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Abstract

Blind-spot network (BSN) and its variants have made
significant advances in self-supervised denoising. Never-
theless, they are still bound to synthetic noisy inputs due
to less practical assumptions like pixel-wise independent
noise. Hence, it is challenging to deal with spatially corre-
lated real-world noise using self-supervised BSN. Recently,
pixel-shuffle downsampling (PD) has been proposed to re-
move the spatial correlation of real-world noise. However,
it is not trivial to integrate PD and BSN directly, which
prevents the fully self-supervised denoising model on real-
world images. We propose an Asymmetric PD (AP) to ad-
dress this issue, which introduces different PD stride factors
for training and inference. We systematically demonstrate
that the proposed AP can resolve inherent trade-offs caused
by specific PD stride factors and make BSN applicable to
practical scenarios. To this end, we develop AP-BSN, a
state-of-the-art self-supervised denoising method for real-
world sRGB images. We further propose random-replacing
refinement, which significantly improves the performance of
our AP-BSN without any additional parameters. Extensive
studies demonstrate that our method outperforms the other
self-supervised and even unpaired denoising methods by a
large margin, without using any additional knowledge, e.g.,
noise level, regarding the underlying unknown noise.

1. Introduction
Image denoising is one of the essential topics in the

computer vision area, which aims to recover a clean image
from the noisy signal. Due to its practical usage in several
vision-related applications, several learning-based denois-
ing algorithms [29, 37, 44, 45] have been proposed with the
advent of convolutional neural networks (CNNs). Conven-
tional methods usually adopt additive white Gaussian noise
(AWGN) to acquire large-scale training data by synthesiz-
ing clean-noisy image pairs for supervised learning. Never-

Code is available at: https://github.com/wooseoklee4/AP-BSN

(a) DnCNN [44]
( Supervised )

(b) C2N [19] + DIDN [41]
( Unpaired )

(c) NAC [40]
( Self-supervised )

(d) AP-BSN + R3 (Ours)
( Self-supervised )

Figure 1. Visual comparison between different denoising meth-
ods on the DND benchmark [35]. (a) DnCNN is trained on real-
world noisy-clean pairs from the SIDD [1] dataset. (b) C2N uses
clean SIDD [1] and noisy DND [35] samples to simulate real-
world noise distribution in an unsupervised manner. (c–d) Self-
supervised methods can be trained on the DND [35] noisy im-
ages directly. We mark PSNR(dB) and SSIM with respect to the
ground-truth clean image for the quantitative comparison.

theless, models learned on the synthetic noise do not gener-
alize well in practice since the characteristics of real-world
noise differ much from AWGN. To overcome the limita-
tion, several attempts have been made to construct pairs of
real-world datasets like SIDD [1] and NIND [4]. Using
the real-world training pairs, supervised denoising meth-
ods [8, 16, 21, 42, 43] can be trained to restore clean images
from the noisy real-world input. However, constructing the
real-world dataset requires massive human labor, strictly
controlled environments, and complicated post-processing.
In addition, it is difficult to generalize the learned model
toward diverse practical scenarios as the characteristic of
noise varies much for the different capturing devices.

https://github.com/wooseoklee4/AP-BSN


Recently, several self-supervised approaches [3, 17, 23,
25, 32, 39, 40] have been introduced, which do not rely
on paired training data. Such methods require noisy im-
ages only for training instead of clean-noisy pairs. Among
them, Blind-Spot Network (BSN) [23] is one of the rep-
resentative methods motivated by Noise2Noise [26]. Un-
der the assumption that noise signals are pixel-wise inde-
pendent and zero-mean, BSN reconstructs a clean pixel
from the neighboring noisy pixels without referring to the
corresponding input pixel. Based on BSN, several ap-
proaches [15, 24, 25, 38] have achieved better performance
on synthetic noise while ensuring strict blindness w.r.t. the
center pixel. However, real-world noises are known to be
spatially-correlated [6, 20, 33], which does not meet the ba-
sic assumption of BSN: noise is pixel-wise independent.

To break spatial correlation of real-world noise, Zhou et
al. [46] utilize pixel-shuffle downsampling (PD). PD cre-
ates a mosaic by subsampling a noisy image with a fixed
stride factor, and thereby increases an actual distance be-
tween noise signals. Nevertheless, integrating PD to BSN
is nontrivial when handling real-world noise in a fully self-
supervised manner, where it cannot stand alone without
knowledge from additional noisy-clean synthetic pairs [38].
We identify that the principal reason for such limitation is
the trade-off between the pixel-wise independent assump-
tion and reconstruction quality. For example, a large PD
stride factor (> 3) ensures the strict pixel-wise independent
noise assumption and benefits BSN during training. How-
ever, it also destructs detailed structures and textures from
the noisy image. In contrast, a small PD stride factor (≤ 3)
preserves image structures but cannot satisfy the pixel-wise
independent assumption when training BSN.

