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Abstract

Comprehending the rich semantics in an image and or-
dering them in linguistic order are essential to compose
a visually-grounded and linguistically coherent description
for image captioning. Modern techniques commonly cap-
italize on a pre-trained object detector/classifier to mine
the semantics in an image, while leaving the inherent lin-
guistic ordering of semantics under-exploited. In this pa-
per, we propose a new recipe of Transformer-style struc-
ture, namely Comprehending and Ordering Semantics Net-
works (COS-Net), that novelly unifies an enriched seman-
tic comprehending and a learnable semantic ordering pro-
cesses into a single architecture. Technically, we initially
utilize a cross-modal retrieval model to search the relevant
sentences of each image, and all words in the searched sen-
tences are taken as primary semantic cues. Next, a novel
semantic comprehender is devised to filter out the irrele-
vant semantic words in primary semantic cues, and mean-
while infer the missing relevant semantic words visually
grounded in the image. After that, we feed all the screened
and enriched semantic words into a semantic ranker, which
learns to allocate all semantic words in linguistic order
as humans. Such sequence of ordered semantic words
are further integrated with visual tokens of images to trig-
ger sentence generation. Empirical evidences show that
COS-Net clearly surpasses the state-of-the-art approaches
on COCO and achieves to-date the best CIDEr score of
141.1% on Karpathy test split. Source code is available at
https://github.com/YehLi/xmodaler/tree/
master/configs/image_caption/cosnet.

1. Introduction
The ability to describe visual content with a descrip-

tive utterance is a fundamental human capability that chil-
dren are taught from childhood. To formalize such unique
capability, the task of image captioning [7, 11, 21, 33] is
developed to simulate the human-like interaction between
vision and language. The ultimate target of this task is
to produce a visually-grounded and linguistically coher-
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Figure 1. Semantics produced by (a) pre-trained object detector,
(b) cross-modal retrieval model (CLIP), and (c) our semantic com-
prehender & ranker for image captioning.
ent sentence, which covers most semantics in an image
that are worthy of mention and meanwhile describes them
in linguistic order. Modern image captioning techniques
generally focus on the former aspect of enhancing vision-
language alignment by first capturing fine-grained seman-
tics (e.g., attributes [40, 41], objects [2, 14, 37], or scene
graph [36,38,39]) via pre-trained image encoder (object de-
tector/classifier). Then, a series of innovations that employ
visual attention over these fine-grained semantics [6,10] are
present to strengthen vision-language interaction. However,
the capability of semantic comprehending in pre-trained de-
tector/classifier is severely limited by the pre-defined se-
mantic/class labels. In addition, the pre-trained detec-
tor/classifier is not optimized along with sentence decoding
process, thereby hardly to be tuned for emphasizing visually
salient semantics in output sentence. As shown in Figure 1
(a), the pre-trained object detector (Faster R-CNN) solely
captures one major semantic word (“man”), while the other
mined semantic words are either irrelevant (e.g., “horse”) or
trivial (e.g., “sky” and “bushes”).

To enhance the scalability and generalization of image
encoder, a recent pioneering practice [29] is to leverage
CLIP model (i.e., image encoder and text encoder [24])
that is trained on diverse and large-scale data. In this work,
we regard CLIP model as a powerful cross-modal retrieval
model that retrieves relevant sentences from the human-
annotated sentence pool. Such way naturally accumulates
more salient semantic words that tend to be mentioned in vi-
sually similar images, while more irrelevant semantic words
are also introduced (see Figure 1 (b)). To alleviate this issue,
we uniquely design a semantic comprehender that further
refines the primary semantic cues in the searched sentences
based on visual content. By doing so, the semantic compre-
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hender (see Figure 1 (c)) not only filters out the irrelevant
semantic words (e.g., “horse”), but also learns to infer the
missing relevant semantic words (e.g., “cow” and “rides”),
pursuing an enriched and accurate semantic understanding.

