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Abstract

Most camera images are rendered and saved in the stan-
dard RGB (sRGB) format by the camera’s hardware. Due
to the in-camera photo-finishing routines, nonlinear sSRGB
images are undesirable for computer vision tasks that as-
sume a direct relationship between pixel values and scene
radiance. For such applications, linear raw-RGB sensor
images are preferred. Saving images in their raw-RGB for-
mat is still uncommon due to the large storage requirement
and lack of support by many imaging applications. Several
“raw reconstruction” methods have been proposed that uti-
lize specialized metadata sampled from the raw-RGB image
at capture time and embedded in the sRGB image. This
metadata is used to parameterize a mapping function to de-
render the SRGB image back to its original raw-RGB format
when needed. Existing raw reconstruction methods rely on
simple sampling strategies and global mapping to perform
the de-rendering. This paper shows how to improve the de-
rendering results by jointly learning sampling and recon-
struction. Our experiments show that our learned sampling
can adapt to the image content to produce better raw re-
constructions than existing methods. We also describe an
online fine-tuning strategy for the reconstruction network
to improve results further.

1. Introduction

For many low-level computer vision tasks, it is desir-
able to have access to the camera’s raw-RGB sensor im-
age whose pixel values have a linear relationship with scene
radiance [9,29,39]. In addition, photo-editing operations,
such as white-balance adjustment or color manipulation,
are more accurate when applied on raw-RGB images [19].
However, most images are still saved in the standard RGB
(sRGB) format. sRGB images are raw-RGB images that
have been rendered by the camera’s image signal processor
(ISP). The nonlinear photo-finishing routines applied by the
ISP break the well-behaved relationship to scene radiance
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Figure 1. Overview of our paper. We address the problem of de-
rendering an sSRGB image to a raw-RGB image using a metadata
saved along with the sSRGB image. At capture time, we sample
the raw-RGB values at the locations in a sampling mask, and save
them as a metadata. When the raw-RGB image is needed, we
reconstruct the full raw-RGB image from the sRGB image with
the metadata. We propose an end-to-end deep learning framework
to achieve it. With our approach, the reconstruction can be further
improved by online fine-tuning.

present in the original raw-RGB image. A solution to re-
cover the raw-RGB values is to “de-render” the sSRGB im-
age back to its raw-RGB format [4]. Among the various
methods to de-render an image, the most accurate are those
that collect samples from the original raw-RGB image at
capture time and embed these samples inside the SRGB im-
age as specialized metadata [28,31]. These prior methods
rely on uniform sampling of the raw-RGB image and simple
mapping functions to de-render from sSRGB to raw-RGB.

Contribution. We propose a deep-learning framework to
address the SRGB de-rendering task using metadata sam-
pled from the raw-RGB at capture time. In particular, we



demonstrate how sampling and reconstruction can both be
learned in an end-to-end framework. Sampling is performed
in a content-aware manner based on superpixel-based max-
pooling and subsequently used by the reconstruction net-
work. In addition, the reconstruction network incorporates
an online fine-tuning approach to improve the performance
at inference time. An example is shown in Fig. 1. We
demonstrate the effectiveness of our method on the raw re-
construction task using 1.5% of raw-RGB pixels saved in
the metadata and show we can achieve state-of-the-art per-
formance. Additionally, we show the applicability of our
method to other image recovery tasks by applying our sam-
pling/reconstruction framework to bit-depth recovery.

2. Related Work

Algorithms intended to de-render sSRGB images can be

categorized into those that save specialized metadata along
with the sRGB file at capture time and blind methods
that require no additional information. We examine the
metadata-based approaches in greater detail since these are
more closely connected to our work. We also briefly survey
algorithms for bit-depth recovery.
Blind raw reconstruction. Raw reconstruction is closely
connected to the problem of radiometric calibration. Early
digital cameras did not provide access to the sensor raw-
RGB image. As aresult, early radiometric calibration meth-
ods did not attempt to recover the raw-RGB values ac-
curately. Instead, they focused on linearizing the sRGB
data such that the digital values had a linear relation-
ship to scene radiance. Radiometric calibration methods
(e.g., [12, 15,26]) employed simplistic models, such as a
simple 1D response function per color channel.

