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Abstract

We present a novel structured light technique that uses
Single Photon Avalanche Diode (SPAD) arrays to enable
3D scanning at high-frame rates and low-light levels. This
technique, called “Single-Photon Structured Light”, works
by sensing binary images that indicates the presence or ab-
sence of photon arrivals during each exposure; the SPAD
array is used in conjunction with a high-speed binary pro-
jector, with both devices operated at speeds as high as
20 kHz. The binary images that we acquire are heavily influ-
enced by photon noise and are easily corrupted by ambient
sources of light. To address this, we develop novel tem-
poral sequences using error correction codes that are de-
signed to be robust to short-range effects like projector and
camera defocus as well as resolution mismatch between the
two devices. Our lab prototype is capable of 3D imaging in
challenging scenarios involving objects with extremely low
albedo or undergoing fast motion, as well as scenes under
strong ambient illumination.

1. Introduction
Structured light (SL) 3D imaging systems have inherent

tradeoffs that balance the precision of the 3D scan against
its acquisition time. For instance, temporally-multiplexed
SL techniques [21, 22, 25] achieve high depth resolution
by projecting multiple patterns, thereby precluding high-
speed capture. At the other extreme, SL based on spatially-
modulated patterns [27, 62] can facilitate single-shot scans,
but require assumptions of spatial-smoothness that invari-
ably result in loss of detail.

The tradeoffs inherent to SL systems are exacerbated
when operating in challenging regimes with low signal-to-
noise ratios (SNR) arising from either low-albedo objects,
dynamic scenes, or strong ambient illumination. In these
scenarios, using longer temporal codes can offer robustness
and precision, but at the cost of lowered acquisition speed.
One way to mitigate the loss in time resolution is to use
high-speed cameras and projectors. However, this approach
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is limited by large bandwidth requirements and, more fun-
damentally, the presence of read noise. Each image has a
constant amount of read noise, immaterial of the exposure
time; this can dominate the received signal as the exposure
times and, consequently, the image intensities are reduced.

This paper envisions a class of Single-Photon Struc-
tured Light systems that are based on single-photon de-
tectors, such as Single Photon Avalanche Diodes (SPADs).
SPADs can be operated at very high speeds when detect-
ing photons and not their time-of-arrivals. In this ‘pho-
ton detection’ mode, the measurements are binary-valued—
indicating whether or not a photon arrival occurred during
a given acquisition time. For instance, a recently developed
SPAD array [12] can capture ∼105 binary frames at 1/8-th
megapixel resolution. Our key observation is that the bi-
nary measurements, normally considered a limitation due to
limited information, are sufficient for a large family of SL
coding schemes [53] that are binary as well. Since SPADs
count photon arrivals, they are not corrupted by read noise.
Finally, the use of SPADs for SL finds a natural coupling in
high-speed projectors that use digital micromirror devices
(DMDs) for displaying binary patterns.

Coding and decoding for Single-Photon SL. Due to the
probabilistic nature of photon arrivals, the binary-valued
measurements captured by SPADs are prone to strong pho-
ton noise. For instance, in the presence of strong ambient
light, the SPAD could detect a photon even when the cor-
responding projector pixel is dark. Traditional SL coding
schemes are designed for regimes where the image mea-
surements are not binary-valued, and hence are not suit-
able for Single-Photon SL. We formulate novel SL encoding
strategies using error-correction codes that enable robust de-
coding for Single-Photon SL even under large photon noise.

Beyond achieving robustness to photon noise, SL coding
schemes must account for various imaging phenomena such
as projector and camera defocus. Naı̈ve error-correcting
codes do not consider these practical effects, and thus can-
not be used in a real-world SL system. We design a new
class of hierarchical codes using error correction and bi-
nary phase shifting that guarantee a minimum stripe width,
which provides robustness to such non-idealities. Finally,
we design a high-throughput decoding scheme for the pro-
posed codes to enable real-time decoding of the measure-
ments. Our implementation can decode a disparity map for
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Figure 1. Single-Photon Structured Light. (left) Our proposed system comprises of a SPAD array and a DMD-based projector used
to project and acquire binary patterns at extremely high frame rates. We devise coding schemes that can obtain depth-maps from these
photon noise limited captures. (right) We demonstrate several practical capabilities of Single-Photon SL, including: high-speed scanning
of a rapidly moving hand at 250 FPS, sub-millimeter precise depth-imaging at a range 50 cm range and at 80 FPS, and reconstructing the
tread pattern of a tire, a low-albedo object, at 40 FPS. We include RGB frames captured at 30 FPS to depict the high speeds involved.

a 512× 256 array in 100 ms on a CPU and 3 ms on a GPU.

Implications. Single-photon SL has the potential to en-
able extreme 3D imaging capabilities, including high-speed
3D scanning and robust 3D imaging in low-SNR condi-
tions while respecting low-power and latency budgets. Fig-
ure 1 demonstrates several unique practical capabilities of
our prototype Single-Photon SL system, including scanning
scenes with low albedo (a tyre) and at high frame rate (fast
hand movements) with little loss in the spatial resolution.

Limitations. Single-Photon SL inherits limitations en-
demic to many SL systems. While we mitigate short-range
effects such as defocus, long-range effects such as inter-
reflections remain to be addressed, possibly by incorporat-
ing existing work addressing global illumination. Current
SPAD technology is still nascent compared to its CMOS
counterparts; the low-resolution of SPAD arrays and their
poor fill factors constrains the reconstruction quality of our
approach. Fortunately, the capabilities of single-photon
sensors continue to improve with higher resolution arrays
featuring increased fill factors [47, 48] on the horizon.

2. Related Work

Structured light 3D imaging. Active triangulation tech-
niques have a rich history with early techniques includ-
ing stripe scanning [3, 38, 57], shadow scanning [7, 8],
binary patterns [53] and sinusoid patterns based phase-
shifting [58]. Many methods achieve fast single-shot
acquisition by projecting statistical patterns [34, 55, 63]
or via Fourier Transform Profilometry (FTP) [4, 32, 33].
Such techniques require spatial-smoothness assumptions
and have low accuracy for strongly textured surfaces.

Fast binary projectors in SL. Several SL systems achieve
high-speed 3D scans [27,35,36,59,62,64] using the projec-
tion capabilities of DMDs. However, all of these techniques
use sensors based on traditional photodiodes which, unlike
SPADs, are fundamentally limited by read noise.
Event-based 3D imaging. Event-based cameras are bio-
inspired devices [17] that are triggered asynchronously by
intensity changes (or “events”) typically from a pulsed
laser [9, 43, 45] or by a DMD projecting multiple patterns
[26, 37, 42]. In contrast to SPADs, event-cameras have 1-
2 orders of magnitude lower event density (∼106 events/s
[39]). Since each event recovers at most a single 3D point,
the limited event density lowers the density and quality of
the reconstruction especially in presence of scene-wide mo-
tion. While event-based cameras can achieve high dynamic
range, their low-light sensitivity remains poor, precluding
reliable 3D imaging in low albedo and low SNR scenarios.
Single-Photon imaging. Only recently have the capabil-
ities of SPADs, operating without any temporal synchro-
nization, been explored, with applications in high-dynamic
range imaging [28, 29] and burst photography [41]. Our
method operates the SPAD array similar to Ma et al. [41],
using a sequence of binary frames. Although we focus on
SPADs due to their superior frame-rate, the proposed tech-
niques are applicable to other single-photon imaging tech-
nologies such as Jots [14,15], which feature high-resolution
arrays with smaller pixels and increased photon-efficiency
[40], albeit at lower frame-rates and higher read noise.