In pursuit of the linguistical coherence of the output
sentence, the recent advances directly capitalize on the
RNN/Transformer based sentence decoder for language
modeling. Unfortunately, such paradigm overly relies on
the language priors, and sometimes leans to hallucinate
semantic words that are not actually in an image, a phe-
nomenon known as “object hallucination” [27]. Here we
propose to mitigate the issue from the viewpoint of exploit-
ing the inherent linguistic ordering of semantics as addi-
tional supervisory signals to guide sentence decoding pro-
cess. Technically, a semantic ranker (see Figure 1 (c)) is
leveraged to rank all the refined semantic words derived
from semantic comprehender in linguistic order, yielding
a sequence of ordered semantic words. This semantic word
sequence manifests the emphasis of the relative linguistic
position of each semantic word in a sequence. As such, the
sequence acts as the inherent skeleton of the descriptive sen-
tence, and thus can be exploited to encourage the generation
of relevant words at each decoding timestep.

In this work, we design a novel Transformer-style
encoder-decoder structure for image captioning, namely
Comprehending and Ordering Semantics Networks (COS-
Net). Our launching point is to unify the above-mentioned
two processes of semantic comprehending and ordering into
a single scheme, so that both semantic comprehender and
ranker can be jointly optimized to better suit the sentence
decoding procedure. Specifically, we first take the off-the-
shelf CLIP as cross-modal retrieval model to retrieve se-
mantically similar sentences for the input image. All se-
mantic words in searched sentences are initially regarded
as the primary semantic cues. Next, based on the output
grid features of image encoder in CLIP, a visual encoder
is utilized to contextually encode each grid feature into vi-
sual token via self-attention. By taking the primary seman-
tic cues and visual tokens as inputs, semantic comprehen-
der filters out irrelevant semantic words in primary seman-
tic cues and meanwhile reconstructs the missing relevant
semantic words through cross-attention mechanism. After
that, semantic ranker learns to allocate all the refined se-
mantic words in a linguistic order by upgrading each seman-
tic word with the encoding of its estimated linguistic posi-
tion. Finally, both the visual tokens and the ordered seman-
tic words are dynamically integrated via attention to auto-
regressively decode the output sentence word-by-word.

The main contribution of this work is the proposal of
jointly comprehending and ordering the semantics in an im-
age to boost image captioning. This also leads to the elegant
views of how to nicely capture the richer relevant semantics
that are worthy of mention from visual content, and how

to explore the inherent linguistic ordering of them to fur-
ther facilitate sentence generation. Extensive experiments
on COCO demonstrate the effectiveness of our COS-Net.

2. Related Work
RNN-based Encoder-decoder Scheme. In the deep

learning era, researchers in [3, 30] demonstrate that the
using of RNN-based encoder-decoder significantly im-
proves machine translation. Subsequently, this RNN-based
encoder-decoder scheme becomes the de-facto recipe of
modern image captioning techniques. In analogy to the
RNN-based sequence modeling in machine translation, the
earlier attempts [21, 33] directly employ the basic RNN-
based encoder-decoder scheme for the task of image cap-
tioning, by encoding visual content with CNN and decod-
ing output description with RNN. Next, the basic RNN-
based scheme is upgraded with visual attention mechanism
[18, 34] that learns to dynamically pinpoint the most rel-
evant local patches to boost the word prediction at each
decoding timestep. Meanwhile, semantic attention mecha-
nism [41] is incorporated into RNN-based encoder-decoder
to selectively emphasize the most relevant semantic at-
tributes for sentence generation. After that, bottom-up and
top-down attention [2] enables attention measurement at ob-
ject level, rather than the conventional visual attention over
equally-sized local patches. Scene graph structure [36] that
depicts the fine-grained semantics in an image is further
integrated into the RNN-based encoder-decoder, aiming to
exploit the language inductive bias.

Transformer-based Encoder-decoder Scheme.
Sparked by the breakthroughs in NLP field via Trans-
former [31], numerous modern image captioning ap-
proaches capitalizing on Transformer-based encoder-
decoder scheme start to emerge. The central spirit of
this scheme aims to strengthen the visual encodings and
vision-language interaction with self-attention or cross-
attention mechanism in Transformer. Take for instance,
in [28], the primary Transformer structure in NLP is
directly employed for image captioning task. The spatial
relations among objects are additionally incorporated into
Transformer-based encoder-decoder in [9]. Recently, a
series of innovations have been proposed to upgrade the
attention mechanism in Transformer-style structure with
attention gate [10], mesh-like connections across multiple
layers [6], high-order feature interaction [22], and relative
geometry relationships of objects [8]. Most recently, an
auto-parsing network [35] is designed to softly segment the
inputs into a hierarchical tree, which is further imposed into
Transformer-based encoder-decoder for image captioning.

