identical,
our relation-based regularization directly matches the natu-
ral relations and changes of nearby video frames with those
of ground-truth videos. This simple design bypasses the
aforementioned drawbacks of flow-based consistency regu-
larization and avoids sacrificing frame-level qualities while
still being able to enforce the model to learn temporal con-
sistency priors from ground-truth videos.

Further, as there are no available datasets for developing
and evaluating video demoiréing methods, we collect a new
video demoiréing dataset with a dedicated pipeline to en-
sure spatial and temporal alignments between moiré videos
and corresponding ground-truth ones.

Finally, extensive experiments on our video demoiréing
dataset demonstrate the superior performance of our
method. In particular, our method obtains 22% improve-
ments in terms of LIPIS in comparison with MBCNN [55]
and more than 75% of users preferred our results when com-
pared with results without using the multi-scale relation-
based consistency loss.

2. Related Work
Image Demoiréing. Moiré patterns appear when two sim-
ilar repetitive patterns interact with each other, and it is
frequently observed while capturing images on the screen,
which severely degrades image qualities. To remove it,
early works have studied spectral models [38] and the
sparse matrix decomposition method [23]. However, these
methods can only remove certain types of moiré patterns.
With the rising of deep learning, various convolution neu-
ral networks [14, 15, 25, 26, 40, 55] have been designed for
image demoiréing. Sun et al. [40] built the first large-scale
image demoiréing dataset and designed a multi-scale archi-
tecture to remove moiré patterns. Further, MopNet [14] in-
tegrates the characteristics of the moiré pattern into the net-
work and achieves a better result. For high-resolution im-

(a) (b) (c)

Figure 2. The characteristics of moiré patterns in the video. Each
row represents frames with different time stamps, and the differ-
ences between two rows are highlighted by red circles.

age demoiréing, He et al. [15] designed a two-stage method
to simultaneously remove large moiré patterns and preserve
image details. In addition to the above methods which de-
sign networks in the image domain, some approaches at-
tempt to address this problem from the perspective of fre-
quency domain [25, 55]. Most recently, Liu et al. [26]
designed a self-supervised learning method to restore the
image only from a pair consisting of one focused moiré-
degraded image and one defocused moiré-free image. What
differentiates our work from the above research efforts is
that we study the new task of video demoiréing with a col-
lected dataset, which provides new opportunities to improve
demoiréing qualities by leveraging temporal information.

Multi-Frame Restoration. Multi-frame restoration [3, 24,
39, 41, 44] aims to improve restoration performance by
leveraging information from auxiliary frames and typically
performs better than image-based counterparts. A key com-
ponent in multi-frame restorations is the registration of mul-
tiple frames, and previous methods usually achieve this us-
ing optical flow [1, 3]. Recently, Tian et al. [43] introduced
the deformable convolution [10] into video super-resolution
to implicitly align multiple frames and obtain superior re-
sults. This module has been further developed and adopted
by several follow-up works [5, 6, 28, 50]. In this work, we
follow the method in [50] to align multiple frames in fea-
ture space and develop a module to automatically select
valuable information from nearby moiré frames.

Video Temporal Consistency. To obtain temporally con-
sistent videos, previous methods have adopted consistency
regularization during network training [21,33,37,48,52] or
have used it to post-process [2,18,22] flickering videos. The
most widely adopted consistency regularization is based on
dense correspondences (e.g., optical flow), which enforces
the intensity of aligned pixels in different frames to be the
same [21, 37, 52]. However, such a flow-based approach is
sensitive to the quality of the estimated dense correspon-
dences [12, 42] and ignores the natural changes in videos.
Without optical flows, Lei et al. [22] obtained temporally
consistent videos by developing a video prior method which
needs time-consuming test-time training. Besides, the ef-
fectiveness of the approach relies on a temporally consis-
tent video input which is different from our case. Some
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(a) (b) (c)

Figure 3. The problems of flow-based temporal consistency. The
first two rows are two consecutive frames, and the last row visu-
alizes the warping error using RAFT [42]. (a) Intensity changes
when the person walks from shadow to sunlight. (b), (c) show
misalignment between two frames.

approaches [13, 32, 49] improve temporal consistency of
CNN predictions by augmenting a single frame to multiple
frames and enforcing their consistency. Unfortunately, the
moiré pattern in videos is difficult to simulate which makes
augmentation-based methods ineffective. Compared to pre-
vious works, our relation-based regularization is simple and
can take the natural changes of videos into account. Without
using optical flows, our method also avoids suffering from
the issues caused by inaccurate optical flow estimation.