3. Image Formation in Single-Photon SL
Consider a SPAD pixel array observing a scene. The

number of photons N arriving at a pixel x during an expo-
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Figure 2. Single-Photon SL features an asymmetric noise
model. Bit-flip probabilities as determined by Eqs. (3) and (4)
are evaluated across a grid of (Φa,Φp) flux values. The plot pa-
rameters are texp = 10−4s and dark current rate rq = 0.

sure time texp is modelled as a Poisson random variable:

Pr {N = k} =
(Φ(x) texp)k e−Φ(x) texp

k!
, (1)

where Φ(x) is the flux1. During each exposure, a pixel de-
tects at most one photon, returning a binary value B(x)
such that B(x) = 1 if the pixel detects one or more pho-
tons. Hence, B(x) is a Bernoulli random variable [61] with

Pr {B(x) = 0} = e−(Φ(x)+rq)texp , (2)

where rq is the dark current rate—the rate of spurious
counts unrelated to incident photons.

In a typical SL scan, the scene is illuminated with a se-
quence of 2D binary patterns from a projector. The SPAD
captures a binary frame for each pattern. Each SPAD pixel
receives a binary code over time, from which we estimate
the projector column observed at the pixel—an operation
that is critical for the success of any SL technique.

We now derive the probability that a projected tempo-
ral sequence will be decoded incorrectly. For a given binary
pattern, consider a SPAD pixel x that observes a scene point
illuminated by an ON pixel. Suppose the incident photo-
electron arrival rate at x due to projector and ambient illu-
mination are Φp(x) and Φa, respectively. Then, the prob-
ability of a bit-flip error, i.e., the probability of the SPAD
pixel not detecting a photon is given as

Pflip, bright = Pr {B(x) = 0 |Φ(x) = Φa + Φp(x)} . (3)

Similarly, the probability of a bit-flip error when the projec-
tor pixel is OFF, i.e., the probability of detecting a photon in
spite of not illuminating the corresponding projector pixel is

Pflip, dark = Pr {B(x) = 1 |Φ(x) = Φa} . (4)

The bit-flip probabilities for “bright” and “dark” pixels, vi-
sualized in Fig. 2 for varying Φa and Φp, are not equal due
to the asymmetric role played by the ambient photons.

We can now compute the probability of incorrectly de-
coding of an L-length Gray code. Since it is equally likely

1For simplicity, we assume a 100% quantum efficiency and use the
term “flux” interchangeably with the arrival rate of photo-electrons.

Pflip, dark Pflip, bright Pr {error}
dark room 0.021 0.22 0.72

indoor lamp 0.23 0.19 0.9
spot lamp 0.75 0.06 0.99

(a) Bit-flip probabilties

(b) Binary frames captured by Single-Photon Camera

Figure 3. Typical bit-flip probabilities observed in our lab pro-
totype under different ambient illumination conditions at an expo-
sure of 10−4s. (a) Using these probabilities, we can compute the
decoding error probability for a code sequence of length L = 10.
(b) We project a pattern where the left half is dark and the right half
is bright. At higher ambient intensities, more photons are detected
in the “dark” region—which makes reliable decoding a challenge.

to observe any L-bit binary code, the average probability of
erroneous decoding over all codewords is:

Pr {error} = 1−
(

1−
(

Pflip, bright + Pflip, dark

2

))L

. (5)

A detailed derivation is provided in Suppl. Sec. 1.2.
Typical decoding error probabilities. Figure 3 shows the
decoding error probability for a 10-bit Gray code across
ambient light levels. Increasing ambient light levels drasti-
cally increases Pflip, dark, resulting in a near-certain decoding
failure. In the next section, we propose coding strategies
for Single-Photon SL that enable accurate decoding even in
highly challenging conditions.

4. Coding for Single-Photon SL
We now describe temporal coding schemes for Single-

Photon SL with the goal of achieving robustness to random
bit-flips using error correction mechanisms, and incorpo-
rating practical considerations in code design. The overall
coding and decoding pipeline is illustrated in Fig. 4.

One simple strategy to improve the reliability of any
scheme is to repeat the projected patterns and perform a
majority vote. This seems to be a viable option since the
high-speed projection and capture of DMDs and SPADs,
respectively, affords high temporal redundancy. For exam-
ple, given a code sequence of length L = 10, we could
simply repeat the patterns 25 times (called the redundancy
factor), and still maintain a high overall frame rate for 3D
capture. Such a majority vote will improve the decoding
performance, provided the probability of bit flips is less than
0.5. However, in extreme conditions (say, low SNR) a large

3



Proposed Coding Proposed Decoding

Parity patterns

Binary shiftingEn
co

de
s L

SB
En

co
de

s M
SB

Message patterns

Stripe width ≥ 8

Robust to bit-flips

Parity frames

Precision frames

Message frames

Matched Filter

Minimum Distance Decoding

Coarse corresp.

Precision corresp.

Final reconstruction

0 1

0 1

(a) (b) (c) (d) (e)

Pi
xe

l V
al

ue

Time

⋆

Look-Up-Table
Code 

Ti
m

e

Received
Code

Ti
m

e

Columnsmin $!

Figure 4. Overview of Single-Photon SL. (a) Our coding scheme assigns to each projector column a unique binary message. The most
significant bits (MSBs) of this message are transformed using error-correcting encoders (Sec. 4.1), while the least significant bits (LSBs)
are encoded using circularly shifted binary patterns (Sec. 4.2). (b) This hybrid strategy offers robustness to bit-flips arising from photon
noise while guaranteeing a minimum stripe-width, thereby retaining its effectiveness even in the presence of short-range non-idealities. (c)
Captured frames, acquired here in 25ms, feature a large amount of photon noise. (d) Similar to encoding, the MSBs and LSBs portions
are decoded separately, using minimum distance decoding and a matched filter respectively. In Sec. 4.3, we present a high-throughput
decoding procedure that outputs correspondences in real-time. (e) Correspondence maps and the final 3D reconstruction illustrate the
coarse-to-precision approach of the Hybrid strategy. Zoomed-in insets of correspondence maps are plotted with a different colormap.

redundancy factor may be needed to achieve even a modest
improvement.

Can we design coding schemes for Single-Photon SL
that perform better than simple repetition? It is well-
known in coding theory that repetition is a sub-optimal
error-correcting mechanism [11]. We, instead, turn to
a popular family of binary error-correcting codes, the
Bose–Chaudhuri–Hocquenghem (BCH) codes [6], used in
applications ranging from QR codes [12] to satellite com-
munication [16]. Our choice of BCH is motivated by their
ability to correct stochastic errors and their flexibility in de-
signing codes with varying redundancy factors—which per-
mits a graceful tradeoff between speed and robustness.

4.1. BCH Codes

A BCH(n, k, d) : {0, 1}k → {0, 1}n encoder takes in-
put messages of length k and produces output codewords
of length n that are at least d-bits apart. Hence, such
a coding scheme provides error correction capabilities up
to bd−1

2 c bit flips, in the worst case or adversarial sense.
This worst-case error-correcting capacity of BCH codes is
significantly higher than of the repetition code. For in-
stance, BCH(63, 10, 27)—which uses 63-length codewords
to encode messages of length 10—can correct up to 13
worst-case errors, while the corresponding capability for
Repetition(60, 10, 6), where the message pattern is repeated
6 times, can correct only 2 errors. Going further, in our
problem setting, the main source of bit flips is photon noise,

which is stochastic and non-adversarial, and thus we can
expect error correction beyond the worst-case regime.
Designing BCH-encoded patterns. Consider a projector
withC columns. We aim to design projector patterns so that
each column is assigned a unique binary code with in-built
BCH error correction. To produce the projector patterns,
we start with a base binary coding scheme that uniquely
represents each projector column, for example, with Gray
codes [30]. Given a set of message codes {mi} ⊆ {0, 1}L,
whereL = dlog2 Ce, we choose a BCH encoder EBCH(n,k,d)

that is capable of encoding at least C messages (i.e., k ≥ L)
and output column-wise codes {ci = EBCH(n,k,d) (mi)}.