Inspired by these observations, we propose Asymmet-
ric PD (AP), which uses different stride factors for train-
ing and inference. For real-world noise, we systematically
validate that a specific combination of training and infer-
ence strides can compensate shortcomings of each other.
Then, we integrate AP to BSN (AP-BSN), which can learn
to denoise noisy real-world inputs in a fully self-supervised
manner, without requiring any prior knowledge of under-
lying noise. Furthermore, we propose random-replacing
refinement (R3), a novel post-processing method that im-
proves the performance of our AP-BSN without any addi-
tional training. To the best of our knowledge, our AP-BSN
is the first attempt to introduce self-supervised BSN for real-
world sRGB noisy images. Extensive studies demonstrate
that our method outperforms not only the state-of-the-art
self-supervised denoising methods but also several unsuper-
vised/unpaired approaches by a large margin. We summa-
rize our contributions as follows:
• To handle spatially correlated real-world noise in a blind

fashion, we propose a novel self-supervised AP-BSN.
Our framework employs asymmetric PD stride factors for

training and inference in conjunction with BSN.
• We propose random-replacing refinement (R3), a novel

post-processing method that further improves our AP-
BSN without any additional parameters.

• Our AP-BSN is the first self-supervised BSN that cov-
ers real-world sRGB noisy inputs and outperforms the
other self-supervised and even several unpaired solutions
by large margins.

2. Related Work
Deep image denoising for synthetic noise. Beyond
the classical non-learning based approaches [2, 9, 12, 18],
DnCNN [44] has introduced a CNN-based architecture to
remove AWGN from a given image. Following DnCNN,
several learning-based approaches have been proposed such
as FFDNet [45], RED30 [29], and MemNet [37], with ad-
vanced network architectures. Nevertheless, the methods
trained on AWGN suffer from generalization toward the
real-world denoising due to domain discrepancy between
real and synthetic noises. Specifically, Guo et al. [13] have
demonstrated that AWGN-based denoisers do not perform
well when input noise signals are signal-dependent [10] or
spatially-correlated [6, 20, 33].
Real-world image denoising. To reduce the gap between
synthetic and real-world denoising, CBDNet [13] simulates
in-camera ISP with gamma correction and demosaicking
process. Then, synthetic heteroscedastic Gaussian noise
can be transformed into realistic noise signals, which can
be used to generate training pairs for supervised learn-
ing. Zhou et al. [46] have proposed pixel-shuffle down-
sampling (PD) to cover spatially-correlated real-world noise
with conventional AWGN denoisers. In contrast, there have
been a few attempts to capture the noisy-clean training
pairs from real-world [1, 4]. Using the real-world pairs,
it is straightforward to train supervised denoising meth-
ods [8, 16, 21, 42, 43], which generalize well on the cor-
responding real-world inputs. However, constructing real-
world pairs require huge labor and is not always available.
Unpaired image denoising. When sets of unpaired clean
and real-world noisy images are available, several methods
leverage generative approaches [11] to synthesize realistic
noise from the clean samples [5, 7, 14, 19]. Among them,
GCBD [7] selectively uses plain regions from noisy images
for stable learning. Recently, C2N [19] explicitly consid-
ers various noise characteristics to simulate real-world noise
more accurately. Using the generated noisy-clean pairs,
the following supervised denoising model [41, 44] can be
trained to deal with real-world noise. On the other hand,
Wu et al. [38] distill knowledge from a self-supervised de-
noising model while adopting synthetic noisy-clean pairs.
Still, it is important to match the scene statistics of clean
and noisy datasets even in the unpaired configuration [19],
which can be difficult in practice.



Self-supervised denoising. A major bottleneck for real-
world denoising is the absence of appropriate training
data. Therefore, several approaches have been proposed
to train their model using noisy images only. Motivated
by Noise2Noise [26], Noise2Void [23] and Noise2Self [3]
have introduced novel self-supervised learning frameworks
by masking a portion of noisy pixels from the input image.
Notably, the concept of BSN [23] has been later extended
to more efficient architectures in the form of four halved re-
ceptive fields [25] or dilated and masked convolutions [38].
While Noise2Same [39] does not use BSN, a novel loss
term is used to satisfy J -invariant property [3] in the de-
noising network. Neighbor2Neighbor [17], on the other
hand, acquires the noisy-noisy pair for self-supervision
by subsampling the given input. Nevertheless, the above
self-supervised methods heavily rely on assumptions that
noise signals are pixel-wise independent. Therefore, they
usually end up learning identity mappings when applied
to real-world sRGB images as noise signals are spatially-
correlated [6, 20, 33].

Recent Noisier2Noise [30], NAC [40], and R2R [32] add
different synthetic noise signals to the given input to make
auxiliary training pairs. However, Noisier2Noise requires
prior knowledge regarding the underlying noise distribu-
tion, and Noisy-As-Clean relies on weak noise assumptions.
R2R also requires several prior information such as noise
level and ISP function, which may not be available in real-
world scenarios.

3. BSN and PD
Blind-spot network. BSN [23] is a variant of the conven-
tional CNN that does not see the center pixel in the receptive
field to predict the corresponding output pixel. Several stud-
ies [3, 23, 24] have demonstrated that BSN B (·) can learn
to denoise a noisy image IN ∈ RH×W in a self-supervised
manner. We note that the image has a resolution of H ×W ,
and color channels are omitted for simplicity. To train BSN,
the following two assumptions must be satisfied: noise is
spatially, i.e., pixel-wise, independent and zero-mean. Un-
der such assumptions, it is known [3, 39] that minimizing
the self-supervised loss Lself w.r.t. BSN is equivalent to con-
ventional supervised learning as follows:

Lself = EIN ∥B (IN)− IN∥22
= EIN,IC ∥B (IN)− IC∥22 + c = Lsuper + c,

(1)

where IC ∈ RH×W is a clean ground-truth for the noisy
input IN, Lsuper is a supervised denoising loss function, and
c is a constant, respectively.