As access to the raw sensor image became more com-
monplace, radiometric calibration was replaced by raw re-
construction, where the goal was to recover the original
raw-RGB sensor data. The simple camera response func-
tion was replaced with more complex models [8, 9, 14, 19]
to describe the various processing stages of the ISP. How-
ever, these methods are based on careful calibration pro-
cedures that must be repeated per camera and sometimes
even per camera setting. Even recent deep learning meth-
ods (e.g., [25,27]) are faced with similar issues in that large
amounts of training data has to be captured for each camera,
and the trained models are specific to that camera. Generic
de-rendering methods, such as [4,21], that assume a stan-
dard set of ISP operations are not very accurate because they
cannot model the camera-specific operations.

Raw reconstruction with metadata. Another strategy for
de-rendering is methods that save additional metadata in the
sRGB to assist with the de-rendering process. For exam-
ple, Yuan and Sun [39] propose storing a small raw image
as additional metadata. The small raw image could be up-
sampled to full resolution at edit time using the SRGB as

a guide image. Work by Nguyen and Brown [28,29] com-
puted and stored metadata in the form of estimated param-
eters used to model the typical operations performed by the
ISP. These estimated parameters added a 64 KB overhead
and can reconstruct the raw image from the sSRGB image.
However, they assume that the mapping from sRGB to raw
is global and ignore important ISP operations, such as local
tone mapping. Punnappurath and Brown [3 1] recently pro-
posed to use a small set of uniformly sampled raw values
as metadata. They propose a spatially aware recovery algo-
rithm that makes their method robust to local tone mapping
and other non-global ISP manipulation. However, their raw
reconstruction function is based on interpolation using a 5D
radial basis function, which is slow in practice. Our method
is closely related to the work in [31]; however, we do not re-
strict sampling to a uniform grid. Moreover, we learn both
sampling and reconstruction in an end-to-end manner.
Bit-depth recovery. The bit-depth recovery problem shares
similarities to the de-rendering problem and is discussed
here. In particular, the camera has applied a nonlinear pro-
cess (in this case, bit quantization), and the goal is to recover
the original pixel values in their full precision. Traditional
bit-depth recovery algorithms (e.g., [10,17,23,35,36] rely
on heuristics for estimating missing bit precision based on
the input image’s structure. More recently, deep learning-
based approaches learn how to recover missing bits [7, 16,

,24,30,33,37,40] based on training data before and after
bit quantization. To the best of our knowledge, the use of
metadata has not been explored for bit-depth recovery. As
an extension of our work, we show that our proposed de-
rendering framework can be adapted to bit-depth recovery
with no changes in network architecture.

3. De-rendering Framework

We begin with a high-level description of our frame-
work followed by details on the sampling and reconstruc-
tion components.

Let x and y denote an sSRGB image and a raw-RGB im-
age, respectively. Conventionally, the raw reconstruction
problem has been mostly formulated by finding the map-
ping y = f(x) using only the sSRGB image as input. For
metadata approaches, the mapping y = f(x;s,) is inferred
by exploiting a small number of pixels s, sampled from
the raw-RGB image and saved in the metadata of the SRGB
image. The pixels are usually sampled by a pre-defined
method, such as uniform sampling applied to all images
globally. Our goal is to learn both the SRGB-to-raw-RGB
mapping and the sampling function, which is formally de-
scribed as y = f(x;8, = g(x,y)), where g(x,y) is a
learnable sampling function.

Fig. 2 shows an overview of our framework. We model
two functions f and g as U-Net-based [32] deep neural net-
works, and train them in an end-to-end manner. At training
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Figure 2. Overview of our SRGB-to-raw de-rendering framework. At training time, we train a sampler network g and reconstruction
network f in an end-to-end manner. g predicts a binary sampling mask used to sample raw-RGB values, while f recovers the full raw-
RGB image from a full sSRGB image with the sampled raw-RGB values. Particularly, our sampling mask is generated by a superpixel-based
max-pooling. At testing time, g is used to save content-aware metadata along with an SRGB image. When needed, the full raw-RGB image
is reconstructed by f. We fine-tune f using the sparse raw-RGB samples in the metadata on the fly to further improve the performance.
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Figure 3. Illustration of the superpixel max-pooling. For all pix-
els in the blue box, their association to the red cell is learned by
the superpixel loss. The superpixel max-pooling is to sample the
highest association score among the pixels in the blue box. Even
though we sample a pixel from a regular box, the sampling heavily
relies on the association score learned by the superpixel loss.