As an example, Fig. 5 illustrates the BCH(31, 11, 11) en-
coding of 10-bit Gray code messages. SinceL < k here, we
use shortening, i.e., we prepend the message by (k−L) ze-
ros, but do not transmit them, thereby reducing the projected
code length from n to n− (k − L). We also use systematic
encoding, i.e., the first L-bits of each code is the message
itself—hence each sequence comprises of message patterns
appended by parity patterns. The choice of n, the length
of the BCH code, simultaneously determines the robustness
of the code as well as the loss in time resolution. Longer
codes have better error-correction capabilities; but since we
need to acquire a larger temporal sequence, this reduces our
ability to handle fast(er) moving objects. With this in mind,
in the rest of the paper, we present results at two operating
points—n = {63, 255}—to cover two distinct scenarios.
Evaluating BCH encoding for Single-Photon SL. To un-
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Message (10 patterns) +

Parity (20 patterns)  

Figure 5. BCH(31, 11, 11) encoding of a 10-bit Conventional
Gray message. We use systematic encoding, where message pat-
terns are appended by parity patterns, providing tolerance to ran-
dom bit-flips caused by photon noise. The complete code lookup
table describing these patterns is shown in Suppl. Fig. 3.

derstand the benefits of BCH encoding, we use Monte-
Carlo simulation of decoding error probability across a grid
of (Φa,Φp) values, and compare conventional Gray codes,
repetition codes and BCH codes for 10-bit binary messages.
The performance of these schemes is presented in Fig. 6.
At most operating points, the decoding error probability of
BCH codes is either close to zero or presents an order of
magnitude improvement over repetition.

4.2. Code Design under Practical Considerations

Beyond achieving robustness to photon noise, SL coding
schemes must account for various imaging non-idealities.
A majority of the BCH encoded patterns, as seen in Fig. 5,
comprise of high-spatial frequency patterns that do not
perform well under projector/camera defocus and resolu-
tion mismatch between the devices. Therefore, in spite of
achieving low errors in theory, BCH codes as described so
far will simply be inadequate in a practical SL system.

A common approach to mitigate such short-range effects
is to use long-run Gray codes, which are a subset of Gray
codes that maximize the shortest stripe width [18, 19, 23]
across all the projected patterns. However, applying BCH
encoding on long-run Gray codes also results in a majority
of patterns containing high-spatial frequencies (see Suppl.
Fig. 4). Finding binary messages {mi} that maximize
the minimum stripe-width of BCH patterns {ci} is an in-
tractable combinatorial problem with an exorbitant solution
space ( 1024! candidate solutions).
Hybrid codes. Our key idea is to design hierarchical codes
where BCH encoding is performed only on the more signif-
icant bits (MSBs) of the base Gray code pattern. This en-
sures that all the BCH-encoded frames have large minimum
stripe widths, making them robust to defocus effects. The
remaining lower significant bits (LSBs) are resolved using
circularly-shifted binary patterns, where we shift the pat-
tern one-pixel-at-a-time to represent columns sequentially.
We term this as “binary shifting”.

Specifically, given a L-bit message, we encode its LBCH
MSBs and the remaining Lshift = L − LBCH LSBs in dif-

Low Redundancy n = 63 High Redundancy n = 255

Conventional Gray 

Error Probability

Error Probability

Repetition BCH [Proposed]

Figure 6. Monte-Carlo evaluation of BCH and repetition
strategies. We empirically evaluate the probability of decoding
error upon receiving a codeword randomly corrupted by bit-flips.
The ambient flux (Φa) and projector flux (Φp) values at a pixel
location determine the bit-flip probability. We use BCH encoders
with n = {63, 255}. Both repetition and BCH strategies improve
the robustness of conventional Gray codes to photon noise. Addi-
tionally, BCH outperforms repetition at all (Φa,Φp) with a pro-
nounced difference at higher redundancies.

ferent ways. The MSBs are coded using BCH as described
earlier; since the message codes corresponding to a specific
MSB pattern remains unchanged for all values of the LSBs,
the resulting BCH codes have a stripe width of at least 2Lshift .
The Lshift LSBs are coded by a temporal sequence of length
2Lshift+1 featuring a burst of 2Lshift ones—whose starting po-
sition (or phase) encodes the message. Figure 8 illustrates
the codewords arising for this hybrid construction, which
are guaranteed to have an overall stripe width of at least
2Lshift pixels. In our implementation, for a L = 10-bit mes-
sage, we set LBCH = 7 and Lshift = 3, featuring a minimum
stripe width of 23 = 8 pixels. Additionally, we utilize BCH
encoders with n ∈ {63, 255}.

We note that this coding scheme is similar in spirit to
hybrid SL techniques [11,20,64,65] where Gray codes pro-
vide global disambiguation and Phase Shifting [21] resolves
LSBs, providing precise correspondences. However, binary
shifting has a key difference compared to phase shifting in
that intensity information cannot be inferred from a binary
measurement. Consequently, unlike phase shifting, where
a single measurement can determine the unwrapped phase,
binary shifting requires projecting multiple patterns.

Binary shifted patterns are decoded using a matched
filter approach, by autocorrelating the received sequence
with an unshifted stripe sequence. In Suppl. Sec. 1.5, we
show that binary shifted patterns offer significant robust-
ness to random bit-flips by deriving the expected decod-
ing error. Finally, to illustrate the hybrid codes’ overall
error-correcting capability, we compare them to repeated
long-run Gray codes of similar codelength. We character-
ize performance using root mean squared error (RMSE) in
decoded correspondence as the error metric. As we observe
in Fig. 8, hybrid codes outperform repeated Gray codes, and
the performance gap increases at higher redundancy factors.
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BCH Message (7 patterns) +

BCH Parity (20 patterns) +

Binary Shifting (16 patterns)  

Figure 7. Hybrid encoding of a 10-bit conventional Graycode
message. We use BCH encoding for the first 7 bits of the message
and binary shift encoding for the last 3 bits, resulting in a minimum
stripe width of 8 pixels. Hence, these patterns do not possess high
spatial-frequency, and are more robust to short-range effects.

4.3. High-throughput Decoding Algorithms

In applications such as robotic navigation, augmented re-
ality and high-throughput industrial inspection, it is imper-
ative to obtain depth maps at speeds comparable to frame
acquisition. For conventional codes, like Gray and repe-
tition codes, decoding can be performed via fast analyti-
cal algorithms. While analytical decoding methods (e.g.,
the Berlekamp Massey algorithm [9]) with polynomial run-
time exist for BCH codes as well, these methods can only
correct up to the worst-case error (Hamming) limit, which
is insufficient due to a potentially large number of bit-flips
caused by photon noise. In this section, we discuss fast de-
coding techniques for BCH and, as an extension, the hybrid
codes proposed in Sec. 4. The goal is to design techniques
that can achieve real-time decoding, while also being able
to handle a large number of individual bit-flip errors.