Therefore, several types of BSN [25, 38] are constructed
under the pixel-wise independent noise assumption. How-
ever, real-world noise is spatially correlated due to the im-
age signal processors (ISP). Specifically, demosaicking on
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Figure 2. Analysis of spatial correlation on real-world noise.
(a) As the relative distance d between two noise signals increases,
their correlation decreases. We note that different camera devices,
e.g., Motorola Nexus 6 (N6) or LG G4, in the SIDD [1] dataset
show similar noise behaviors in terms of spatial correlation, as il-
lustrated with dotted lines. (b) x and y axis represent a relative
distance along with horizontal and vertical directions, respectively.

Bayer filter [6, 20, 33] involves interpolation between noisy
subpixels. Fig. 2 demonstrates that in real-world, noise in-
tensities between neighboring pixels show non-negligible
correlation based on their relative distance. Since the neigh-
boring noise signals can be clues for inferring the unseen
center pixel, we have identified that BSN operates as an ap-
proximately identity mapping on real-world sRGB images.
Pixel-shuffle downsampling. Zhou et al. [46] have intro-
duced a novel concept of PD to break down the spatial cor-
relation in the real-world noise. Specifically, PDs can be
regarded as an inverse operation of the pixel-shuffling [36]
with a stride factor of s. Since real-world noise signals
are correlated with few neighboring pixels, subsampling
in PD process may break the dependency between them.
Then, conventional denoising algorithms can be applied to
the downsampled images, where the PD-inverse operation
PD−1

s follows to reconstruct a full-sized output. To pre-
serve image textures and details, Zhou et al. [46] set the
stride factor to 2, i.e. PD2, for the best performance.

4. Method
Our goal is to generalize BSN on real-world sRGB im-

ages in a self-supervised manner. To this end, we adopt PD
and minimize the following loss LBSN to train BSN:

LBSN =
∥∥PD−1

s (B (PDs (IN)))− IN
∥∥
1

= ∥IsBSN − IN∥1 ,
(2)

where IsBSN is an output from PDs and BSN pipeline,
namely PDs-BSN. Instead of widely-used L2 loss, we use
L1 norm for better generalization [27]. In brief, we first
decompose the given noisy image IN into s2 sub-images.
We note that PDs (IN) is a tiling of those sub-images [46]
Issub ∈ RH/s×W/s, as shown in Fig. 4. Then, we apply BSN
to the sub-images and reconstruct the output IsBSN using the
PD-inverse operation PD−1

s .



(a) Real-world noisy image IN (b) Clean image IC

(c) PD2-BSN (d) PD5-BSN

(e) Zhou et al. [46] (f) AP-BSN + R3 (Ours)

Figure 3. Issues on PDs-BSN when handling real-world noise.
(c) With a small stride factor, PD-BSN cannot remove noise from
the input IN. (d) With a large stride factor, PD-BSN destructs
edge structures. (e) When AWGN denoiser meets PD [46], the
model cannot completely remove real-world noise. (f) Our self-
supervised approach delivers an accurate denoising result by over-
coming the limitation of combining PD and BSN.

However, it is not straightforward to apply PD-BSN di-
rectly on real-world sRGB images. While Wu et al. [38]
have also tried to integrate PD and BSN, they resort to
knowledge distillation combined with additional synthetic
noisy-clean pairs. We have also observed that PD-BSN is
not applicable to real-world noisy images when trained with
the self-supervised loss in Eq. (2). Figs. 3c and 3d demon-
strate that PD2-BSN and PD5-BSN cannot restore a clean
and sharp image from the given noisy input, regardless of
the PD stride factor s.

4.1. Trade-offs in PD-BSN

When applying the AWGN-based denoiser on real-world
images, Zhou et al. [46] use PD2. However, we have ob-
served that PD exhibits different behaviors as the stride fac-
tor s varies. Therefore, we first describe two important as-
pects of PD-BSN regarding the stride factor s.
Breaking spatial correlation. Originally, PD has been
proposed to reduce spatial correlation between neighboring
noise signals in real-world images. While Zhou et al. [46]
resort to the stride factor of 2, our analysis in Fig. 2a demon-
strates that the stride factor should be at least 5 to minimize
the dependency in the given noise signal. In other words,
noise signals in the sub-images I2sub are still spatially cor-

Figure 4. Comparison between PD2 and PD5. Each operation
decomposes the given image into 4 and 25 sub-images, respec-
tively. In sub-images from PD5, we mark the aliasing artifact, i.e.
a black dot, with red, which can be interpreted as noise for BSN.
We note that the artifact does not appear in the blue sub-image.

related, where the pixel-wise independent noise assumption
for BSN does not hold.
Aliasing artifacts. Nevertheless, the sub-images Issub from
PDs suffer stronger degree of aliasing as the stride factor s
becomes larger. From the perspective of signal processing,
it is well-known that a downsampled image suffers aliasing
when the original signal is not properly bandlimited [31].
Since the PD process does not leverage a low-pass filter be-
fore subsampling, we have identified that aliasing occurs as
a form of noise when applying large-stride PD, e.g., s = 5,
as shown in Fig. 4.