time, we first sample k% of pixels from a raw-RGB image.
Specifically, the sampler network g takes both a raw-RGB
and an sRGB image as input and predicts a binary sample
map s in which sampled pixels are assigned to 1. To ef-
fectively compute samples, the sampler network also learns
to divide the raw-RGB image into superpixels and selects
samples by per-superpixel max-pooling. In the reconstruc-
tion network, both the SRGB image and sampled raw-RGB
pixels with their corresponding mask are fed into the net-

work to recover the full raw-RGB image. The two networks
are jointly trained by minimizing the pixel-wise distance be-
tween the output raw-RGB image and ground truth.

The inference time scenario is composed of two stages.
At capture time, we use the sampler network g to sample
the raw-RGB image. These samples are stored as meta-
data in the sSRGB image as comments. To save memory, we
only save the sampled RGB values with their pixel positions
in the metadata. When needed, the raw-RGB image is re-
constructed by the reconstruction network f with the saved
metadata in the SRGB image. Even though the pre-trained
reconstruction network produces high-quality raw-RGB im-
ages, it can be fine-tuned by the sparse raw-RGB samples
to further improve the performance on the test data.

3.1. Content-Aware Metadata Sampling

The goal of our content-aware metadata sampling is to
find the optimal raw-RGB samples based on the content of
the image. To this end, our key idea is to divide a raw-
RGB image into superpixels and select the best pixel in each
superpixel as a sample for metadata. We found that it is
beneficial for the reconstruction network to choose the raw-
RGB samples that are well distributed over the space of a
raw-RGB image. As a result, we split the xy-RGB space of
raw-RGB images into multiple subspaces using a superpixel



segmentation and collect the representative pixels.

Specifically, inspired by [38], our sampler network first
computes superpixels directly from the input. As shown
in Fig. 3, we divide a raw-RGB image into uniform grid
cells. The network predicts the association scores ¢.(p) for
each pixel p that indicate how likely a pixel p belongs to
a grid cell c¢. For computational efficiency, only the nine
neighboring cells in the blue box are considered for comput-
ing the association to the red-highlighted cell. The associa-
tion map is learned by optimizing the following superpixel
segmentation loss:

Ls = CYZHX p)l3

m? N
TS ZHP -pl3,
P
where x(p) is a reconstructed RGB value of x(p) computed

by the following equations:
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In the equation, u.. is the feature vector of the center of the
superpixel ¢ and N, is a set of all pixels in the nine sur-
rounding cells of a cell c¢. Similar to SLIC [2], the loss
in Eq. (1) enforces that the pixels in each superpixel are not
deviated much from the center u.. y(p) and p are com-
puted by the same equations. In Eq. (1), m and S are the
weight parameters in [38]. Unlike the loss in [38] that uses
semantic segmentation labels, our loss optimizes the RGB
color distance in both the sSRGB and raw-RGB images. Our
loss forces the network to consider how to sample the sSRGB
and raw-RGB images jointly. We add a hyperparameter «
to balance the SRGB and raw-RGB terms.

To select k% of samples, we set the number of uniform
grid cells to k% of the number of raw-RGB pixels. We then
choose the representative pixel for each grid cell that pro-
vides the maximum ¢ in the pixels of the nine neighborhood
cells. The per-cell max-pooling is formulated as

p, = arg max ¢.(p). 3)
PENC
We compute a binary sampling mask m to feed the samples
to the reconstruction network in the form of a 2D image,
which is formally described as

m = ¢ 4
(p) {O, otherwise. @

The sample map s, is simply computed by multiplying m
and y, which is described as s, = m ® y where ® is a
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Figure 4. Illustration of the online fine-tuning loss Lo and meta
loss Lyr. The Lo is computed only at the positions that have
ground-truth raw-RGB samples in metadata. To compute Las, f
is first updated by Lo, and then the loss for the full output image
is computed.

Hadamard product. The gradient is back-propagated only
through ¢(p) such that m(p) = 1 using a straight-through
estimator [3]. Note that our method does not guarantee that
the number of samples equals the k% of the number of pix-
els because multiple cells may choose the same pixel after
max-pooling.