Summary. The proposed COS-Net can also be consid-
ered Transformer-based encoder-decoder scheme that con-
structs most modules (e.g., visual encoder, sentence de-
coder, and semantic comprehender) with Transformer-style
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Figure 2. An overview of our COS-Net. (a) Given an input image, CLIP first extracts its grid features via image encoder, and then retrieves
the semantically similar sentences from sentence pool, which are decomposed into a set of semantic words that act as primary semantic
cues. (b) Visual encoder further transforms the grid features into visual tokens through self-attention. (c) Next, semantic comprehender
screens the primary semantic cues by filtering out irrelevant semantic words, and meanwhile reconstructs the missing relevant semantic
words. (d) The semantic ranker learns to estimate the linguistic position of each semantic word, leading to a sequence of ordered semantic
words. (e) Finally, both of visual tokens and ordered semantic words are integrated into sentence decoder for caption generation.

structure. CLIP-ViL [29] is perhaps the most related work,
which directly takes the pre-trained image encoder in CLIP
as visual encoder in Transformer-based encoder-decoder
[20]. Our COS-Net goes beyond CLIP-ViL by utilizing
CLIP to seek richer semantic cues that are worthy of men-
tion from human-annotated sentence pool via cross-modal
retrieval. Moreover, the semantic comprehender novelly
refines the primary semantic cues by filtering out irrele-
vant semantic words and inferring missing relevant seman-
tic words. A subsequent semantic ranker further allocates
all refined semantic words in linguistic order, which serve
as additional supervisory signals to boost image captioning.

3. Our Approach: COS-Net
Now we proceed to present our core proposal, i.e., Com-

prehending and Ordering Semantics Networks (COS-Net),
that integrates both semantic comprehending and ordering
processes into a unified architecture for image captioning.
Figure 2 depicts the detailed architecture of COS-Net.

3.1. Visual Content Encoding

Inspired by Transformer-based encoder in image cap-
tioning [6, 10] or image recognition [15], we capitalize on
multiple stacked Transformer blocks to encode the visual
content into intermediate visual tokens. Formally, given an
input image I , we first employ the image encoder of CLIP
[24] (backbone: ResNet-101) to extract the grid feature map
VI = vi|NI

i=1 (NI grids), coupled with the global feature
vc. Then, we transform both the global and grid features
into a new embedding space, and further concatenate them
as: V(0)

I = [v
(0)
c ,v

(0)
i |NI

i=1]. After that, a visual encoder is
employed to contextually encode all the transformed global
and grid features V(0)

I via self-attention, yielding the en-
riched visual tokens V(Nv)

I = [v
(Nv)
c ,v

(Nv)
i |NI

i=1]. Specif-
ically, we implement this visual encoder by stacking Nv

Transformer blocks with multi-head attention. Hence, the
i-th Transformer block in visual encoder operates as:

V(i+1)
I = F(norm(V(i)

I + MultiHead(V(i)
I ,V(i)

I ,V(i)
I ))),

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O
,

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ),

Attention(Q,K,V) = softmax(
QKT

√
d

)V,

(1)

where F denotes the feed-forward layer, norm is layer nor-
malization, WQ

i , WK
i , WV

i , WO are weight matrices, and
d is a scaling factor. Note that in order to enable the inter-
layer global feature interaction, we additionally concate-
nate the output global features from all Transformer blocks,
which are further transformed into a holistic global feature:

ṽc = Wc[v
(0)
c ,v(1)

c , ...,v(Nv)
c ], (2)

where Wc is weight matrix. Accordingly, by additionally
integrating the encoded grid features of visual encoder with
the holistic global feature ṽc, we obtain the final output vi-
sual tokens ṼI = [ṽc,v

(Nv)
i |NI

i=1].