Minimum distance decoding for Single-Photon SL. One
simple decoding approach is Minimum Distance Decod-
ing (MDD), where the measured codewords are compared
against every projected code word. MDD, while conceptu-
ally simple, can correct errors beyond the worst-case limit2.
However, a brute-force implementation of MDD can often
be unviable, owing to its exorbitant run-time and/or memory
requirements. Fortunately, Single-Photon SL has certain
favourable properties that lead to a fast, high-throughput
MDD procedure. First, the space of messages (number of
projector columns, ∼210) is significantly smaller than space
of codewords (2n, n ∈ {63, 255}). Second, the number of
queries for decoding, which is the number of pixels in the
SPAD sensor, exceeds the number of messages.

These circumstances permit us to leverage the recent
progress in similarity search [5, 56], which has lead to ef-

2The exact number of correctable errors depends on (Φa,Φp); with
MDD being the Maximum Likelihood Decoder when Pflip, bright ≈Pflip, dark.

Low Redundancy n = 63 High Redundancy n = 255

RM
SE

RM
SE

Conventional Gray Repetition Hybrid [Proposed]

Figure 8. Hybrid codes are more robust to photon noise than
repeated Gray codes, evaluated across a grid of (Φa,Φp) pho-
ton fluxes. We are interested in patterns robust to projector defo-
cus and resolution-mismatch effects and hence consider repetition
with long-run Gray codes. For a 10-bit message, both repeated
long-run Gray and Hybrid codes have a minimum stripe width of
8 pixels. We use RMSE (in correspondence) as the evaluation met-
ric to account for the locality in decoding error.

ficient nearest-neighbour algorithms for batched queries.
Based on empirical comparisons (presented in Suppl.
Fig. 7), we find that FAISS [8] offers the highest through-
put, decoding a 1/8th MP array in 100 ms on CPU and 3 ms
on GPU. Such methods also scale to larger arrays, requiring
12 ms and 30 ms for one and four megapixels respectively.

5. Experimental Results
We now describe a range of experiments to demonstrate

the performance of Single-Photon SL. Our lab prototype
was constructed with the SwissSPAD2 array [12], which is
a 512 × 256 SPAD array. The array has a pixel pitch of
16.38 µm, and can capture binary frames at speeds up to
100 kHz. In Suppl. Sec. 4, we provide additional details re-
garding the setup including the calibration procedure used.

5.1. Single-Photon SL on Static Scenes

To characterize the performance of Single-Photon SL,
we image static scenes of varying albedo and ambient light
levels. We use these case studies to compare the perfor-
mance of different error correction schemes and to show
the effectiveness of the proposed hybrid codes. To obtain
ground truth scans, we operate a DMD projector at a low
frame-rate of 2 Hz, while running the SPAD at 10240 Hz,
thereby obtaining 5120 SPAD frames per projected pattern.
The average of 5120 frames has minimal photon noise, and
is considered as a ground truth measurement.

Performance of proposed codes. Figure 9 compares our
proposed Hybrid and BCH strategies to repeated Gray
codes and repeated long-run Gray codes. We report overall
RMSE and RMSE among inliers, thereby measuring both
accuracy and consistency. As seen in Sec. 4.2, the proposed
hybrid codes are considerably more consistent and accurate
across the two redundancy factors used. Whereas, naı̈ve
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Figure 9. Strategy comparison for Single-Photon SL on porcelian bust. (left) We obtain ground truth by averaging the burst of 5120
binary frames captured for each projected pattern. To illustrate the challenge of photon noise, we include reconstruction using Gray code
without repetition which has severe artifacts. (right) Comparison between our proposed Hybrid strategy and other baseline methods across
operating points n = {63, 255}. BCH codes having several high spatial-frequency frames, are easily distorted by short-range effects. We
report three metrics: RMSE in estimated depth, percentage of inliers (absolute depth error < 5mm), and RMSE among these inliers.
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1.1 mm (99.6 %)
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Dark Room Indoor Light Work Light

(b) Hybrid (" = 255)

(a) Ambient light source
0.02 PPP 0.26 PPP 1.38 PPP

1.0 mm
0.9 mm (99.8 %)

Figure 10. Effect of ambient light intensity. Hybrid codes,
shown here for n = 255, are fairly robust to indoor ambient light
and recover coarse shapes even under bright ambient light. We
report the average Photons incident Per Pixel (PPP) during an ex-
posure window, as a measure of ambient illumination.

BCH codes are heavily distorted due to defocus. Since each
strategy has access only to a single binary frame per pro-
jected pattern, this emulates a 3D capture speed of 40 FPS
in Hybrid (n = 255) and 130 FPS in Hybrid (n = 63).

Low SNR regimes. Figure 10 examines reconstruction
quality across various ambient light sources, including in-
door lighting and a bright work lamp. The reconstructions,

shown for Hybrid (n = 255), are robust to ambient light, al-
beit with a drop in performance under the work lamp. These
results can potentially be improved by judicious use of light
redistribution schemes [24, 45, 49] and exposure control.

Next, we consider low-albedo scenes by imaging objects
covered by highly absorptive materials, such as 3M Black
Matte [1] and Acktar Velvet [2]; the latter absorbs upto
99.9% of incident light. As Fig. 12 shows, Single-Photon
SL can recover the 3D geometry of these dark objects, even
when visually imperceptible. As a practical example, Fig. 1
shows the reconstruction of tire treads scanned at 40 FPS.

5.2. Dynamic Scenes with a High-Speed Projector

For dynamic scenes, we used a projector based on the
Texas Instruments DLP6500 DMD, capable of projecting
binary images with a resolution of 1024 × 768 pixels at 20
kHz. For simplicity, we operate the SPAD at the same speed
as the projector. The projector uses a broadband white LED
(SugarCUBE Ultra White LED) as the illumination source.

Figure 13 shows high-speed 3D imaging for a sequence
of fast hand movements. A commercial 3D scanner (Kinect-
v2 camera [63]) operating at 30 FPS fails to recover the fin-
gers of the rapidly moving hand, while Single-Photon SL
continues to recover fine details. Finally, in Fig. 11, we re-
construct the deforming folds of a cloth as it is waved in
front of the camera. For both sequences, we use Hybrid
(n = 63) operated at 250 FPS. These demonstrate the abil-
ity of proposed Single-Photon SL techniques to recover de-
tailed 3D geometry of high-speed deformable objects.

7



(c) Single-Photon SL 3D Reconstruction(a) Averaged SPAD frames (b) Binary Frame

Figure 11. Non-rigid deforming object captured by Single-Photon SL using Hybrid (n = 63) at 250 FPS. We include (a) a reference
image captured by the SPAD camera using a long integration time, (b) a single binary frame and (c) the reconstructed meshes clearly
showing the folds of the cloth. Capturing a non-rigid object is particularly challenging—unless we operate at high speeds, excessive
motion blur is induced. We include a high-speed depth video of this sequence in the supplementary material.

(b) Acktar Metal Velvet (absorbance 99.9%)

(a) 3M Black Matte (absorbance 99%)

Reference image Binary Frame 3D Reconstruction

Figure 12. 3D reconstruction in low-albedo scenes of (a) a white
cylinder covered by 3M Black Matte and (b) an inverted V-groove
covered by Acktar Metal Velvet; the materials used have extremely
high absorbance of 99% and 99.9%, respectively. Both recon-
structions are obtained using Hybrid (n = 255) at 40 FPS.

In summary, our results on these challenging scenes—
both static and dynamic—illustrates the practical capabili-
ties of the Single-Photon SL modality and its ability to si-
multaneously achieve high speed, precision and robustness.