3.2. SRGB-to-Raw-RGB De-rendering Using Meta-
data

The sSRGB-to-raw-RGB de-rendering task is formulated
as an image-to-image transform learned by the reconstruc-
tion network f. To exploit the sparse raw-RGB samples in
the metadata for reconstruction, we concatenate X, s, and
m followed by feeding them to f. With these inputs, the
network can infer the SRGB-to-raw-RGB mapping for all
pixels based on the sparse SRGB-raw-RGB pairs and the
full SRGB image. Both the sampler and reconstruction net-
works are jointly trained by the pixel distance loss described
as

Lp= ley p)|1, (5)

where y = f(x,s,, m).

3.3. Online Fine-Tuning at Inference Time

Another benefit of storing raw-RGB samples in the meta-
data is that they can be used to fine-tune the pre-trained re-
construction network on the fly for a test image to improve
the performance further. As shown in Fig. 2 and Fig. 4,
we minimize the pixel-wise distance loss only for the pix-
els that have their corresponding ground truth at inference



time, which is formally described as

Lo=Y_m(p)-|[3(p) — y(p)1- 6)

Meta-learning for optimizing fine-tuning. Our recon-
struction network can be further optimized at training time
to be generalized to fine-tuning on test-time examples. In-
tuitively, we expect that the overall error is minimized af-
ter the network is fine-tuned to fit the sparse samples. We
can encourage our network to be receptive to fine-tuning by
adding another loss term at training time. Specifically, we
first compute the reconstruction output using the metadata
samples § and m, which is described as yo = fy(x, §,, m),
where 6 is the parameters of f. Then, we update Lo
in Eq. (6) by several gradient descent steps using the fol-
lowing update rule: ' = 8 — 8V Lo (m, yg), where S is a
learning rate. We finally compute the pixel distance loss be-
tween the output of the updated model and ground truth for
all pixels as shown in Fig. 4, which is formally described as

Ly = 2”5’9’ (P) =yl @)

We have found that feeding the learned samples from the
sampler network to this loss degrades performance. The
reason is that the goal of two losses conflicts: the main loss
L g is optimized to overfit training batches while L, seeks
generalization. Therefore, we use different data to com-
pute the loss. Specifically, we use random samples for s
and m. This strategy alleviates the performance degrada-
tion when optimizing both losses and forces the network to
cope with a variety of sampling maps, which is also helpful
for generalization. Our formulation shares a similar spirit
with MAML [13], a meta-learning approach, in that both
are to find generalizable parameters that result in better per-
formance at fine-tuning. Our goal is to improve the overall
image quality even after overfitting the network to the k% of
pixels. We use FOMAML [13], a first-order approximation
of gradients, to compute the gradients of the meta loss.

3.4. Training Objective

The final training objective at training time is composed
of the reconstruction loss, superpixel loss, and meta loss,
which is described as

Lrotar = Lr + AsLs + A L, (®)
where Ag and \j; are hyperparameters. At testing time,

the online fine-tuning is performed by optimizing the online
optimization loss in Eq. (6).

4. Experiments
4.1. Experimental Settings

Dataset. To test the effectiveness of our method, we use
the NUS dataset [ 1], which contains raw images from sev-
eral different cameras. For our experiments, we use three
cameras—Samsung NX2000, Olympus E-PL6, and Sony
SLT-A57——containing 202, 208, and 268 raw images, re-
spectively. We demosaic the raw Bayer image using stan-
dard bi-linear interpolation to obtain a 3-channel raw-RGB
image. We then process the raw-RGB image using a soft-
ware ISP emulator [18] to render the corresponding sSRGB
image. This rendering mimics the photo-finishing applied
by the camera. We randomly split images from each cam-
era into training, validation, and test sets. In addition, we
crop all images into overlapping 128 x 128 patches.