4.2. Effective training stride factor for PD-BSN

We next establish a strategy to train PDs-BSN. For such
purpose, the correlation between noise signals in the train-
ing input images IN has to be minimized [23]. However, as
discussed in Section 4.1, PD2 is not enough to break spa-
tial correlation of real-world noise. Since the underlying
assumption of BSN is not satisfied, the model cannot learn
to denoise with PD2. By setting s = 5 to suppress the spa-
tial correlation between noise signals in training samples,
we can train BSN on the smaller sub-images I5sub.

We note that BSN also learns to remove the aliasing ar-
tifacts induced by the large PD stride factor. The aliasing
happens when high-frequency signals are not removed be-
fore subsampling [31]. As the high-frequency components
change rapidly in the original noisy image IN, we can ignore
the spatial correlation of aliasing artifacts in the sub-images
I5sub. The artifacts also satisfy the zero-mean constraint, i.e.,
their statistical mean is approximately the same as that of
the noisy image IN, since they are random samples of the
observed signal. As the aliasing artifacts satisfy two precon-
ditions of BSN, our PD-BSN also learns to remove them.

4.3. Asymmetric PD for BSN

Several studies [7,19] have already identified that match-
ing data distribution between training and test samples play
a critical role in accurate image denoising. Therefore, it is



Figure 5. Overview of the proposed AP-BSN and R3 post-processing. We visualize the proposed AP5/2-BSN. To apply BSN on real-
world sRGB images, we introduce APa/b to maximize synergies of using different stride factors for training and inference. We use a large
stride factor, e.g., a = 5, to ensure pixel-wise independence between noise signals for training. During the inference, we use a minimum
stride factor of b = 2 to avoid aliasing artifacts while breaking down the spatial correlation of noise to some extent. Our random-replacing
refinement (R3) further improves the performance of AP-BSN without any additional parameters.

natural to use the same stride factor for training and infer-
ence when applying PD-BSN. However, we have found that
the learned BSN recognizes aliasing artifacts from PD5 as
noise signals to be removed during inference. Since those
artifacts contain necessary information to reconstruct high-
frequency details, PD5-BSN destructs image structures dur-
ing inference while removing noise as shown in Fig. 3d.

Instead, we propose an asymmetric stride factor during
the inference of PD-BSN, which we refer to as Asymmetric
PD (APa/b). We note that a and b are stride factors for train-
ing and inference, respectively. Specifically, we set b = 2
so that the sub-images I2sub contain minimum aliasing arti-
facts during inference, while the correlation between neigh-
boring noise signals can be decreased. In Section 5, we
demonstrate how each trade-off, i.e., spatial correlation and
aliasing artifacts, affects the denoising performance of our
method. Our BSN with the proposed AP5/2 (AP-BSN) can
learn to remove real-world noise in a self-supervised man-
ner, while preserving image structures as shown in Fig. 3f.
We also note that our AP-BSN does not require any clean
samples for training and is directly applicable to sRGB
noisy images in practical scenarios. Fig. 5 illustrates our
asymmetric training and inference schemes for AP-BSN.

4.4. Random-replacing refinement

Even with the smallest stride factor, PD and the fol-
lowing denoising step may remove some informative high-
frequency components from the input, resulting in visual
artifacts [46]. Therefore, Zhou et al. [46] propose PD-
refinement to suppress artifacts from the PD process and
enhance details of the denoising result. In PD-refinement,

(a) Expected correlations (b) Replacement strategies

Figure 6. Comparison between PD-refinement and our R3.
While PD-refinement adopts regular binary masks Mi with a
stride of 2, our R3 uses randomized masks Ri. (a) We compare
the expected spatial correlation of noise signals in the replaced
image IMi and IRi . (b) Each gray box represents a pixel from the
original noisy image IN, which replaces the denoised pixel in IsBSN.

an i-th replaced image IMi is formulated as follows:

IMi
= Mi ⊙ IN + (1−Mi)⊙ IsBSN, (3)

where Mi ∈ {0, 1}H×W is a binary mask indicating pix-
els to be replaced and ⊙ denotes element-wise multiplica-
tion. Here, Mi is a structured binary matrix where ones
are placed with a fixed stride of 2 and

∑
i Mi = 1. Af-

ter the replacement, each image IMi is denoised again and
averaged to reconstruct the final result IDN as follows:

IDN =
1

T

T∑
i=1

D (IMi
), (4)

where D is the denoising model targeting pixel-wise inde-
pendent noise and T is the number of masks, i.e., 22 = 4,
for the original PD-refinement.



However, the deterministic strategy in PD-refinement
leaves a non-negligible correlation between the replaced
noise signals. Specifically, a replaced noisy pixel in IMi

is always correlated with some of its neighbors, as visual-
ized in Fig. 6a. Such correlation negatively affects the per-
formance of the following denoising method D, which as-
sumes spatially uncorrelated noise. Therefore, we propose
an advanced random-replacing refinement (R3) strategy
to mitigate the limitation of PD-refinement.

In our R3, we adopt T randomized binary masks Ri in-
stead, which are defined as follows:

Ri (x, y) =

{
1, with a probability of p,
0, otherwise,

(5)

where (x, y) denotes an index of the element in a H × W
matrix. For Eq. (3) and Eq. (4), we adopt the randomized
mask Ri rather than the fixed one Mi to acquire the final
output. Since noisy pixels are randomly placed in the i-th
replaced image IRi

, an expected correlation between two
noise signals is multiplied by p, as shown in Fig. 6a. Hence,
our R3 significantly reduces the expected correlation com-
pared to the previous PD-refinement. When we combine R3

with AP-BSN, we do not perform PD and feed the replaced
image IRi to BSN directly because spatial correlation of
noise in the input is almost negligible. Fig. 6 highlights ma-
jor differences between PD-refinement and our R3.