6. Conclusion and Discussion
This paper shows that many of the tradeoffs inherent to

SL systems can be addressed via the use of SPAD sensors.
Single-Photon SL, the system that we propose, exploits the
single photon detection capabilities of SPAD sensors, along
with its lack of read noise. The proposed ideas are capable
of detecting objects with high absorbance, and scenes with
dramatic high-speed motion. The enabling techniques un-
derlying these are a set of error correction codes, that are
designed to be resilient to aberrations commonly present
in SL systems. As with many recent efforts in this space,
Single-Photon SL provides yet another case study for the
wider adoption of SPAD sensors in the imaging community.
Optimal coding and decoding. Despite their effective-
ness, the proposed coding and decoding strategies are not

48

49

50

51

Depth (in cm)

520

510

500

490

Depth
(in mm)

(b) Kinect-v2

(c) Single-Photon SL

(a) RGB frames

t = 0s t = 0.31s t = 0.62s

Figure 13. Comparison to Kinect-v2 on fast hand movements.
We use Hybrid codes (n = 63) at 250 FPS to capture these
rapid movements. Only the palm, and no fingers, is visible in the
Kinect’s depth maps. The motion blur distorted RGB frames, ac-
quired by the Kinect at 30 FPS, convey the speed involved.

provably optimal. Our MDD implementation is agnostic
to the asymmetry of bit-flips, a defining feature of Single-
Photon SL. While maximum likelihood decoders remain to
be constructed for the general asymmetric case, optimal de-
coders have been derived for edge cases [13], e.g., when
Pflip, bright>> Pflip, dark. Further, leveraging an optimization
framework [46] such as optical SGD [10] can lead to im-
proved coding and decoding schemes for Single-Photon SL.

Handling ambient illumination. In strong ambient illumi-
nation, bit-flips arising from Pflip, dark are predominant. An
important next step is to exploit such asymmetry of bit-flips
to design Single-Photon SL codes that are optimized for ex-
treme ambient illumination. Finally, another promising re-
search direction is to explore Single-Photon SL with com-
plementary modalities such as light concentration [24, 50]
and epipolar structured light [51, 52] to gain further robust-
ness to extreme ambient and global illumination.
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scale similarity search with gpus. IEEE Transactions on Big
Data, 2019. 6, 12

9

https://www.3m.com/3M/en_US/p/dc/v100534150/
https://www.3m.com/3M/en_US/p/dc/v100534150/
https://www.acktar.com/product/metal-velvet-2/
https://www.acktar.com/product/metal-velvet-2/


[32] Qian Kemao. Windowed fourier transform for fringe pattern
analysis. Appl. Opt., 43(13):2695–2702, May 2004. 2

[33] Qian Kemao. Two-dimensional windowed fourier trans-
form for fringe pattern analysis: Principles, applications
and implementations. Optics and Lasers in Engineering,
45(2):304–317, 2007. Phase Measurement Techniques and
their applications. 2

[34] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-
Jepsen, and Achintya Bhowmik. Intel realsense stereoscopic
depth cameras. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, July 2017. 2

[35] Sanjeev J Koppal, Shuntaro Yamazaki, and Srinivasa G
Narasimhan. Exploiting dlp illumination dithering for re-
construction and photography of high-speed scenes. Inter-
national journal of computer vision, 96(1):125–144, 2012.
2

[36] Shuangyan Lei and Song Zhang. Flexible 3-d shape
measurement using projector defocusing. Opt. Lett.,
34(20):3080–3082, Oct 2009. 2

[37] T Leroux, S-H Ieng, and Ryad Benosman. Event-based
structured light for depth reconstruction using frequency
tagged light patterns. arXiv preprint arXiv:1811.10771,
2018. 2

[38] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginz-
ton, Sean Anderson, James Davis, Jeremy Ginsberg, et al.
The digital michelangelo project: 3d scanning of large
statues. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, 2000. 2

[39] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128 120
dB 15 µs Latency Asynchronous Temporal Contrast Vision
Sensor. IEEE J. Solid-State Circuits, 43(2), 2008. 2

[40] Jiaju Ma, Saleh Masoodian, Dakota A. Starkey, and Eric R.
Fossum. Photon-number-resolving megapixel image sen-
sor at room temperature without avalanche gain. Optica,
4(12):1474–1481, Dec 2017. 2

[41] Sizhuo Ma, Shantanu Gupta, Arin C Ulku, Claudio Br-
uschini, Edoardo Charbon, and Mohit Gupta. Quanta
burst photography. ACM Transactions on Graphics (TOG),
39(4):79–1, 2020. 2

[42] Ashish Rao Mangalore, Chandra Sekhar Seelamantula, and
Chetan Singh Thakur. Neuromorphic fringe projection pro-
filometry. IEEE Signal Processing Letters, 27:1510–1514,
2020. 2

[43] Julien NP Martel, Jonathan Müller, Jörg Conradt, and Yulia
Sandamirskaya. An active approach to solving the stereo
matching problem using event-based sensors. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS),
pages 1–5. IEEE, 2018. 2

[44] J. Massey. Shift-register synthesis and bch decoding. IEEE
Transactions on Information Theory, 15(1):122–127, 1969.
6, 3, 12

[45] Nathan Matsuda, Oliver Cossairt, and Mohit Gupta. MC3D:
Motion Contrast 3D Scanning. In 2015 IEEE International
Conference on Computational Photography (ICCP), 2015.
2, 7

[46] Parsa Mirdehghan, Wenzheng Chen, and Kiriakos N. Kutu-
lakos. Optimal structured light a la carte. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 8

[47] Kazuhiro Morimoto, Andrei Ardelean, Ming-Lo Wu,
Arin Can Ulku, Ivan Michel Antolovic, Claudio Bruschini,
and Edoardo Charbon. Megapixel time-gated SPAD im-
age sensor for 2D and 3D imaging applications. Optica,
7(4):346–354, Apr. 2020. 2

[48] K. Morimoto and J. Iwata. 3.2 megapixel 3d-stacked charge
focusing spad for low-light imaging and depth sensing. In
IEEE International Electron Devices Meeting (IEDM), 2021.
https://btbmarketing.egnyte.com/dl/BhiUjgx9HQ. 2

[49] Matthew O’Toole, Supreeth Achar, Srinivasa G Narasimhan,
and Kiriakos N Kutulakos. Homogeneous codes for energy-
efficient illumination and imaging. ACM Transactions on
Graphics (ToG), 34(4):1–13, 2015. 7

[50] Matthew O’Toole, Supreeth Achar, Srinivasa G.
Narasimhan, and Kiriakos N. Kutulakos. Homoge-
neous codes for energy-efficient illumination and imaging.
ACM SIGGRAPH, (0), 2015. 8

[51] Matthew O’Toole, John Mather, and Kiriakos N Kutulakos.
3d shape and indirect appearance by structured light trans-
port. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2014. 8

[52] Matthew O’Toole, Ramesh Raskar, and Kiriakos N Kutu-
lakos. Primal-dual coding to probe light transport. ACM
Trans. Graph., 31(4):39–1, 2012. 8

[53] Jeffrey L Posdamer and MD Altschuler. Surface measure-
ment by space-encoded projected beam systems. Computer
graphics and image processing, 18(1):1–17, 1982. 1, 2

[54] Ron M Roth. Introduction to coding theory. IET Communi-
cations, 47:18–19, 2006. 4, 3

[55] Sean Ryan Fanello, Christoph Rhemann, Vladimir
Tankovich, Adarsh Kowdle, Sergio Orts Escolano, David
Kim, and Shahram Izadi. Hyperdepth: Learning depth
from structured light without matching. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 2