3.2. Semantic Comprehending

Most existing image captioning techniques leverage a
pre-trained object detector/classifier to capture the seman-
tics in an image, which are directly fed into sentence de-
coder to produce the caption. Nevertheless, the semantic
perception capability of these pre-trained detector/classifier
is severely limited by pre-defined semantic/class labels.
Moreover, the separate optimization between pre-trained
detector/classifier and sentence decoder hinders the inter-
action in between. That makes it difficult to adaptively tune
the object detector/classifier to better emphasize the salient
semantics that are worthy of mention in the output sentence.
To alleviate these limitations, we propose to utilize the off-
the-shelf CLIP trained on diverse and large-scale data as



a powerful cross-modal retrieval model, that directly accu-
mulates more candidates of semantic words that tend to be
mentioned in visually similar images. Based on such pri-
mary semantic cues mined through cross-modal retrieval, a
new semantic comprehender is designed to screen out ir-
relevant semantic words and meanwhile infer the missing
relevant semantic words, pursuing a comprehensive and ac-
curate semantic understanding.

Cross-modal Retrieval. In an effort to exploit the richer
contextual semantics implied in existing human-annotated
image-sentence pairs in training set, we capitalize on a
cross-modal retrieval model (i.e., CLIP) to search semanti-
cally relevant sentences in training sentence pool for each
input image. Technically, let vc and sc denote the vi-
sual and textual feature extracted by the image encoder and
text encoder in CLIP for the input image I and each sen-
tence S, respectively. Thus, by taking the input image I
as the search query, we retrieve the top-K captions Sr =
{Sr1 ,Sr2 , ...,SrK} from training sentence pool according
to the cosine similarity between I and each caption Srk :

Similarity(I,Srk) =
vc · scrk

||vc|| ||scrk ||
, (3)

where scrk is the textual feature of caption Srk . After obtain-
ing all the K searched captions that are semantically rele-
vant to the input image, we decompose them into a set of Nr

semantic words Vs = si|Nr
i=1 by removing the stop words,

which are further taken as the primary semantic cues.
Semantic Comprehender. Although the primary se-

mantic cues derived from cross-modal retrieval cover more
relevant semantic words that are worthy of mention, more
irrelevant semantic words are also inevitably introduced. A
semantic comprehender is thus utilized to filter out the irrel-
evant semantic words and meanwhile enrich the primary se-
mantic cues with more relevant but missing semantic words.
Concretely, we formulate such process of semantic screen-
ing and enriching as a set prediction problem [5], which
directly transforms the primary semantic cues Vs = si|Nr

i=1

into the refined semantic predictions conditioned on the vi-
sual tokens ṼI . Note that in order to enable the reconstruc-
tion of the missing relevant semantic words, we augment the
inputs of primary semantic cues Vs with the additional para-
metric semantic queries (i.e., a set of slots O = o

(0)
i |No

i=1).
More specifically, the primary semantic cues Vs is first
mapped into a new semantic embedding space, leading to
the primary semantic features s

(0)
i |Nr

i=1. Next, we feed the
concatenation of primary semantic features and the para-
metric semantic queries (i.e., V(0)

s = [o
(0)
i |No

i=1, s
(0)
i |Nr

i=1])
into semantic comprehender to trigger the set prediction of
the screened and enriched semantic words. Here we im-
plement the semantic comprehender as Ns stacked Trans-
former blocks. Each block contextually encodes every in-
put semantic word (i.e., semantic token) via self-attention,

and further enhances the semantic tokens by exploiting the
interaction between them and visual tokens ṼI via cross-
attention, which is measured as:

V(i+1)
s = F(norm(V ′

s +MultiHead(V ′
s, ṼI , ṼI))),

V ′
s = norm(V(i)

s +MultiHead(V(i)
s ,V(i)

s ,V(i)
s )),

(4)

where V(i+1)
s denotes the output enhanced semantic to-

kens of i-th Transformer block. Accordingly, the final out-
put semantic tokens of semantic comprehender V(Ns)

s =

[o
(Ns)
i |No

i=1, s
(Ns)
i |Nr

i=1], are leveraged for predicting the re-
fined and reconstructed semantic words.