5. Experiment
5.1. Experimental configurations

Dataset. To train and evaluate our AP-BSN, we adopt
widely-used real-world image denoising datasets: SIDD [1]
and DND [35]. SIDD-Medium consists of 320 real-world
noisy and clean image pairs for training. For validation
and performance evaluation, we adopt SIDD validation and
benchmark datasets, respectively. Both contain 1,280 noisy
patches with a size of 256 × 256, where the corresponding
clean images are also provided for the validation set.

The DND dataset does not include training images and
consists of 50 real-world noisy inputs only for evaluation.
Rather than using the SIDD-Medium training dataset for
this case, we enjoy the advantage of a fully self-supervised
learning framework and use the same data for training and
performance evaluation. In other words, we train our AP-
BSN on 50 noisy DND images and reconstruct the final de-
noising results from the same inputs.
Metric. To evaluate our AP-BSN and compare it with
the other denoising methods, we introduce widely-used
peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM) metrics. For SIDD and DND benchmarks, we
upload our results to the evaluation sites to calculate the
metrics. On the SIDD validation dataset, we use the cor-
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Figure 7. Ablation study of APa/b-BSN on the SIDD validation
dataset. We note that the proposed R3 post-processing is not ap-
plied in these ablation studies. (a) Our APa/b-BSN consistently
achieves the best performance when b = 2. (b) We validate AP5/b-
BSN on two representative images displayed in Figs. 8a and 8b.

(a) Plain region (b) Textured region

(c) AP5/1 (d) AP5/2 (e) AP5/5 (f) AP5/1 (g) AP5/2 (h) AP5/5

Figure 8. Visual comparison of the trade-off in APa/b-BSN. (c–
e) For a plain region in (a), performance of AP-BSN gradually
increases as the inference stride factor b becomes larger. (f–h) For
a textured region in (b), AP-BSN performs the best when b = 2 but
shows decreased performance for larger b. Please refer to Fig. 7b
for more details.

responding functions in skimage.metrics library and
RGB color space for comparison.
Implementation and optimization. We use PyTorch
1.9.0 [34] for implementation. By default, we adopt AP5/2
and set p and T to 0.16 and 8, respectively, for the pro-
posed R3. For BSN, we modify the architecture from Wu et
al. [38] for efficiency. AP-BSN is trained using Adam [22]
optimizer, and the initial learning rate starts from 10−4.
More details are described in our supplementary material.

5.2. Analyzing Asymmetric PD

We first validate the effect of AP for real-world sRGB
denoising. To this end, we conduct an extensive study
on all possible combinations of feasible stride factors, i.e.,
a ∈ {2, 3, 4, 5, 6} and b ∈ {1, 2, 3, 4, 5, 6}, in Fig. 7a. We
note that BSN cannot be trained when a = 2 due to the
spatial correlation of real-world noise. With larger training
stride factors a, the input noise of BSN follows pixel-wise
independent assumption more strictly. Therefore, the model
can learn the denoising function better, where the perfor-
mances are maximized with a = 5. When a = 6 is used,



Method
SIDD DND

PSNR↑(dB) SSIM↑ PSNR↑(dB) SSIM↑

Non-learning based
BM3D [9] 25.65 0.685 34.51 0.851
WNNM [12] 25.78 0.809 34.67 0.865

Supervised
(Synthetic pairs)

DnCNN [44] 23.66 0.583 32.43 0.790
CBDNet [13] 33.28 0.868 38.05 0.942
Zhou et al. [46] 34.00⋄ 0.898⋄ 38.40 0.945

Supervised
(Real pairs)

DnCNN [44] 35.13⋄ 0.896⋄ 37.89⋄ 0.932⋄

AINDNet (R)∗ [21] 38.84 0.951 39.34 0.952
VDN [42] 39.26 0.955 39.38 0.952
DANet [43] 39.43 0.956 39.58 0.955

Unsupervised
(Unpaired)

GCBD [7] - - 35.58 0.922
C2N [19] + DIDN∗ [41] 35.35 0.937 37.28 0.924
D-BSN [38] + MWCNN [28] - - 37.93 0.937

Self-supervised

Noise2Void [23] 27.68R 0.668R - -
Noise2Self [3] 29.56R 0.808R - -
NAC [40] - - 36.20 0.925
R2R [32] 34.78 0.898 - -
AP-BSN (Ours) 34.90 0.900 37.46 0.924
AP-BSN + R3 (Ours) 35.97 0.925 38.09 0.937
AP-BSN† + R3 (Ours) 36.91 0.931 - -

Table 1. Quantitative comparison of various denoising methods on the SIDD and DND benchmarks. We note that several supervised
methods leverage SIDD noisy-clean pairs for training and perform much better than our AP-BSN, while we use noisy sRGB images only for
training. By default, we report official evaluation results from SIDD and DND benchmark websites. ⋄ and R indicate that the performances
are evaluated by ourselves, or reported from R2R [32], respectively. We also mark methods with ∗ which adopt self-ensemble strategy [27].
† denotes that the model is trained on SIDD benchmark images in a fully self-supervised fashion.