[56] Larissa C Shimomura, Rafael Seidi Oyamada, Marcos R
Vieira, and Daniel S Kaster. A survey on graph-based meth-
ods for similarity searches in metric spaces. Information Sys-
tems, 95:101507, 2021. 6

[57] Yoshiaki Shirai and Motoi Suwa. Recognition of polyhe-
drons with a range finder. In IJCAI, pages 80–87. Citeseer,
1971. 2

[58] V. Srinivasan, H. C. Liu, and Maurice Halioua. Automated
phase-measuring profilometry: a phase mapping approach.
Appl. Opt., 24(2):185–188, 1985. 2

[59] Xian-Yu Su, Wen-Sen Zhou, G Von Bally, and D Vukice-
vic. Automated phase-measuring profilometry using defo-
cused projection of a ronchi grating. Optics Communica-
tions, 94(6):561–573, 1992. 2

[60] Arin Can Ulku, Claudio Bruschini, Ivan Michel Antolovic,
Yung Kuo, Rinat Ankri, Shimon Weiss, Xavier Michalet, and
Edoardo Charbon. A 512 × 512 SPAD Image Sensor With

10



Integrated Gating for Widefield FLIM. IEEE Journal of Se-
lected Topics in Quantum Electronics, 25(1):1–12, Jan. 2019.
1, 6, 11

[61] Feng Yang, Yue M. Lu, Luciano Sbaiz, and Martin Vetterli.
Bits from photons: Oversampled image acquisition using bi-
nary poisson statistics. IEEE Transactions on Image Pro-
cessing, 21(4):1421–1436, 2012. 3

[62] Song Zhang, Daniel Van Der Weide, and James Oliver. Su-
perfast phase-shifting method for 3-d shape measurement.
Optics express, 18(9):9684–9689, 2010. 1, 2

[63] Zhengyou Zhang. Microsoft kinect sensor and its effect.
IEEE MultiMedia, 19:4–12, April 2012. 2, 7

[64] Dongliang Zheng, Feipeng Da, Qian Kemao, and Hock Soon
Seah. Phase error analysis and compensation for phase shift-
ing profilometry with projector defocusing. Applied Optics,
55(21):5721, July 2016. 2, 5

[65] Dongliang Zheng, Feipeng Da, Qian Kemao, and Hock Soon
Seah. Phase-shifting profilometry combined with Gray-code
patterns projection: Unwrapping error removal by an adap-
tive median filter. Optics Express, 25(5):4700, Mar. 2017.
5

11



Supplementary Material for Single-Photon Structured Light

1. Deriving Expected Error
In this supplementary note, we derive the decoding error probability of Gray codes and repetition codes subject to the

bit-flip noise model (Sec. 3) of Single-Photon SL. We provide an analytic expression for error probability in BCH codes for
a given decoding function and for the particular case of a bounded-error decoder. Additionally, we derive an upper-bound
on the average decoding error (in terms of absolute deviation) for binary shifted patterns. Finally, we outline the Monte-
Carlo simulation procedure to compare various strategies—such as BCH and repetition strategies in Fig. 6, and Hybrid and
repetition strategies in Fig. 8.

1.1. Notation

Let M = {m | m ∈ {0, 1}L} denote the set of L-bit binary messages, e.g., Gray codes, that represent columns of
a projector. For simplicity, we shall assume that the projector has 2L columns, but the following analysis extends mutatis
mutandis to the more general case. Further, let 1m and 0m denote the number of 1’s and 0’s in L-bit message m respectively.

1.2. Gray Codes

When transmitting a Gray code m an error occurs if any of the bits are flipped due to photon-noise, since no error-
correcting strategy is employed. Assuming y denotes the received (possibly corrupted) codeword when m is projected, the
expected error probability over the set of messagesM is given as

Pr {error} =
∑

m∈M
Pr {m}Pr {error |m}

=
1

2L

∑
m∈M

Pr {y 6= m |m} (Each message is equally likely to be transmitted)

=
1

2L

∑
m∈M

1− Pr {y = m |m}

=
1

2L

∑
m∈M

1−
L∏

i=1

Pr {yi = mi}

= 1− 1

2L

∑
m∈M

Pr {yi = 1 |mi = 1}1m Pr {yi = 0 |mi = 0}0m

= 1− 1

2L

L∑
i=0

(
L

i

)
Pr {yi = 1 |mi = 1}i Pr {yi = 0 |mi = 0}L−i

= 1− 1

2L
(Pr {yi = 1 |mi = 1}+ Pr {yi = 0 |mi = 0})L

= 1−
(

1−
(Pflip, bright + Pflip, dark))

2

)L

(S1)

where, we make use of Eq. (3) and Eq. (4) in the last step. Note that the decoding error is zero when Pflip, bright,Pflip, dark → 0.
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1.3. Repeated Gray Codes

Assume we repeat m, the L-bit message, r times and decode it with a majority vote. Let x denote the received codeword
and y the decoded message by using a majority vote. Then each bit yi is decoded incorrectly if more than or equal d r−1

2 e
bit-flips occur, with probability

Pr {yi 6= mi |mi = 1} =

r∏
j=d r−1

2 e

(
r

j

)
Pj

flip, bright(1− Pflip, bright)
r−j

= gr(Pflip, bright) (S2)

where gr(p) =
∏r

j=b r−1
2 c

pr(1− p)r−j . Similarly, we can show that

Pr {yi 6= mi |mi = 0} = gr(Pflip, dark)

With this, we can evaluate decoding error probability for the repetition strategy by extending Eq. (S1) as

Pr {error} = 1−
(

1−
(
gr (Pflip, bright) + gr (Pflip, dark)

2

))L

(S3)

Note that, gr(p) ≥ p ∀ p ∈ [0, 1], so repetition always improves decoding reliability when Pflip, dark,Pflip, bright < 0.5.
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1.4. BCH Codes

Construction. A BCH(n, k, d) : {0, 1}k → {0, 1}n encoder takes input messages of length k and produces output code-
words of length n that are at least d-bits apart. In this paper, we consider primitive, narrow-sense BCH codes over the
finite field GF(2). We present a brief summary of their construction here and refer readers to Roth [11] for a more detailed
explanation.

1. Pick α a primitive element of GF(2n).

2. Compute the generator polynomial g(x) = lcm (q1(x), ..., qd−1(x)), where qi(x) are minimal polynomials of αi with
coefficients in GF(2).

3. Each codeword is obtained by multiplying a polynomial representing the message p(x) and the generator polynomial
g(x).

4. For systematic encoding, we set p(x) = m(x)xn−k− r(x), where m(x) is the polynomial with the symbols of message
m as coeffecients and r(x) = m(x)xn−k mod g(x).

From the construction, it can be seen that BCH codes are a subset of Reed-Solomon codes over the finite field GF(2n) [6].
Specifically, CBCH(n, k, d) = CRS(n,k,d) ∩ {0, 1}n, where RS(n, k, d) represents the Reed-Solomon encoder with parameters
(n, k, d) as before.