3. Method
We first present the characteristics of video moiré pat-

terns in Sec. 3.1, which inspires the design of our base-
line video demoiréing model. Then, we elaborate on the
key components of our baseline model (Fig. 4) including
frame alignment, feature aggregation, and demoiré recon-
struction in Sec. 3.2. Further, we analyze the weakness of
flow-based temporal consistency and detail our newly pro-
posed relation-based consistency regularization in 3.3. Fi-
nally, we show our training objectives in Sec. 3.4.

3.1. Characteristics of Moiré Patterns in Video

The color, shape and location of moiré patterns are
generally influenced by camera viewpoints, as shown in
Fig. 2 (a) and (b). Under a mild video-capturing setting
using hand-held cameras, we observe the following char-
acteristics of moiré patterns in captured videos. First, as
a video plays, the degraded areas have a chance to be
clean due to their change of appearing locations (Fig. 2
(a): the white box at different positions), which can provide
valuable information to recover distorted regions in nearby
frames. Second, the unavoidable hand shaking while shoot-
ing videos will slightly change camera viewpoints and in-
duce different moiré patterns in nearby video frames (Fig. 2
(b): the different text color), which can be leveraged to
better distinguish moiré regions by comparing such appear-

𝐼𝑡

𝐼𝑡+1

𝐼𝑡−1
PCD PFA Demoire

𝑂𝑠1
𝑡

𝑂𝑠2
𝑡

𝑂𝑠3
𝑡

AF: Aligned Features

AF

Down sample with pixel-shuffle

CNNs W
S

AF

PFA

W
S

W
S

CNNs

CNNs

CNNs
CNNs

WS: Weighted Sum

CNNs CNNs CNNs

CNNs

CNNs

CNNs

CNNs

CNNs

CNNsCNNs

CNNs

CNNs

Demoiré

pixel

shuffle

(𝜔𝑠3
𝑡−1, 𝜔𝑠3

𝑡 , 𝜔𝑠3
𝑡+1)

(𝐹𝑡−1, 𝐹, 𝐹𝑡+1)

𝑂𝑠3
𝑡

𝑂𝑠2
𝑡

𝑂𝑠1
𝑡

𝐹𝑚_𝑠1
𝑡

𝐹𝑚_𝑠2
𝑡

𝐹𝑚_𝑠3
𝑡

𝐹𝑚_𝑠1
𝑡

𝐹𝑚_𝑠2
𝑡

𝐹𝑚_𝑠3
𝑡

Figure 4. The overview of our method. Our video demoiréing net-
work mainly consists of three parts: First, the PCD [50] takes con-
secutive frames as inputs to implicitly align frames in the feature
space. Second, the feature aggregation module merges aligned
frame features at different scales by predicting blending weights.
Third, the merged features are sent to the demoiré model with
dense connections to realize moiré artifacts removal.

ance changes. Third, the strength of moiré patterns varies
in different video frames due to the auto-change of focal
length [26], offering a chance to leverage less influenced
“lucky‘’ frames to restore severely degraded ones (Fig. 2
(c): the sky with and without moiré patterns).

Based on the above analysis, our baseline video
demoiréing network (Sec. 3.2) aligns multiple frames for
the purpose of appearance comparisons, effectively ag-
gregates features from nearby frames, and incorporates a
blending mechanism to select valuable information from
nearby frames in a learnable manner.

3.2. Baseline Video Demoiréing Network

Our baseline video demoiréing network shown in
Fig. 4 takes as inputs multiple consecutive video frames
(It−1, It, It+1) and outputs restored prediction Ot (equal to
Ot

s1 ), leveraging multiple nearby video frames for restoring
It. Note that we take three adjacent frames to illustrate our
model without loss of generality.

Given the inputs (It−1, It, It+1), we first incorpo-
rate a pyramid cascading deformable (PCD) model
in [28] to extract and generate implicitly aligned features
(F t−1, F t, F t+1). To deal with large moiré patterns in high-
resolution videos, we apply pixel shuffle to down-sample
the inputs before feeding them into the PCD module which
can effectively enlarge the receptive field of the model with-
out sacrificing original information.

Then, a pyramid feature aggregation (PFA) module
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Figure 5. The pipeline of producing video demoiréing dataset.

(Fig. 4: green box) is developed to selectively aggregate
aligned features at multiple scales (s1, s2, s3). Specifically,
the aligned features are down-sampled using convolution
layers with a stride of 2 to produce a feature pyramid that
allows feature aggregation to be performed at different res-
olutions to handle multi-scale moiré patterns. At each scale
si, the aligned features are concatenated together and used
to predict normalized blending weights (ωt−1

si , ωt
si , ω

t+1
si ∈

(0, 1)). The aggregated features F t
m si are further generated

through a pixel-wise weighted summation of aligned fea-
tures, which enables selective feature aggregation.