AP6/b-BSN performs slightly worse since the noise in the
SIDD [1] dataset show increasing correlation as shown in
Fig. 2a. Interestingly, a = 6 is slightly better than a = 5 on
the NIND [4] dataset, as the correlation gradually decreases
w.r.t. to the relative distance between pixels. More analysis
on the NIND dataset is reported in our supplementary ma-
terial. During the inference, BSN cannot remove real-world
noise without PD, i.e., b = 1, as it is learned on pixel-wise
independent noise. The performances are maximized when
b = 2, as the trade-off between spatial correlation and alias-
ing can be optimized. With larger inference stride factors,
i.e., b > 2, AP-BSN performs worse because more image
details are removed in the form of aliasing artifacts.

In Fig. 7b, we justify that the existence of aliasing ar-
tifacts is a critical factor for our denoising framework.
When applying AP5/b-BSN to the plain region illustrated in
Fig. 8a, the model performs better as the inference stride
factor b becomes larger. Since the region does not con-
tain high-frequency information, aliasing artifacts do not
appear in Figs. 8c, 8d, and 8e. Rather, the spatial cor-
relation of noise signals becomes smaller with a larger b,
which results in better performance. For a general image in
Fig. 8b, our AP5/b-BSN shows a similar behavior to that of
Fig. 7a, while the performance drop is much severe due to
the stronger aliasing artifacts as shown in Fig. 8h.
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(b) Ablations on T

Figure 9. Ablation study of AP-BSN + R3 on the SIDD valida-
tion dataset. We note that AP-BSN without R3 achieves 34.86dB
on the same dataset. (a) We investigate the effect of different p for
T = 2, 4, 8. (b) We fix p = 0.16 to see the effect of T in our R3.

5.3. Analyzing Random-Replacing Refinement

Fig. 9 shows a detailed ablation study on hyperparame-
ters for the proposed R3. We first set T = 2, 4, 8 to find the
optimal replacement probability p. As shown in Fig. 9a, our
R3 shows a consistent behavior where the maximum perfor-
mance is achieved with p ≈ 0.16. We note that a larger
p increases the expected spatial correlation of noise signals
which degrades the performance. Due to the stochastic be-
havior, the number of randomized masks T is not limited in
our R3, while PD-refinement can only use T = 4. Fig. 9b
demonstrates that the proposed R3 performs better than PD-
refinement even with T = 2, and the performance increases
as the number of randomized masks T goes higher. Since



(d) NAC [40]

(a) DnCNN [44]
Supervised - Real SIDD

(b) Zhou et al. [46]
Supervised - Synthetic noise

(c) C2N [19] + DIDN [41]
Unpaired

(e) R2R [32]
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(f) AP-BSN + R3 (Ours)
Self-supervised

Figure 10. Qualitative comparison between different denoising methods on DND [35] and SIDD [1] benchmarks. (a) DnCNN is
trained on the paired SIDD-Medium dataset. (b) Zhou et al. train their method on synthetic AWGN and impulse noise. The learned
denoising model is then combined with PD to handle real-world noise. (c) C2N generates a realistic noisy image from the clean input,
where the following denoising model, i.e., DIDN, is trained on the generated pairs. (d–e) Recent self-supervised approaches are trained on
noisy images only. (f) Our method is directly learnable on the practical sRGB images. We note that the DND benchmark (Upper) provides
per-sample PSNR/SSIM, while SIDD benchmark (Lower) does not, i.e., Not available.

the computational complexity of R3 is proportional to T , we
set T = 8 to balance the performance and runtime.

5.4. AP-BSN for real-world denoising

Our AP-BSN aims to denoise real-world sRGB im-
ages in a self-supervised manner. Table 1 compares var-
ious image denoising models on widely-used SIDD and
DND benchmark datasets. Using noisy images only for
training, the proposed AP-BSN + R3 achieves the best
performance among several unpaired [19, 38] and self-
supervised approaches. Especially, we note that self-
supervised NAC [40] and R2R [32] are constructed on less
practical assumptions like noise level is weak or ISP func-
tion is known. On the other hand, our approach adopts
BSN with several observations regarding the properties of
PD and real-world noise. Therefore, we do not rely on
specific assumptions and show better generalization on sev-
eral real-world datasets. In addition, the proposed R3 post-
processing further improves the evaluation PSNR more than
1dB on the SIDD benchmark track without any additional
parameters. Fig. 10 provides visual comparisons between
several methods addressed in Table 1.

Furthermore, AP-BSN can be trained on noisy samples
directly, without using any clean images. Since several
un-/self-supervised methods are trained on auxiliary im-
ages [32] or generated noise [19], the discrepancy between
training and test distributions may result in sub-optimal so-
lutions. In contrast, our approach can use target sRGB noisy
images directly during training phase. To validate the merit

of our framework, we train AP-BSN on the SIDD bench-
mark and evaluate on the same dataset. The last row of Ta-
ble 1 shows that the fully self-supervised strategy improves
the denoising performance by about 1dB without making
any modifications. Although SIDD-Medium contains about
×60 more pixels than the benchmark split, such an improve-
ment highlights that AP-BSN can also generalize well on
practical cases where there exist noisy test samples only.