In addition to the raw images, the NUS dataset also

contains SRGB-JPEG images rendered by each individual
camera’s ISP. We also performed experiments where we
used these sRGB images instead of the software ISP em-
ulator [18]. These results are reported in Section A.
Baselines. We compare our method with two metadata-
based raw reconstruction methods: RIR [28] and SAM [31].
The RIR method stores the parameters of global operations
of an ISP as metadata. The SAM method, which is most
similar to our approach, saves uniformly sampled raw-RGB
values along with an sSRGB image. Since the source codes
of the methods are not publicly available, we implement
them to reproduce results. For SAM, we use the same sam-
pling ratio used in our method.
Implementation details. As a backbone of both the sam-
pler and reconstruction networks, we use a U-Net [32] ar-
chitecture. We train our networks using the Adam opti-
mizer [20] with a learning rate of 0.001 and a batch size of
128 for 120 epochs. In the superpixel loss, we use 0.2 and
10 for o and m, respectively. In the meta loss, we use five
gradient descent steps for the inner update with a learning
rate of 0.001. We also set Ag and Aj; to 0.0001 and 0.01 for
all cameras except for the Sony; we use Aj; of 0.001 for the
Sony set. At testing time, we fine-tune the network for ten
iterations with a learning rate of 0.0001. In all experiments,
we sample 1.5% of pixels from a raw-RGB image, which
are 256 pixels in a 128x 128 patch. We train a model per
camera since raw images are in a sensor-dependent color
space. Our code and pre-trained models are available at
https://github.com/SamsunglLabs/content—
aware-metadata.

4.2. Experimental Results

Table 1 shows a quantitative comparison of the three
cameras in the NUS dataset. For a fair comparison, we
evaluate the performance of our method on the fully recon-
structed raw-RGB images. As can be seen, our method out-
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. . Samsung NX2000 Olympus E-PL6 Sony SLT-A57
Method Fine-tuning PSNR SSIM PSNR SSIM PSNR SSIM
RIR [20] N/A 45.66 0.9939 48.42 0.9924 51.26 0.9982
SAM [31] N/A 47.03 0.9962 49.35 0.9978 50.44 0.9982
Ours No 48.08 0.9968 50.71 0.9975 50.49 0.9973
Ours Yes 49.57 0.9975 51.54 0.9980 53.11 0.9985

Table 1. Quantitative evaluation on raw reconstruction.
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Figure 5. Qualitative comparison. Each two rows show results on Samsung NX2000, Olympus E-PL6, and Sony SLT-A57, respectively.

performs the baseline methods by a large margin after fine-
tuning. The PSNRs of our method without fine-tuning are
also higher than those of the baselines on the Samsung and
Olympus data. The RIR achieved high performance on the
Sony data, while the method is the worst on the Samsung
and Olympus data. We speculate that the Sony camera’s
raw-RGB-to-sRGB mapping has little effect on local pro-
cessing. Thus, the de-rendering is modeled well by a global
approach. Nevertheless, our method achieves the best af-
ter fine-tuning. Even though the fine-tuning heavily relies

on a very small subset of raw-RGB pixels, the training is
generally effective. We attribute this to the inductive bias
of self-similarity in CNNs [34]. As convolution filters are
shared in all spatial locations, the training signals at sparse
locations can be propagated to neighborhood pixels.

Fig. 5 shows a qualitative comparison. From top to bot-
tom, we show two results each on Samsung NX2000, Olym-
pus E-PL6, and Sony SLT-A57, respectively. The baseline
results have high errors, mostly on edges, as their models
are not sophisticated. The RIR relies on global operators of



Method Fine-tuning | PSNR | SSIM
No metadata N/A 47.67 | 0.9913
Uniform 49.58 | 0.9940
Random No 49.68 | 0.9940
Ours 50.64 | 0.9942
Uniform 52.59 | 0.9960
Random Yes 52.55 | 0.9957
Ours 53.32 | 0.9961

Table 2. Comparison of different sampling methods. All methods
share the same reconstruction network.

Input Uniform Random Ours
Figure 6. Comparison of different samplings. The top and bottom
rows show the error maps and sampling maps, respectively.

an ISP, but the edges are usually processed further by local
tone mappings. Even though the SAM can model spatially
varying color mappings, its uniform sampling is not enough
to store complex information around edges. In contrast, our
method adaptively samples raw-RGB values according to
the scene structure, improving the overall performance.