Finally, the demoiré reconstruction module produces the
demoiréd image Ot. We densely connect features at differ-
ent scales to allow them to communicate with each other
following [46, 51] (Fig. 4: blue box). We apply more con-
volutional blocks at lower resolution branches to capture a
large field of view, benefiting from identifying and remov-
ing large moiré patterns and using less convolutional blocks
at higher resolution branches to preserve image details.

3.3. Temporal Consistency

Although our baseline video demoiréing network can
generate high-quality frame-level results, it cannot ensure
video-level consistency. Here, we study the problem of
how to generate temporally consistent video demoiréing re-
sults. In the following, we start by analyzing classic flow-
based temporal consistency regularization which tends to
degrade frame-level qualities, and then elaborate on our
simple relation-based temporal consistency loss.

Flow-Based Temporal Consistency Regularization.
Classic methods achieve temporal consistency by esti-
mating the pixel correspondences in nearby video frames
with mostly optical flow methods and building a loss as
Eq. (1) to enforce the intensity of matched pixels to be the
same [18, 52, 53].

Lf = ||M · (Wt+1→t(O
t+1,Ft+1→t)−Ot)||1, (1)

where M represents the occlusion map to rule out the influ-
ence of occluded pixels,Wt+1→t means the flow-based im-
age warp [16] to align pixels based on optical flow Ft+1→t,
and Ot, Ot+1 are nearby output frames.

Key Observations. We carried out a systematic study on
flow-based temporal consistency loss and have the follow-
ing key observations. First, a video often undergoes natural

changes as time passes due to environmental factors such
as lighting and view directions [34], and thus a temporally
satisfactory video does not necessarily mean that the inten-
sity of the same region never changes (Fig. 3 (a): a person
from shadow to sunlight). However, such natural changes
will incur a large loss (Fig. 3 (a) third row: the warping er-
ror) in flow-based temporal consistency regularization, vi-
olating the natural phenomenon. Second, the effectiveness
of flow-based temporal consistency is adversely affected by
the inaccurate estimation of optical flows. Even the existing
state-of-the-art flow estimation method, RAFT [42], suffers
from many failure modes (Fig. 3 (b) and (c): warping er-
rors due to inaccurate flow estimations), especially in ob-
jects’ boundaries and repetitive textures. These mistakenly
matched pixels will incur a penalty that does not exist. Fi-
nally, the above inaccurate penalties will force the model
to trade off frame-level quality for temporal consistency,
e.g., averaging matched pixels, leading to blurry and low-
contrast results (please see videos and experiments).

Relation-Based Temporal Consistency. Human beings
can assess whether a video is temporally consistent or not
by directly observing consecutive video frames without us-
ing explicitly aligned frames, which motivates us to rethink
whether pre-aligned correspondences are needed to learn
temporally consistent results and study how to learn tem-
porally consistent results directly from ground-truth refer-
ence videos, as they are naturally consistent. Here, in or-
der to learn temporal consistency patterns from reference
videos, we propose matching the direct temporal relations
of predicted video frames (Ot, Ot+1) to those of the refer-
ence ones (Gt, Gt+1), where G indicates the ground-truth
video. The simplest temporal relation can be built by com-
paring the pixel intensity between video frames; we also
investigate other options for temporal relations below.

Basic Relation Loss. The most basic relation we consider
is the difference between two frames, as Eq. (2):

Lr = ||(Ot+1 −Ot)− (Gt+1 −Gt)||1. (2)

As opposed to the flow-based temporal consistency loss
in Eq. (1), which constrains aligned predictions to have the
same intensity values, the basic relation loss requires that
the difference of outputs and reference frames should be
similar, i.e., the predicted results should follow the temporal
change of the reference videos.

4



(a) INPUT (b) U-Net (c) DMCNN (d) MBCNN (e) Ours_S (f) Ours (h) GT

Figure 6. Qualitative Comparisons. We compare with other baselines and obtain better results on the moiré artifacts removal.

Multi-Scale Region-Level Relation Loss. Besides pixel-
level relations, we also consider region-level relations that
follow human habits [8,30]. Biologically, the retinal cell re-
ceives light from a region instead of a point, and the region
size is determined by the distance between retinal cells and
observed objects. For region-level relations, we use pixel
statistics, such as the mean value of pixel intensities, to
build the relation loss. We empirically find the mean value
works very well in practice. The reason might be that the
mean of a patch reflects the brightness of that area, which is
closely related to flickers [9]. Specifically, we use patches
with different sizes k ∈ C to take account of various recep-
tive fields, extract the statistics from these patches, and con-
struct a multi-scale region-level relation loss as in Eq. (3).
Moreover, we only penalize the scale that incurred the mini-
mum difference to protect temporally consistent predictions
from nearby potential flickering regions.