Decoding Error. Let c denote a codeword corresponding to BCH encoded message m. As before, assume we receive
(possibly corrupted) bits x which we decode to obtain y. Depending on whether decoder gives up beyond the worst-case
error limit (e.g. Berlekamp Massey [9]) or not (e.g. minimum distance decoding), we can derive two expressions. For
decoders that work up to the worst-case error limit of bd−1

2 c bit-flips,

Pr {y 6= m} = Pr
{
dH(x, c) >

d− 1

2

}
(where dH is the Hamming distance)

= Pr
{

#bit-flips bright + #bit-flips dark >
d− 1

2

}

=

d−1
2∑

j=0

Pr {#bit-flips bright = j}Pr
{

#bit-flips dark >
d− 1

2
− j
}

=

d−1
2∑

j=0

1c∑
k= d−1

2 −j

(
0c

j

)(
1c

k

)
Pj

flip, dark(1− Pflip, dark)0c−j

Pk
flip, bright(1− Pflip, bright)

1c−k (S4)

Whereas, if we use a minimum distance decoder,

Pr {y 6= m} = Pr
{

min
z∈C

dH(x, z) 6= c

}
(S5)

, where C = { c | c = EBCH(n,k,d)(m)∀m ∈M}

Evaluating this probability expression in closed-form is not straightforward, but can be done by enumerating each code-
word in an exhaustive manner. For this reason, we opt to use Monte-Carlo simulations when comparing BCH and repetition
strategies.
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1.5. Binary Shifting

Decoding binary shifted patterns is achieved by using a matched filter, where the template corresponds to a pattern with a
burst of 2Lshift ones followed by 2Lshift zeros. In this section, we present the error analysis for binary shifting with Lshift = 3,
corresponding to a temporal pattern length of 2Lshift+1 = 16 frames. Without loss of generality, we consider the temporal
sequence representing pixel location 0—comprising of 8 ones followed by 8 zeros. The expected error of other circularly
shifted sequences are identical to this. Let st denote the value of the received signal (possibly corrupted) at the t-th time
instant (0 ≤ t ≤ 15). Then, the probability of the absolute decoding error being exactly 1 pixel can be derived as

Pr {|error| = 1} = Pr

{
8∑

t=1

st ≥
7+j∑
t=j

st ∀ j}
⋃
{

6∑
t=−1

st ≥
7+j∑
i=j

si ∀ j}


≤ 2Pr

{
{

8∑
t=1

st ≥
7∑

t=0

st}

}
(Union bound, equally likely events)

= 2Pr {s8 ≥ s0}
= 2Pr {X ≥ Y } (X ∼ Ber(Pflip, dark), Y ∼ Ber(1− Pflip, bright))

(S6)
= 2 (Pflip, dark + (1− Pflip, dark)Pflip, bright) (S7)

where, Ber(p) denotes the Bernoulli probability distribution. In the above expression, we consider time instances modulo
16, i.e., t = −1 is interpreted as t = 15. Next, the probability of the absolute decoding error being exactly 2 pixels can
computed as

Pr {|error| = 2} = Pr

{
9∑

t=2

st ≥
7+j∑
t=j

st ∀ j}
⋃
{

5∑
t=−2

st ≥
7+j∑
t=j

st ∀ j}


≤ 2Pr

{
{

9∑
t=2

st ≥
7∑

t=0

st}

}
(Union bound)

= 2Pr {s8 + s9 ≥ s0 + s1} (S8)
= 2Pr {X ≥ Y } (X ∼ Bin(2,Pflip, dark), Y ∼ Bin(2, 1− Pflip, bright))

where, Bin(n, p) denotes the binomial probability distribution. Similarly, we can upper bound the probability of the
absolute decoding error being 1 ≤ r ≤ 15 pixels as 2Pr {Xr ≥ Yr}, where Xr ∼ Bin(r, Pflip, dark), Yr ∼ Bin(r, 1 −
Pflip, bright). With this, the expected absolute decoding error is given by:

E[|error|] =

15∑
r=0

rPr {|error| = r}

≤
15∑
r=1

2rPr {Xr ≥ Yr} (S9)

Using this expression, the upper bound on the expected decoding error for the dark room condition (using flux values from
Fig. 3(a)) is 1.2 pixels.
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1.6. Monte-Carlo Simulation Procedure

Algorithm 1 Monte-Carlo Simulation Procedure

Require: Bit-flips probabilities Pflip, bright,Pflip, dark
Message setM with corresponding codeword set C
error metric L
Monte-Carlo iterations niter
procedure MONTE-CARLO-SIMULATION(Pflip, bright, Pflip, dark,M, C, L niter)

error← 0
for m ∈M do

Pick corresponding c ∈M
errorm ← 0
for 1 ≤ i ≤ niter do

Randomly flip 1c and 0c with probability Pflip, bright and Pflip, dark respectively to obtain x
Decode x to obtain y
Compute L(m,y)
errorm = errorm + L(m,y)

end for
errorm = errorm/niter
error = error + errorm

end for
error = error/|M|

return error
end procedure

We describe the simulation procedure in Algorithm 1. The error metrics we consider are exact error (
∑N

i=1
1
N I(xi, yi),

where I denotes the indicator function) and root mean square error (RMSE,
√

1
N

∑N
i=1(xi − yi)2). Figure 6 and Figure 8

both use niter = 100 (Monte-Carlo iterations).
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1.7. Empirical Comparison of BCH and Repetition Strategies at Various Φa

Φ! = 0 photons/sec Φ! = 100 photons/sec Φ! = 5000 photons/sec

Conventional Gray
Repetition
BCH

(a) Redundancy & = 63

Conventional Gray
Repetition
BCH

(a) Redundancy & = 255

Figure 1. Monte-Carlo evaluation of BCH and repetition strategies, plotted at various ambient flux Φa. Φa = 0 photons/sec (left
column) represents a dark room, while Φa = 100 photons/sec and Φa = 5000 photons/sec (middle and right columns) represent indoor
illumination and bright intensity matching the projector’s flux respectively. Across ambient illumination levels and redundancy factors,
BCH codes outperform repetition codes. Particularly at n = 255, BCH codes result in almost zero error everywhere.
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2. Comparison to High-Speed Cameras
Read-noise of existing high-speed cameras is quite large and worsens with increasing read-out rates [2]. For instance,

the Phantom v2640 [1] has a read noise of 18.8e- when capturing 640 × 480 frames at 28 kHz. This leads to an order of
magnitude lower SNR than SPADs (Tab. 1), and hence extremely noisy, practically unusable, reconstructions (Fig. 2). This
is because high-speed cameras must capture sufficient photons in each frame to beat the high read noise floor, which is not
possible especially in high-speed motion scenarios considered in this paper.

Device Dark room Indoor lamp Spot lamp

Phantom-v2640 0.07 0.08 0.13
SwissSPAD 0.81 0.84 1.10

Table 1. SNR of a high-speed camera (Phantom-v2640) vs a SPAD camera (this work), when observing a single bright pattern at
20kHz across various ambient conditions. No new experiment was conducted—incident flux data is obtained from Fig 3.

High-speed
camera Groundtruth

RMSE:
RMSE (inlier %):Sample Frame

SPAD
camera

1.0 mm
0.9 mm (99.8 %)

SPAD
camera

322.4 mm
2.7 mm (6.4 %)

High-speed
camera

Figure 2. 3D reconstruction from the Phantom-v2640 vs the SPAD camera. (left) We simulate high-speed capture using photon
arrival rates. (right) Read-noise dominated frames of the high-speed camera lead to poor reconstructions. For a fair comparison, we
use Hybrid-255 and Hybrid-127 with complementary frames as the coding scheme for the SPAD camera and the high-speed camera
respectively—requiring similar acquisition times.
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3. Code Look-Up-Tables
In this note, we describe the coding strategies developed such as BCH and Hybrid encoding, by means of their code

look-up-tables (LUTs)—which depict the projected patterns row-wise across time.