4.3. Discussion

Uniform vs. random vs. content-aware sampling.
In Table 2, we compare different sampling approaches, in-
cluding uniform and random sampling. We also compare
against a baseline where there is no sampling i.e., the re-
construction network is provided no additional metadata.
We average the PSNR and SSIM results of patches from the
three cameras. Uniform sampling chooses samples from a
2D grid of the image, while random sampling samples k%
of pixels randomly in an image. Both the samplings are
independent of the image content. As shown in the table,
exploiting metadata significantly improves the quality of
raw reconstruction regardless of sampling methods, which
demonstrates that it is beneficial to save a small number of
raw-RGB pixel values in the metadata of an SRGB image.
The uniform and random samplings are simple but effec-
tive approaches as they choose samples evenly in the entire
space of pixels in an image. As shown in Fig. 6, however,

Method PSNR SSIM

sRGB 49.10 0.9927

RAW 49.72 0.9933

sRGB + RAW 50.15 0.9943
Free-form max-pooling 47.75 0.9911
Superpixel max-pooling 50.15 0.9943
W/o meta loss 50.15 0.9943

W/o meta loss + fine-tuning 53.07 0.9959
W/ meta loss 50.64 0.9942

W/ meta loss + fine-tuning 53.32 0.9961

Table 3. Ablation study on our method. We compare different
inputs fed into the sampling process and different pooling ap-
proaches without using a meta loss. We also analyze the effec-
tiveness of the meta loss.

Superpixel

Input Free-form

Figure 7. Ablation study on the superpixel max-pooling. The two
rows show error maps and sampling masks, respectively.

the performance is limited since they are unable to select the
samples particularly useful for reconstruction. On the other
hand, our content-aware sampling outperforms the simple
approaches by a large margin because our method not only
samples pixels evenly but also considers their effectiveness
on reconstruction. An ablation on the sampling rate % is
provided in Section B.
Ablation study. To demonstrate individual components in
our method, we conduct an ablation study, as shown in Ta-
ble 3. We first try different inputs to the sampler network
and superpixel loss: sRGB image, raw-RGB image, and
both images. As can be seen, it is beneficial to use raw-RGB
images as input and then use SRGB images to find samples
from the raw-RGB images. However, the network achieves
the highest scores when using both images, indicating that
the SRGB images still provide useful information for better
sampling when both images are jointly used.

We also compare our superpixel-based sampling with a
naive sampling approach. For the free-form max-pooling
in the table, we train a sampler network with a single-



Method PSNR SSIM

CA [35] 34.74 0.9317
ACDC [36] 34.68 0.9152
IPAD [23] 34.91 0.9345
BitNet [7] 38.48 0.9657
BE-CALF [24] 38.94 0.9680
Ours 39.57 0.9719

Ours + fine-tuning 39.73 0.9721

Table 4. Quantitative comparison of bit-depth recovery (4-to-8-
bit) methods on the Kodak dataset [1].

channel sigmoid output and extract the top k% of pixels that
have large sigmoid values. As shown in the table, the per-
formance of the free-form sampling significantly degrades
compared with the superpixel-based sampling. Fig. 7 shows
a qualitative comparison. Since the free-form sampling is
unconstrained, most samples are clustered in the same re-
gion. In contrast, our superpixel-based sampling enables
the network to sample pixels at various locations while cov-
ering the full spatial range of the image.

Lastly, we conduct an ablation study on the meta loss.
As shown in Table 3, the meta loss improves the perfor-
mance after fine-tuning and the direct result from the net-
work, which demonstrates that the loss forces the recon-
struction network to learn its weights generalizable to un-
seen test cases. With the loss, the network can improve its
performance over 3dB compared to the direct network out-
put without the loss using sparse raw-RGB samples.
Limitations. Unlike uniform and random sampling, our
method is required to run a deep neural network to sample
pixels at capture time, which is an additional computational
cost on the device. We have not tested edge cases, such
as high compression, very noisy low-light images, or un-
der/overexposure issues in raw. Since convolutional neural
networks generally fit well with natural images that are spa-
tially smooth, it is still unclear how well our reconstruction
network can process sparse sampling masks. Investigating
efficient deep architectures for sparse samples is an interest-
ing direction of research in the future.

4.4. Other application: Bit-Depth Recovery

Our framework for sampling and reconstruction can also
be applied to the problem of bit-depth recovery. To test on
this task, we use two publicly available datasets for training:
MIT-Adobe 5K [6] and Sintel [5]. We synthesize pairs of 4-
bit and 8-bit images to train a 4-to-8-bit recovery task. We
use the 1.5% of pixels of an 8-bit image as metadata for our
method and run the update steps for fine-tuning.