Lmbr =
1

N

N∑
n=1

Lk∗
n |k∗=argmink{|(Tk(Ot+1)−Tk(Ot))n|},k∈C ,

Lk
n = |((Tk(Ot+1)− Tk(Ot))n − (Tk(Gt+1)− Tk(Gt))n|,

(3)
where Tk indicates the operation of calculating the statistics
of a patch with size k ∈ C (C = {1} is the basic relation-
based loss), and n is the pixel position index.

Analysis. The relation-based loss is simple without need-
ing to estimate dense correspondences and thus avoids the
problem of misalignment caused by optical flow estimation,
and the natural changes in ground-truth videos can be trans-
ferred to output frames. Meanwhile, the model can learn
to produce temporally consistent results by mimicking the
temporal relations of the reference video, which naturally
encompasses temporal consistency priors.

3.4. Training Objectives
Our overall training objective Ltrain, in Eq. (4), is the

combination of the frame-level demoiréing loss Lt
d, Lt+1

d ,
which regresses outputs at different scales to the ground
truths, and the relation loss Lmbr of temporal consistency.

Ltrain = Lt
d + Lt+1

d + λtLmbr, (4)

λt is used to control the degree of temporal consistency.
To construct Ld, we adopt L1 and perceptual loss [17],

which guide the regression process. Apart from the loss on
the original resolution, deep supervisions [20] are applied
at different scales to assist the network training. The frame-
level demoiréing loss Lt

d is formulated as Eq. (5):

Lt
d =

∑
i,l

||Ot
si −G

t
si ||1 + λ||Φl(O

t
si)− Φl(G

t
si)||1, (5)

where Ot
si and Gt

si are output and corresponding ground
truth at the si scale, respectively. Φl is a set of VGG-16
layers, and λ is the weight used to balance different parts.

4. Video Demoiréing Dataset
We collect the first video demoiréing dataset captured by

hand-held cameras, e.g., a smartphone camera. The cap-
turing pipeline to ensure spatial and temporal alignments
between camera-recorded and original videos is shown in
Fig. 5 and elaborated below.

First, the 720p high-quality source videos displayed on
the screen consist of videos from REDS [29], MOCA [19],
and videos taken by ourselves. To ensure the diversity of
collected videos, we manually choose videos covering var-
ious scenarios, including human beings, landscapes, texts,
sports, and animals (examples in Fig. 5 (a)). We collect 290
videos, and each video has 60 frames.

Second, it is difficult to align videos recorded by cam-
eras and source videos played on the screen considering
different frame rates and asynchronous start timestamps.
For example, if the camera frame rate is not divisible by
the video frame rate, the recorded frame will contain multi-
frame information (occurs when switching frames) from the
source video, which results in blurry images. Even though
the frame rate meets the requirement, different start times-
tamps (i.e., start to play and record the video) also cause the
problem of multi-frame confusion. For these obstacles, we
adjust the frame rates and insert start/end flags into videos.
Specifically, we set camera and source video frame rates
to 30 fps and 10 fps, respectively, and extend source videos

5



(a) (b) (c) (d)

Figure 7. Different types of temporal consistency. (a) Flow-based temporal consistency. (b) Ours with basic relation loss. (c) The full
version of our method. (d) Results without temporal constraints (reference). We can observe that (c) preserves details best.

with a few white frames at the beginning and the end of each
video. What’s more, we follow the data collection process
in [40] to add some black blocks surrounding the frame to
provide more robust keypoints (Fig. 5 (b) and (c)).

Third, given the source video, mobile phone, and mon-
itor, the moiré pattern can be produced by adjusting the
camera view points. While capturing, the mobile phone is
hand-held by a person to simulate practical video record-
ing senarios, and different shooting angles and distances are
adopted to increase the diversity of moiré patterns (Fig. 5
(c)). After recording, we can obtain 180 frames (three times
the source video) from each video after removing the pre-
inserted white frames (Fig. 5 (d)), and the final moiré frame
is sampled among three consecutive frames. Here, we sam-
ple the intermediate one since it is not sensitive to frame
transitions (Fig. 5 (e)).

Finally, to obtain training pairs (Fig. 5 (f)), source and
captured frames should be aligned through frame corre-
spondences, such as optical flow and homography matrix.
In this work, we adopt the homography matrix to align
two frames (Fig. 5 (e)). Instead of using only keypoints
(ORB [36]) detected on image regions [15] or auxiliary
black regions [40], we utilize both of them to estimate the
homography matrix using the RANSAC [45] algorithm.

5. Experiments
In this section, we first introduce training details

(Sec. 5.1), then qualitatively and quantitatively compare our

method with other baselines at the frame level (Sec. 5.2) and
the video level (Sec. 5.3). Finally, we validate our video
demoiréing model and the relation-based consistency regu-
larization (Sec. 5.4).