Objective. During training, we include a proxy objec-
tive to optimize the semantic comprehender by encouraging
the filter of irrelevant semantic words in primary semantic
cues and the reconstruction of the missing relevant seman-
tic words. Here we formulate this process as a combina-
tion of single-label and multi-label classification problems.
In particular, conditioned on the output semantic tokens
of semantic comprehender V(Ns)

s = [o
(Ns)
i |No

i=1, s
(Ns)
i |Nr

i=1],
a prediction layer is utilized to estimate the probability
distribution over the whole semantic vocabulary for each
semantic token, yielding the semantic predictions Ps =
[Poi |

No
i=1, Psi |

Nr
i=1]. Note that the semantic vocabulary is

constructed as all the Nc semantic words in training set
plus one special token that represents irrelevant semantic
word. The ground-truth label for the prediction of i-th se-
mantic token Psi in primary semantic cues is thus denoted
as yi ∈ RNc+1. In this way, based on Psi |

Nr
i=1, we treat the

process of filtering out irrelevant semantic words in primary
semantic cues as the task of single-label classification, and
its objective is measured with cross-entropy loss:

Lx = − 1

Nr

Nr∑
i=1

Nc+1∑
c=1

yci logP
c
si , (5)

where yci and P c
si denotes the c-th element of yi and Psi ,

respectively. Meanwhile, we regard the process of infer-
ring the missing relevant semantic words as the task of
multi-label classification. Specifically, after normalizing
the predictions of parametric semantic queries Poi |

No
i=1 with

sigmoid activation, we perform max pooling over them
to achieve the holistic probability distribution P̃o over se-
mantic vocabulary. Therefore, the objective of multi-label
classification is calculated with asymmetric loss [26]:

Lm = asym(P̃o,ym), (6)

where asym denotes the asymmetric loss and ym is the
ground-truth label of all missing relevant semantic words.
Finally, the whole objective of semantic comprehender in-
tegrates both objectives of filtering out irrelevant semantic
words and reconstructing missing relevant semantic words:

Ls = Lx + Lm. (7)



3.3. Semantic Ordering

After obtaining the screened and enriched semantics
derived from semantic comprehender, the most typical
way to generate description is to directly feed them into
RNN/Transformer based sentence decoder for sentence
modeling. However, this way overly relies on the language
priors, possibly resulting in non-existent semantic words
due to the phenomenon of object hallucination. To ad-
dress the issue, we additionally involve a new module of
semantic ranker that learns to estimate the linguistic posi-
tion of each semantic word, thereby allocating all the se-
mantic words in linguistic order as humans. In this way, the
output sequence of ordered semantic words serve as addi-
tional visually-grounded language priors to encourage the
generation of both relevant and coherent descriptions.

Conventional Transformer encoder-decoder characters
the linguistic order of each word through a static learnable
encoding of pre-defined position in a sequence. Neverthe-
less, in our context, the specific position of each seman-
tic word is unclear after semantic comprehending, and the
inherent correspondence between each semantic word and
its linguistic order is dynamic. Therefore, instead of repre-
senting each linguistic order as a static position encoding,
our semantic ranker capitalizes on attention mechanism to
dynamically infer the linguistic position of each semantic
word. Formally, we first initialize a set of D-dimensional
position encodings Vp ∈ RNp×D that depict all linguis-
tic orders in a sequence, where Np is the maximum length
of semantic word sequence. Next, for each semantic word
(e.g., the i-th semantic token ṽsi in V(Ns)

s ), we measure
its attention distribution over all position encodings Vp and
then calculate its attended position encoding by aggregating
all position encodings with attention:

pi = softmax(ṽsiVp
T )Vp. (8)

Here the attended position encoding pi can be interpreted as
a “soft” estimation of the linguistic order of each semantic
token ṽsi in the semantic word sequence. After that, we
upgrade each semantic token with its estimated linguistic
order, leading to the position-aware semantic token:

ṽpsi = ṽsi + pi. (9)

Accordingly, the semantic ranker produces a set of position-
aware semantic tokens Ṽs = {ṽps1 , ṽ

p
s2 , ..., ṽ

p
sNo+Nr

} that
present the sequence of ordered semantic words.

3.4. Sentence Decoding

With the enriched visual tokens ṼI from visual encoder
and the position-aware semantic tokens Ṽs from seman-
tic ranker, we then discuss how to integrate them into the
Transformer-based decoder for sentence generation. For-
mally, let S = {w0, w1, ..., wT−1} denote the textual sen-
tence (T : word number) that describes input image I . Each

word is represented as a “one-hot” vector, which is further
transferred into a D-dimensional textual feature via weight
matrix: H

(0)
0:T−1 = {h(0)