Table 4 and Fig. 8 show a quantitative and qualitative
comparison with blind bit-depth recovery approaches. We

Input CA [35]

BitNet [/] BE-CALF[24] Ours +FT

ACDC [36]  IPAD [23]

BitNet [7] BE-CALF[24]  Ours + FT Ground truth

Figure 8. Qualitative comparison of bit-depth recovery algorithms
on the Kodak dataset [1]. Zoom in for better visibility.

evaluate all methods on the Kodak dataset [1]. As expected,
our method outperforms the baselines using a small num-
ber of pixels in the metadata. Note that our method is not
explicitly designed for bit-depth recovery. Our reconstruc-
tion network is a generic U-Net, while BitNet [7] and BE-
CALF [24] use networks particularly designed for the task.
This experiment demonstrates the applicability of our meta-
data framework to other image processing tasks.

5. Conclusion

We have presented a method for sRGB image de-
rendering that recovers the original raw-RGB images with
the assistance of a small amount of metadata that is sampled
from the raw-RGB image at capture time. Our approach
learns both the sampling and reconstruction network in an
end-to-end manner. Moreover, we train the reconstruction
network to lend itself for further fine-tuning from the sparse
metadata samples. We show significant improvements over
the existing state-of-the-art approaches that also use meta-
data. Finally, we use our framework for the related task of
bit-depth recovery and show compelling results.
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. . Samsung NX2000 Olympus E-PL6 Sony SLT-A57
Method Fine-tuning PSNR SSIM PSNR SSIM PSNR SSIM
RIR [20] N/A 37.62 0.9696 42.19 0.9865 4522 0.9916
SAM [31] N/A 38.80 0.9725 43.15 0.9881 46.02 0.9921
Ours No 40.80 0.9812 46.89 0.9938 4851 0.9947
Ours Yes 41.59 0.9818 47.76 0.9944 49.58 0.9954

Table Al. Quantitative evaluation on raw reconstruction using the camera ISP sSRGB images.

Percentage Samples k ‘ 0% ‘ 0.4% ‘ 1.5% ‘ 6.25%
Samsung NX2000 | 38.86 | 48.56 | 49.57 | 50.31
Olympus E-PL6 42.30 | 50.62 | 51.54 | 52.20
Sony SLT-A57 44.79 | 51.09 | 53.11 | 53.44

Table A2. An ablation on the sampling rate k.

Appendix A. Results on camera ISP images

In Section 4, we had evaluated our raw reconstruction accuracy using the NUS [ 1] dataset with the SRGB images rendered
using a software ISP emulator [18]. The NUS dataset also contains the sSRGB-JPEG images rendered by each individual
camera’s hardware ISP. We used these sSRGB images instead of the software ISP emulator [ 18], and the results are presented
in Table Al. Our method generalizes well to different ISPs, and outperforms competitors. We do note that compared to
Table 1, there is a drop in performance for all methods due to the more complex ISPs.

Appendix B. Other sampling rates

We report PSNR (dB) for our method (with fine-tuning) at different sampling rates in Table A2. The results for & = 1.5%
are reproduced from Table 1. There is a significant improvement from 0% i.e., no metadata, to 0.4%. Performance improves
with higher k values but at the expense of larger metadata size.

Appendix C. Comparison with SLIC

We performed an experiment where we replaced our learned superpixel with SLIC [2] for sampling, and trained our
reconstruction network under the same settings. On the Samsung camera, we obtained PSNR/SSIM values of 45.94 / 0.9958
as against 49.57 / 0.9975 produced by our method, demonstrating the superiority of an end-to-end learnable superpixel
sampler.

Appendix D. Additional experiments

In Fig. A1, we compare the error maps of our outputs before and after fine-tuning. Fig. A2, Fig. A3, and Fig. A4 show
additional qualitative results on three cameras. For visibility, we omit output raw-RGB images and ground truth. Fig. AS to
Fig. A7 show visualizations of learned superpixels and sampling masks.
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Figure A1l. Qualitative evaluation of our online fine-tuning.
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Figure A2. Qualitative comparison on Samsung NX2000.
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Figure A3. Qualitative comparison on Olympus E-PL6.
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Figure A4. Qualitative comparison on Sony SLT-A57.
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Figure AS5. Visualization of learned superpixels and sampling mask
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Figure A6. Visualization of learned superpixels and sampling mask.
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Figure A7. Visualization of learned superpixels and sampling mask.
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