5.1. Training Details

The video demoiréing network takes three consecutive
frames as inputs to predict one restored image. To train
the model, we automatically divide the video demoiréing
dataset into 247 train videos and 43 test videos, and the hy-
perparameters λ and λt are set to 0.5 and 50, respectively.
Furthermore, we adopte four region sizes C = {1, 3, 5, 7}
to simulate different receptive fields. The optimizer in our
implementation is Adam with a cosine learning rate [27]. In
total, we train 60 epochs with batch size 1 on one NVIDIA
2080Ti GPU, and the temporal consistency loss is invoked
in the last 10 epochs for training stability.

5.2. Frame-Level Comparisons

We compare our approach with image demoiréing meth-
ods (i.e., MBCNN [55] and DMCNN [40]) and other widely
used backbones, such as U-Net [35]. In order to verify the
effectiveness of video demoiréing without being affected by
other factors (e.g., number of parameters and the choice of
loss function), we adopt our video demoiréing model but
change the input to repetitions of a single frame (Ours S,
see Fig. 8 (b)). To quantitatively measure the performance
of demoiréing, we adopt PSNR, SSIM, and LPIPS [54] that
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is more aligned with human perception as our metrics. (’↑’:
larger value is better, ’↓’: smaller value is better.)

Methods LPIPS ↓ PSNR ↑ SSIM ↑
MBCNN [55] 0.260 21.534 0.740
DMCNN [40] 0.321 20.321 0.703

U-Net [35] 0.225 20.348 0.720
Ours S 0.212 21.772 0.729
Ours 0.202 21.725 0.733

Table 1. Demoiréing performance of different methods. (Red:
best, Blue: second best)

Methods FID ↓ warping error ↓ user study ↑ LPIPS↓
Ours S 0.094 5.98 14% 0.212
Ours 0.084 5.65 25% 0.202

Ours+F 0.109 2.70 9% 0.339
Ours+R 0.088 4.79 42% 0.211
Ours+M 0.085 5.03 - 0.201

GT 0.000 4.56 - 0.000

Table 2. Temporal consistency measurements when λt is 50.
Ours S: video demoiréing model with three repetitive frames,
Ours: video demoiréing model with multiple frames, Ours +F:
add flow-based consistency loss, Ours+R: add basic relation-based
consistency loss, Ours+M: add multi-scale relation-based consis-
tency loss. In user study, all other baselines are compared with
Ours+M, and this table reports the percentage of each baseline be-
ing selected (Ours+M outperforms all baselines).

Qualitative Comparison. In Fig. 6, we show images re-
stored by different methods. It clearly shows that our ap-
proach has advantages over other methods for removing
moiré artifacts, such as the moiré patterns on the fountain,
white T-shirt and floor. We attribute the superiority of our
method to its ability to utilize auxiliary information from
the nearby video frames.

Quantitative Comparison. Frame-level quantitative re-
sults are reported in Table 1. Under the circumstance
of single image demoiréing, our method (Ours S) outper-
forms previous methods (above the dotted line). Moreover,
the performance is further improved using multiple frames
(Ours), especially LPIPS, which manifests the effectiveness
in leveraging multiple frames to improve perception results.

5.3. Video-Level Comparisons

Following previous works [7, 48], we adopt FID and
warping error to measure video-level performance. Here,
FID measures the distance between output and ground-truth
videos in the feature domain using I3D [4], and the warping
error calculates differences between two frames aligned by
optical flows [42]. Note that the warping error cannot accu-
rately reflect the video temporal consistency due to inaccu-
rate optical flow and natural changes in videos. To illustrate
it, we calculate the warping error of ground-truth videos
(Table 2: last row), which is still very large. Besides, we
also conduct user studies to assist video-level comparisons.
For the user study, participants are asked to choose one out
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Figure 8. Visualization of weight maps. (a) Three consecutive
frames and the weight maps. (b) Replace consecutive frames with
repetitions of a single frame and the weight maps.
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Figure 9. Demoiréing performance when increasing λt.

of two videos based on video quality or mark them as in-
distinguishable; they are given sufficient time to make the
decision. In the process of our user study, two videos pro-
duced by different methods are displayed in random order,
and participants can replay videos with various frame rates.
In total, 14 individuals participated in our experiments.

As our baseline video demoiréing model (Ours) obtains
better results than other compared methods, we take it as
the baseline model for video-level evaluation. Specifically,
we compare the video temporal consistency and quality
with the results of single image demoiréing (Ours S), clas-
sic flow-based consistency regularization (Ours+F, replace
Lmbr loss with Lf loss in Eq. (1)) and multi-scale relation-
based consistency regularization (Ours+M, Lmbr loss).