6. Conclusion
In this paper, we first identify several trade-offs re-

garding different PD stride factors in perspective of BSN.
Rather than directly integrate PD and BSN, we propose
asymmetric PD between training and inference to satisfy
pixel-wise independent assumption while preserving image
details. To this end, we propose AP-BSN, a fully self-
supervised approaches for real-world denoising. We also
propose random-replacing refinement R3, which removes
visual artifacts of AP-BSN without any additional parame-
ters. The proposed AP-BSN + R3 does not require any prior
knowledge on real-world noise and outperforms recent self-
supervised/unsupervised denoising methods.
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Figure S1. Visualization of our BSN architecture. We adopt 3 × 3 and 5 × 5 Centrally Masked Convolutions [38] to implement the
blind-spot network. Each Dilated Convolution module (DC) contains one 3× 3 dilated convolution with a stride s, where s = 2 and s = 3
are used for the upper and lower path of the network, respectively. For each path, we stack 9 DC modules. The number of output channels
is denoted below each convolutional layer, where 128 is used by default.

S1. Optimization
To train our AP-BSN, we randomly crop 120×120 noisy

patches from the SIDD and DND datasets, respectively. We
note that 24,542, 24,784, and 24,320 patches are used in
one epoch for SIDD-Medium, DND, and SIDD benchmark
datasets, respectively. Each sample is augmented with ran-
dom 90◦ rotation and horizontal/vertical flips. Our mini-
batch contains the 8 augmented samples. The proposed AP-
BSN is optimized for 20 epochs, where the learning rate is
decayed by a factor of 10 for every 8 epochs.

S2. Network architecture
Our BSN architecture is based on Wu et al. [38], while

several changes are made for simplification. Instead of the
MDC modules with multiple branches of the dilated convo-
lutions, we use a sequence of dilated convolution modules
(DC) that have a single branch only. Fig. S1 visualizes a
detailed architecture of the BSN used to construct our AP-
BSN framework.

Therefore, our network has 3.7M parameters, which are
fewer than 6.6M parameters from the original BSN pro-
posed by Wu et al. [38]. We also note that recent unsu-
pervised/unpaired methods adopt larger denoising networks
than the proposed AP-BSN. Specifically, e.g. DIDN [41]
and C2N [19], MWCNN [28] has ∼16.2M in Wu et
al. [38]). Our AP-BSN w/o R3 shows comparable results
with much smaller denoising networks even our AP-BSN
only uses noisy images.

S3. Effects of aliasing artifacts
To examine the effect of aliasing artifact during the train-

ing and inference, we train our AP-BSN using clean SIDD
images only. Specifically, BSN is trained to reconstruct the

same image from given a clean input while not seeing the
center pixel in the receptive field. We suppose that the clean
images contain zero-intensity noise, which follows the two
basic assumptions of BSN: noise signals are spatially un-
correlated and zero-mean. Thus, PD-BSN should learn an
identity mapping if sub-images from PD do not contain any
noise. However, as shown in Figs. S2b and S2c, PD5-BSN
removes high-frequency information from the given input
clean image in Fig. S2a and does not operate an identity
function even on the clean image while PD2-BSN does not.
From this observation, we can assume that PD5-BSN learns
to remove some information during the training that does
not exist in PD2 sub-images. When we apply the proposed
AP5/2 strategy, BSN does not remove high-frequency com-
ponents and preserves the image structure well, as shown
in Fig. S2d. Therefore, we conclude that the aliasing ar-
tifacts prevent PD5-BSN from being a feasible denoising
model since removing the artifacts during inference can sig-
nificantly degrade the performance of PD-BSN.

S4. AP-BSN on the NIND dataset

In Fig. 2a of our main manuscript, we have demonstrated
that noise signals in the NIND [4] dataset show gradually
decreasing correlations between them as their relative dis-
tance d increases. Such observation implies that the pro-
posed AP-BSN may perform better with a = 6 or larger,
as the spatial correlations between noise can be further re-
duced. Therefore, we analyze the trade-offs of APa/b on the
NIND dataset similar to Section 5.2 in our main manuscript.
To investigate the trade-off under diverse scenes, we con-
duct a per-sample analysis rather than calculating the per-
formance on the entire dataset. Fig. S3a shows several noisy
images in the NIND dataset. In Fig. S3b, we also visualize
the denoising results of our AP5/2-BSN + R3 trained on the



(a) Input clean image IC (b) PD2-BSN

(c) PD5-BSN (d) AP5/2-BSN (Ours)

Figure S2. Effects of aliasing artifacts in BSN. To validate that
the advantage of AP-BSN comes from the existence of aliasing
artifacts, we conduct a clean-to-clean experiment. We sample a
clean image from the SIDD validation dataset for visualization.

NIND dataset. Since the noise property of the NIND dataset
differs from SIDD, AP6/2 may perform slightly better on
some specific samples as shown in Fig. S3c. However, we
note that the performance gaps are marginal, and AP5/2 gen-
eralizes well on various real-world datasets on average.

S5. Qualitative results
S5.1. Additional qualitative results

Since several existing methods do not provide qualitative
results on specific datasets, we could not perform extensive
qualitative comparisons in our main manuscript. For ex-
ample, Figs. 10d (upper figure in the 3rd column) and 10e
(lower figure in the 3rd column) in our main manuscript
represent results of NAC [40] on the DND benchmark
and R2R [32] on the SIDD benchmark, respectively, be-
cause R2R does not provide results on the DND dataset.
Fig. S4 shows additional qualitative comparison between
different denoising methods on the DND [35] benchmark
and SIDD [1] validation dataset.