3.1. BCH(31, 11, 11) Encoding of a 10-bit Conventional Gray Message

2!" columns

Ti
m

e 
(3

0 
fra

m
es

)

Message
(10 patterns)

Parity
(20 patterns)

Single pattern

Figure 3. Code Look-Up-Table describing the BCH(31, 11, 11) encoding of a 10-bit Conventional Gray message. Following sys-
tematic encoding, the code LUT upto the first 10 frames is identical to a Gray Code LUT. Most of the parity frames feature high spatial-
frequency, which is easily distorted by short-range effects in a SL system (Sec. 4.2). Zoom-in to see high-frequency details.
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3.2. BCH(31, 11, 11) Encoding of a 10-bit Long-run Gray Message

2!" columns

Ti
m

e 
(3

0 
fra

m
es

)

Message
(10 patterns)

Parity
(20 patterns)

Single pattern

Figure 4. Code Look-Up-Table describing the BCH(31, 11, 11) encoding of a 10-bit Long-run Gray message. Owing to the maximal
minimum stripe-widths of Long-run Gray codes, the first 10 frames of the code LUT are robust to short-range distortions such as projection
defocus and/or resolution mismatch. However, the parity frames continue to comprise of high-spatial frequency patterns and are thus, easily
distorted. Zoom-in to see high-frequency details.
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3.3. Hybrid (n = 31) Encoding of a 10-bit Gray Message

2!" columns

Ti
m

e (
43

 fr
am

es
)

BCH Message
(7 patterns)

BCH Parity
(20 patterns)

Single pattern

Binary Shifting
(16 patterns)

Figure 5. Code Look-Up-Table describing the Hybrid(n = 31) encoding of a 10-bit Conventional Gray message. We encode
LBCH = 7 MSBs using the BCH(31, 11, 11) encoder and Lshift = 3 LSBs using binary shifting. Unlike the code LUTs of BCH encoded
patterns (Fig. 3 and Fig. 4 which comprise of many high spatial-frequency patterns (typically featuring a minimum stripe-width of 1 or
2 pixels), the minimum stripe-width of these Hybrid (n = 31) codes are at least 8 pixels by construction. This results in Hybrid codes
offering robustness to both bit-flips arising from photon noise and other short-range effects arising from a combination of projector defocus
and camera-projector resolution mismatch.
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4. Single-Photon SL Hardware Prototype

(a) Single-Photon SL Prototype (c) Vialux-7000 high-speed module(b) SwissSPAD2 array (d) SugarCUBE LED source

Figure 6. Single-Photon SL hardware prototype. The setup consists of a SwissSPAD2 array [12] and a Vialux-7000 development kit
which is based on the Texas Instruments DLP6500 DMD. For an illumination source we use a SugarCUBE Ultra, a broadband white LED,
featuring a light output of 4000 lumens.

Supp. Fig. 6 shows the various components of our Single-Photon SL prototype. The resolution of the SPAD array is
512 × 256 pixels, while the DLP projector has a resolution of 1024 × 768 pixels. We used a baseline of 14 cm between the
camera and projector—with the intention of maximizing the field of view of the camera occupied by the objects of interest.

4.1. Calibration Procedure

Our calibration procedure is similar to Zhang et al. [13], where the projector is treated as an inverse camera. Specifically,
we capture correspondence maps of a chessboard, repeated across 30 different positions. We then perform a calibration step
mimicking a stereo setup based on the detected corners of the chessboard and their row and column correspondences.

To obtain correspondences, we use projected patterns based on Gray codes and binary shifting—similar to our proposed
Hybrid strategy, but with no added redundancy—to encode both column and row indices. This provides us precise row and
column correspondence while simultaneously dealing with short-range effects arising from projector defocus / resolution-
mismatch. To suppress the effects of photon-noise, we capture 5120 SPAD frames for each projected pattern—which are
subsequently averaged and compared against acquired complementary frames to produce binary outputs.

11



5. Benchmarking Minimum Distance Decoding Methods
Supp. Fig. 7 shows that Minimum Distance Decoding (MDD) can be significantly faster than algebraic decoding in

Single-Photon SL. Supp. Fig. 8 further shows that the most performant MDD method—FAISS using a GPU runtime—also
scales reasonably to larger sized arrays including 1MPixel and 4MPixel sensors.

10 3 10 2 10 1 100 101 102

Time (in seconds)

FAISS (GPU)

FAISS (CPU)

CuPy

KeOps

NNDescent

BallTree

Numpy

Berlekamp
Massey

BCH [63, 10]
BCH [127, 15]
BCH [255, 13]

Figure 7. Benchmark of various Minimum Distance Decoding (MDD) methods. We query a 512 × 256 array of codewords each
encoding a 10-bit message. We compare an algebraic method (Berkelamp-Massey [9]) to several MDD methods including those using
exhaustive search (Numpy [7], CuPy [10]), graph-based search (BallTree [3], NNDescent [5]) symbolic-tensors (KeOps [4]) and batched
queries (FAISS [8]). Benchmarks reported across various BCH encoders using a Intel-i7 8700K CPU and a NVIDIA 1080Ti GPU.

(a) FAISS CPU (a) FAISS GPU

Figure 8. MDD methods scale to larger resolution arrays. Our implementation based on FAISS requires about 4s and 15s on a CPU
(Intel-i7); 12 ms and 30 ms for one and four megapixels respectively on a GPU device (GTX 1080Ti).
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6. More Results
6.1. Low-albedo Objects

Supp. Fig. 9 includes additional results on low-albedo objects; demonstrating the capabilities of Single-Photon SL in 3D
imaging commonplace dark objects—such as the teflon pan, coffee mug and car headrest.

(b) Car headrest

(a) Teflon pan

Reference image Binary Frame 3D Reconstruction

(c) Coffee mug

Figure 9. More 3D reconstructions of low-albedo scenes, using Hybrid (n = 255) at 40 FPS.
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6.2. Dynamic Motion Sequences

We include further results on dynamic scenes in Supp. Fig. 10. The curtain took an estimated 70 milliseconds to fall,
while the Jack-in-the-box toy took around 40 milliseconds to spring up.

Going faster with pipelining. While we have decoded disjoint bursts of acquired frames to output depth-maps in Fig. 11
and Fig. 13, we can also use overlapping sequences. Assuming N patterns are projected, we can recover depth across time
by decoding sequences {Ii}Ni=1, {Ii}2Ni=N+1, {Ii}3Ni=2N+1, ..., or by considering sequences {Ii}Ni=1, {Ii}

N+s
i=s+1, {Ii}

N+s+1
i=s+2 , ...

i.e., using a sliding window of N patterns with stride 0 < s < N . This strided or pipelined approach contains more temporal
information than disjoint bursts. We utilize pipelining based frame-interpolation for the jack-in-the-box sequence to produce
a high-speed 3D reconstruction video at 2000 FPS.

High-speed depth videos for the deforming cloth sequence and the Jack-in-the-box toy can be found on the project web-
page. By using pipelining-based decoding, we output videos at 1000 FPS for the waving cloth and 2000 FPS for the Jack-in-
the-box with a stride of 9 and 20 patterns respectively. We captured the Jack-in-the-box by placing it horizontally to maximise
its occupied field-of-view. Both videos are also included in the teaser video which provides an overview of our paper.

280

260

240

Depth
(in mm)

(a) Hand Gesture Sequence

(c) Falling Curtain Sequence
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(b) Jack-in-the-box Sequence
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Figure 10. Additional dynamic scenes imaged by Single-Photon SL. The hand gesture sequence was captured using Hybrid (n = 255)
at 75 FPS, while the Jack-in-the-box and falling curtain sequences were both acquired using Hybrid (n = 31) at 450 FPS.
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[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian

Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020. 12
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