As shown in Table 2, the multi-frame demoiréing
(Ours) is more consistent than the single-frame demoiréing
(Ours S). Also, the FID indicates that videos restored by
multiple frames are closer to ground-truth videos with
higher quality. By incorporating temporal constraints, the
video temporal consistency is improved. Specifically, the
flow-based method (Ours+F) has the best warping error, but
the LPIPS shows that the frame-level quality may drop sig-
nificantly. Furthermore, only 9% of users preferred this
type of videos when compared with the full version of
our method (Ours+M). In contrast, our multi-scale relation-
based loss (Ours+M) can improve the video temporal con-
sistency while maintaining the frame-level quality (LPIPS
is similar to the method without using temporal consistency
regularization, 0.201 v.s. 0.202). More users preferred these
results in comparison with all over baselines.

More Analysis on Temporal Consistency. In the fol-
lowing, we perform more analysis to demonstrate the ro-
bustness of our relation-based loss. We plot the curve of
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(a) input (b) w/o pixel-shuffle (c) with pixel-shuffle

Figure 10. Different receptive fields. A large receptive field (with
pixel-shuffle) benefits the moiré artifacts removal.

demoiréing performance at different weights λt of the tem-
poral consistency loss. The results are shown in Fig. 9,
where the dotted line represents the performance with-
out temporal constraints (Ours). With the increase of λt,
the flow-based (Ours+F) consistency regularization leads to
worse LPIPS and SSIM. On the contrary, our multi-scale
relation-based approach (Ours+M) learns consistency pri-
ors directly from ground-truth videos without sacrificing
video quality (please refer to our videos).

We show visual comparisons in Fig. 7. When com-
pared with reference images (Fig. 7 (d)) without temporal
constraints (Ours), the flow-based method (Ours+F) heav-
ily blurs image details, such as repetitive textures of the
grass and cracks on the stone. By contrast, the multi-scale
relation-based method (Ours+M) preserves image details
well (Fig. 7 (c)), which is comparable to reference images
with improved temporal consistency.

5.4. Ablation Studies
Components of Networks. We validate our network de-
signs from the following two aspects. 1) Receptive field
enlargement due to the pixel shuffle operation: we remove
the pixel shuffle operation to reduce the network’s recep-
tive field and evaluate the performance. From results in Ta-
ble 3, we observe that the performance degrades without
using pixel shuffle. Besides, a large receptive field bene-
fits high-resolution images and large moiré patterns. This
can be seen in Fig. 10, where moiré artifacts on the lake
are removed under the large receptive field. 2) Analysis of
blending weights: to better understand the role of blending
weights in our model, we visualize the weight maps (see
Fig. 8) that are used to merge multi-frame features. The
weight maps can reflect moiré patterns and choose valu-
able information from nearby frames for fusion, as shown
in Fig. 8 (a). Moreover, we compare with a special sce-
nario where the inputs are repetitions of a single frame. Un-
der this circumstance, it is difficult to infer moiré patterns
without clues from auxiliary frames, as shown in weight
maps (Fig. 8 (b)). Consequently, the final demoiréing re-
sults (Fig. 8 last column) become worse.

Deep Supervision Loss. To illustrate this, we build the
loss function only on the original image scale. From Ta-
ble 3, we observe that the deep supervision loss boosts the
performance regarding all three metrics. A possible expla-
nation is that deep supervision loss forces each branch to
learn more reasonable demoiréing representations and fa-

Methods LPIPS ↓ PSNR ↑ SSIM ↑
no pixel-shuffle 0.205 21.372 0.733

no deep supervision loss 0.216 21.153 0.728
Ours 0.202 21.725 0.733

Table 3. Ablation study on the network and loss.

cilitate the optimization process.

Relation-Based Temporal Consistency. We validate two
variants of relation-based losses: the multi-scale relation-
based loss (Ours+M) and the basic relation-based loss
(Ours+R). From Fig. 7 (b), the textures are a bit blurry
with the basic relation-based loss and are worse than results
(Fig. 7 (c)) from our multi-scale design. The reason might
be that region-level statistics (i.e., mean) help reduce nega-
tive impacts of temporal-consistency regularization, which
tends to average and erase image details. In comparison
with the multi-scale design in Table 2, fewer users (42%)
selected the basic single-scale design. More importantly,
the multi-scale based regularization can well maintain the
frame-level qualitative performance (see LPIPS in Fig. 9).