S5.2. Results on real-world inputs

Our AP-BSN is designed to handle real-world sRGB im-
ages, where appropriate training examples, i.e., noisy-real
pairs for supervised, a set of clean images for unpaired
learning, may not exist. One of the major advantages of the
proposed fully self-supervised framework is that we can ap-
ply our model on a single noisy test image directly without
any pre-trained knowledge. To this end, we capture real-
world noisy images under a high ISO condition using the
recent Samsung Galaxy smartphone. Modern smartphone
cameras usually incorporate software-based denoising algo-
rithms to remove unpleasing noise from the captured scene.
Therefore, we first acquire RAW data and leverage the sim-

ulated camera pipeline without explicit denoising stage [1]
to get the corresponding sRGB images.

Fig. S5 visualizes denoising results of our method on
the real-world sRGB images. Compared to the hardware-
specific in-camera denoising algorithm in Fig. S5b, our ap-
proach reconstructs much sharper edges while suppressing
unwanted noise signals effectively, as shown in Fig. S5d.
The proposed method also outperforms DnCNN [44]
trained on SIDD [1] noisy-clean pairs, while our formula-
tion utilizes a single noisy image only for training.

S5.3. Qualitative improvement by R3

Our R3 post-processing strategy significantly improves
the performance of the proposed denoising method. Fig. S6
provides qualitative comparisons between AP-BSN without
R3 and AP-BSN + R3. Without R3, our AP-BSN tends to
generate unpleasing blocky artifacts as shown in Fig. S6b.
By using the proposed R3, our AP-BSN can reconstruct
smooth and natural image structures without requiring any
additional parameters and training.
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(a) Noisy images from the NIND [4] dataset (b) AP-BSN + R3 (Ours)
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Figure S3. Per-sample analysis of APa/b on the NIND dataset. (a) Noisy images sampled from the NIND dataset.
From top: ‘NIND MuseeL-ram ISO6400.jpg,’ ‘NIND MVB-Bombardement ISOH1.jpg,’ ‘NIND LaptopInLibrary ISO2500.png,’
‘NIND Iain02 ISO3200.png,’ ‘NIND partiallyeatenbanana ISO2500.png.’ (b) Results of our AP-BSN + R3 on the NIND dataset. We
show local patches for better visualization. (c) Per-image trade-off analysis. The proposed AP-BSN performs consistently well when
b = 2, while the best performance can be achieved when the training stride factor a is set to 5 or 6. Please see Fig. 7 in our main
manuscript for more details.



DND [35] dataset ↑ ↓ SIDD [1] dataset

(a) Noisy (b) DnCNN [44]
Supervised - Real SIDD

(c) Zhou et al. [46]
Supervised - Synthetic noise

(d) C2N [19] + DIDN [41]
Unpaired

(e) AP-BSN + R3 (Ours)
Self-supervised

Figure S4. Additional qualitative comparison between different methods on DND [35] benchmark and SIDD [1] validation datasets.
The upper two rows are examples from the DND benchmark dataset, and the lower four rows are from the SIDD validation dataset. (a)
Input noisy images. (b) Same as Fig. 10a in our main manuscript, DnCNN is trained on the paired SIDD-Medium dataset. (c) Zhou et al.
train their method on synthetic AWGN and impulse noise. During the inference, PD2 is used to break the spatial correlation of real-world
noise. (d) C2N generates a realistic noisy image from the clean input, where the following denoising model, i.e., DIDN, is trained on the
generated pairs. (e) Our method is directly applicable to practical sRGB noisy images in a self-supervised manner, which does not require
any additional data. For quantitative comparison, we mark per-sample PSNR/SSIM w.r.t. the ground-truth image at the bottom left of each
patch. We also note that ground-truth images are not available for the DND dataset.



(a) Real-world sRGB images under the high ISO condition (b) In-camera processing (c) DnCNN [44] on SIDD [1] (d) AP-BSN + R3 (Ours)

Figure S5. AP-BSN + R3 on noisy images captured by ourselves. (a) To avoid the in-camera denoising pipeline, we first capture RAW
images with ISO 3200 using a recent Samsung Galaxy smartphone. We note that no other pre/post-processing is done on the exported
.dng files. Then, we render the sRGB images using the SIDD ISP pipeline [1], which does not include the denoising process. (b) The
corresponding sRGB images processed by the smartphone. We note that the recent mobile devices have adopted software-based denoising
algorithms, which suppress unwanted noise from the captured images. (c) Same as Fig. 10a in our main manuscript, DnCNN is trained on
the real-world SIDD pairs. (d) Results of our AP-BSN + R3 trained on a single noisy input without any external data. We note that there
exist color shifts between (a) and (b) since the simulated ISP pipeline does not know the color mappings of the actual ISP.



(a) Noisy image IN (b) AP-BSN (c) AP-BSN + R3 (Ours) (d) Clean image IC

Figure S6. Visual comparison between denoising results of AP-BSN without R3 and with R3 on SIDD validation dataset. (b) Even
with the smallest inference stride factor (b = 2), BSN leaves unpleasing artifacts on the denoised results and cannot preserve the image
structures well. (c) The proposed R3 removes artifacts from BSN and significantly improves the denoising performances. For quantitative
comparison, we also provide per-sample PSNR/SSIM w.r.t. ground-truth images at the bottom left of each patch.
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