0 , h
(0)
1 , ..., h

(0)
T−1}. In general, the

sentence decoder takes each word as input and learns to pre-
dict the next word auto-regressively conditioned on the en-
riched visual tokens ṼI and the position-aware semantic to-
kens Ṽs. We implement the sentence decoder as Nd stacked
Transformer blocks. Each Transformer block is composed
of a masked multi-head attention layer to model the holis-
tic textual context of previous generated words, and a cross
multi-head attention layer that integrates both visual and se-
mantic tokens to trigger sentence generation. Specifically,
at the t-th decoding timestep, the masked multi-head atten-
tion layer in i-th block performs self-attention over previous
generated words based on the query of previous output hid-
den state h

(i)
t , leading to the holistic textual context h′(i)

t :

h
′(i)
t = MultiHead(h

(i)
t , H

(i)
0:t , H

(i)
0:t). (10)

After that, the cross multi-head attention layer is employed
to separately conduct cross-attention over the visual tokens
ṼI and the semantic tokens Ṽs depending on the same query
(i.e., h(i)

t ), yielding the holistic visual context hv(i)
t :

h
v(i)
t = MultiHead(h

(i)
t , ṼI , ṼI) + MultiHead(h

(i)
t , Ṽs, Ṽs). (11)

Next, we fuse the holistic textual context h′(i)
t and visual

context hv(i)
t with a sigmoid gate function, and the learnt

hidden state h
(i+1)
t is taken as the outputs of i-th block:

h
(i+1)
t = F(norm(h

(i)
t + (g ∗ h

′(i)
t + (1 − g) ∗ h

v(i)
t ))),

g = Sigmoid(Wg [h
v(i)
t , h

′(i)
t ]).

(12)

Finally, the output hidden state of the last block h
(Nd)
t is

utilized for predicting the next word wt+1 via softmax.

3.5. Overall Objective

At training stage, the overall objective of our COS-Net is
measured as the integration of the proxy objective in seman-
tic comprehender Ls and the typical cross entropy loss LXE

for sentence generation: L = Ls + LXE . Next, follow-
ing [20], COS-Net can be further optimized with sentence-
level reward (e.g., CIDEr score).

4. Experiments
4.1. Dataset and Experimental Settings

Dataset. We empirically verify and analyze the effec-
tiveness of our COS-Net on the widely adopted COCO
benchmark [17] for image captioning. The COCO dataset
consists of more than 120,000 images, and each image is
equipped with five human-annotated sentences. For fair
comparison with most existing techniques, we strictly fol-
low the standard dataset split in [11] (known as Karpathy



Table 1. Ablation study for COS-Net on COCO Karpathy test
split. Base: A base Transformer-based encoder-decoder structure
by using CLIP grid features as visual inputs; CR: Cross-modal
Retrieval; FIS: Filtering out Irrelevant Semantics; IMS: Inferring
Missing Semantics; SR: Semantic Ranker.

# Base CR FIS IMS SR B@4 M R C S CHs CHi

1 ✓ 38.0 29.0 57.9 123.6 22.1 6.2 4.3
2 ✓ ✓ 38.4 29.3 58.5 124.9 22.3 5.3 3.6
3 ✓ ✓ ✓ 38.6 29.3 58.5 125.8 22.4 5.2 3.6
4 ✓ ✓ ✓ ✓ 39.2 29.5 58.7 126.1 22.6 5.1 3.5
5 ✓ ✓ ✓ ✓ ✓ 39.2 29.7 58.9 127.4 22.7 4.7 3.2

split), which leverages 5,000 images for validation, 5,000
images for testing, and the rest for training. Besides the
standard Karpathy split, we adopt the robust split introduced
in [19] to conduct object hallucination analysis, which en-
sures that the object pairs mentioned in training, validation,
and testing captions do not overlap. In the experiments, we
perform the minimal sentence pre-processing by convert-
ing each sentence into lower case and meanwhile filtering
out rare words that occur less than six times as in [2]. The
overall word vocabulary is thus built with 10,199 unique
words. Moreover, to enable the learning of our semantic
comprehender, we construct an additional semantic vocab-
ulary (Nc = 906) by removing all the stop words in word
vocabulary and selecting high-frequency semantic words.