6. Limitations and Broader Impacts
Although we have designed a pipeline to ensure the

alignment of captured data pairs, it is difficult to perfectly
align them under different camera views. Currently, our
model also suffers from generalization issues if evaluated
on data captured using new devices (e.g., different ISP and
Bayer filters) and screens (e.g., different resolution). Ex-
panding the scale of the dataset is one potential solution
that will be our future work. In addition, the relation-based
loss is generic and can potentially be applied to other video
tasks, such as video stabilization. In practice, we have found
that the video instability caused by frame misalignments has
been reduced. One possible explanation is that stabilization
priors are learned from ground-truth videos.

7. Conclusion
In this work, we construct the first video demoiréing

benchmark, including a hand-held video demoiréing
dataset, and develop a baseline video demoiréing model,
effectively leveraging multiple frames. More importantly,
we design an effective relation-based consistency regular-
ization, which simultaneously boosts video temporal con-
sistency and maintains visual quality. Detailed analyses are
carried out to assist the understanding of video moiré pat-
terns and the weaknesses of flow-based consistency regu-
larization. Finally, extensive experiments demonstrate the
superiority of our method.

Acknowledgement: This work is supported by HKU-TCL
Joint Research Center for Artificial Intelligence, National
Key R&D Program of China (No.2021YFA1001300), and
Guangdong-Hong Kong-Macau Applied Math Center grant
2020B1515310011.

8



References
[1] Luca Bogoni. Extending dynamic range of monochrome and

color images through fusion. In ICPR, 2000. 2
[2] Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, De-

qing Sun, Sylvain Paris, and Hanspeter Pfister. Blind video
temporal consistency. TOG, 2015. 2

[3] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro
Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. Real-
time video super-resolution with spatio-temporal networks
and motion compensation. In CVPR, 2017. 2

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
2017. 7

[5] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and
Chen Change Loy. Basicvsr: The search for essential compo-
nents in video super-resolution and beyond. In CVPR, 2021.
2

[6] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Basicvsr++: Improving video super-
resolution with enhanced propagation and alignment. arXiv
preprint arXiv:2104.13371, 2021. 2

[7] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston
Hsu. Free-form video inpainting with 3d gated convolution
and temporal patchgan. In ICCV, 2019. 7

[8] Yang Cheng, Jie Cao, Yangkun Zhang, and Qun Hao. Re-
view of state-of-the-art artificial compound eye imaging sys-
tems. Bioinspiration & biomimetics, 2019. 5

[9] Lark Kwon Choi and Alan Conrad Bovik. Video quality
assessment accounting for temporal visual masking of local
flicker. Signal Processing: image communication, 2018. 5

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, 2017. 2

[11] Jodi L Davenport. Consistency effects between objects in
scenes. Memory & Cognition, 2007. 2

[12] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In ICCV,
2015. 2

[13] Gabriel Eilertsen, Rafal K Mantiuk, and Jonas Unger.
Single-frame regularization for temporally stable cnns. In
CVPR, 2019. 3

[14] Bin He, Ce Wang, Boxin Shi, and Ling-Yu Duan. Mop moire
patterns using mopnet. In ICCV, 2019. 1, 2

[15] Bin He, Ce Wang, Boxin Shi, and Ling-Yu Duan. Fhde 2 net:
Full high definition demoireing network. In ECCV, 2020. 1,
2, 6, 11

[16] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
2017. 4

[17] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 5

[18] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman,
Ersin Yumer, and Ming-Hsuan Yang. Learning blind video
temporal consistency. In ECCV, 2018. 1, 2, 4

[19] Hala Lamdouar, Charig Yang, Weidi Xie, and Andrew Zis-
serman. Betrayed by motion: Camouflaged object discovery
via motion segmentation. In ACCV, 2020. 5

[20] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. Deeply-supervised nets. In Ar-
tificial intelligence and statistics, 2015. 5

[21] Chenyang Lei and Qifeng Chen. Fully automatic video col-
orization with self-regularization and diversity. In CVPR,
2019. 1, 2

[22] Chenyang Lei, Yazhou Xing, and Qifeng Chen. Blind video
temporal consistency via deep video prior. NeurIPS, 2020.
1, 2

[23] Fanglei Liu, Jingyu Yang, and Huanjing Yue. Moiré pattern
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Aleš Leonardis, Wengang Zhou, and Qi Tian. Wavelet-based
dual-branch network for image demoiréing. In ECCV, 2020.
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Outline
In the following, we evaluate our method on another col-
lected dataset in Sec. S1, incorporate the pre-training into
our video demoiréing model in Sec. S2, conduct experi-
ments on the low-light video enhancement in Sec. S3, de-
scribe more details about the user studies in Sec. S4, and
show more results in Sec. S5.

Input Ours Ours+M GT

t
t+
1

Figure S11. Low-light video enhancement. Our method can also
be used to enhance low-light videos and improve the temporal con-
sistency.

S1. Evaluation on New Dataset
The results in our main paper are based on the equipment

of the Huipu v270 monitor and TCL20 pro mobile-phone.
Here, we evaluate our method on another video demoiréing
dataset using the MacBook Pro and iPhoneXR (to be made
publicly available). As with the main paper, we conduct
several important experiments to validate the frame-level
demoiréing performance (Table S4 and Fig. S12) and video-
level temporal consistency (Table S5 and Fig. S13).

In Table S4, our video demoiréing method (Ours) beats
the single-frame demoiréing (Ours S) on all three metrics,
which again proves the superiority of our video demoiréing.
Visually, the demoiréd results are cleaner and closer to
ground-truth images, as shown in Fig. S12.

In Table S5, our video demoiréing model with multi-
scale relation-based loss (Ours+M) obtains the best FID,
which indicates higher video quality and temporal consis-
tency. When compared with the baseline without using
temporal constraints (Ours), the LPIPS metric shows that
only Ours+M can preserve the frame-level quality (0.207
vs. 0.206). Qualitatively, image details are better preserved
with multi-scale relation-based designs (Fig. S13 (c)) than
flow-based (Fig. S13 (a)) and basic relation-based (Fig. S13
(b)) regularization.

In a nutshell, we maintain similar performance gains as
demonstrated in the main paper, which proves the wide ap-
plicability of our method. All our data and codes will be
publicly available to the community.

S2. Pre-training
Considering that previous works of single-image

demoiréing have collected moiré images, such as

Methods LPIPS ↓ PSNR ↑ SSIM ↑
Ours S 0.217 22.040 0.710
Ours 0.206 22.210 0.715

Table S4. Demoiréing performance on the iPhone dataset.

Methods FID ↓ warping error ↓ LPIPS↓
Ours 0.091 5.26 0.206

Ours S 0.099 5.80 0.217
Ours+F 0.110 2.70 0.328
Ours+R 0.089 4.40 0.225
Ours+M 0.088 4.70 0.207

GT 0.000 4.56 0.000

Table S5. Temporal consistency on the iPhone dataset (λt: 50).

FHDMi [15], we investigate whether pre-training on
image datasets will further boost the performance. Specif-
ically, we pre-train our model on 9980 moiré images,
with each image augmented by random rotation and
translation to simulate frame sequences, and then fine-tune
the pre-trained weights on our video demoiréing datasets.
As shown in Table S6, we do not observe significant per-
formance boosts, potentially due to distribution gaps. The
question of how to leverage large-scale image demoiréing
data to pre-train video demoiréing models is still an open
problem and worthy of exploration.

S3. Low-light Video Enhancement.
We conduct experiments on the low-light video enhance-

ment task to demonstrate the generality of the proposed
method. Follow the training and testing splits in [47], our
method successfully enhance low-light video frames (see
Fig. S11). With relation-based loss (Ours+M), flickers are
suppressed on leaves and quantitatively reflected by the
decreased warping error (2.22 to 2.12). Moreover, FID↓
(0.156 to 0.152) is maintained indicating preserved video
fidelity.

Methods LPIPS ↓ PSNR ↑ SSIM ↑
Ours 0.202 21.725 0.733

Ours+pre-training 0.204 21.759 0.732

Table S6. Demoiréing performance while using pre-training.

S4. Details of User Studies
Fig. S14 shows the interface we used for performing

user studies. In our experiment, each participant is given
43 video pairs (Ours+M and one of the other methods)
for selection. The equipment we used is ASUS ROG
ZEPHYRUS, and the frame rate (default 15 fps) and the dis-
tance to monitors are not strictly restricted, and participants
can move the laptop or adjust the frame rate by clicking on
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(a) Input (b) Ours_S (c) Ours (d) GT

Figure S12. Demoiréing performance on the iPhone video demoiréing dataset.

(a) (b) (c) (d)

Figure S13. Different types of temporal consistency on iPhone video demoiréing dataset: (a) flow-based temporal consistency; (b) basic
relation-based temporal consistency; (c) multi-scale relation-based temporal consistency; (d) reference without using temporal constraints.

Select upper

Select lower

Indistinguish

able

Replay

Next

Figure S14. The interface of user study.

the upper right corner of the interface at any time. If one
method is preferred (i.e. select upper or select lower), it re-
ceives 1 point. Otherwise, both methods equally obtain 0.5
points if the ’indistinguishable’ button is selected. Finally,
we divide the total score by the number of comparisons of

one method to get the statistical result.

S5. More Results
In Fig. S15, we show more results of demoiréd images

of different methods. Our method with multiple frames
for demoiréing, obtains cleaner results than other single-
frame baselines (MBCNN [55] and Ours S). More video-
level comparisons can be found in our video.
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Figure S15. More Demoiréing results of different methods.
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