Implementation Details. In COS-Net, the visual en-
coder, semantic comprehender, and sentence decoder are
constructed with Nv = 6, Ns = 3, and Nd = 6 Trans-
former blocks (hidden state size: 512). The image encoder
in CLIP [24] is directly employed over the input image, and
each image is thus represented as a 512-dimensional global
feature vector plus the 2,048-dimensional grid feature map.
The typical two-stage training paradigm [25] is adopted
to train COS-Net. The whole architecture is implemented
based on X-modaler codebase [13]. Specifically, we first
optimize the whole architecture of COS-Net by integrating
the cross entropy loss with the proxy objective of semantic
comprehender for 30 epoches (batch size: 32). In this stage,
we leverage Adam [12] optimizer with the learning rate
scheduling strategy in [31] (warmup: 20,000 iterations).
For the second stage, we further optimize COS-Net with
CIDEr score via self-critical sequence training strategy [20]
for another 50 epoches. The learning rate is set as 0.00001.
At inference, the beam size in beam search strategy is set
as 3. Following the standard evaluation setup, we report
the performances of COS-Net over five evaluation metrics:
BLEU@N [23] (B@1-4), METEOR [4] (M), ROUGE [16]
(R), CIDEr [32] (C), and SPICE [1] (S). In addition, we use
CHAIR metric [27] to assess the rate of object hallucina-
tion on the robust split. CHAIR metric includes two vari-
ants: CHAIRi (CHi) that measures what fraction of objects
are hallucinated, and CHAIRs (CHs) that calculates what
fraction of sentences include a hallucinated object.

4.2. Ablation Study

In this section, we conduct ablation study to investigate
how each design in our COS-Net influences the overall per-
formances on COCO dataset. Table 1 details the perfor-
mance comparisons among different ablated runs of our
COS-Net. Note that all results here are reported without
self-critical sequence training strategy. We start from a
base Transformer-based encoder-decoder structure (Base),
which is a degraded version of COS-Net by solely using
the CLIP grid features as visual inputs, without exploring
primary semantic cues via cross-modal retrieval, seman-
tic comprehending and ordering. After that, we extend
the Based model by additionally exploring CLIP as cross-
modal retrieval model to mine the primary semantic cues
for boosting sentence generation. In this way, Base+CR
exhibits better performances, which verify the merit of ac-
cumulating richer semantic words that tend to be mentioned
in visually similar images through cross-modal retrieval.
Next, Base+CR+FIS learns to filter out the irrelevant se-
mantic words in primary semantic cues, and thus leads to
performance gains. Base+CR+FIS+IMS is further bene-
fited from the additional process of inferring the missing
relevant semantic words. The results of these two ablated
runs basically highlight the advantage of semantic screening
and enriching in our semantic comprehender for image cap-
tioning. Finally, after integrating Base+CR+FIS+IMS with
our semantic ranker that estimates the linguistic position of
each semantic word derived from semantic comprehender,
Base+CR+FIS+IMS+SR (i.e., our COS-Net) achieves the
best performances across most evaluation metrics. The re-
sults validate the leverage of the sequence of ordered se-
mantic words as additional visually-grounded language pri-
ors to enhance sentence generation.

4.3. Comparisons with State-of-the-Art

Here we compare our COS-Net with a series of state-
of-the-art image captioning approaches on three different
splits, i.e., the standard Karpathy test split, the official test
split via online evaluation, and the robust split for ob-
ject hallucination analysis. Specifically, for Karpathy test
split, we follow modern techniques and utilize two differ-
ent training setups for evaluation. One is the default single
model setup that produces sentence via a single model, and
the other is ensemble model setup that ensembles multiple
models with different initialized parameters.

Single Model on Karpathy Test Split. Table 2 sum-
marizes the performance comparisons in the default sin-
gle model setup. All runs are briefly grouped into two di-
rections: (1) the standard methods (e.g., SGAE [36], Up-
Down [2], Transformer [28], M2 Transformer [6]) that uti-
lizes the pre-trained Faster R-CNN (backbone: ResNet-
101) to extract visual inputs; (2) the approaches (e.g., CLIP-
Res101 [29]) that take the strong CLIP grid features as vi-



Table 2. The performances of various methods on COCO Karpathy test split (single model setup). † denotes our implementations by using
CLIP grid features (backbone: ResNet-101) as visual inputs. * utilizes CLIP grid features in a superior backbone (ResNet-50×4).

Cross-Entropy Loss CIDEr Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

Up-Down [2] 77.2 - - 36.2 27.0 56.4 113.5 20.3 79.8 - - 36.3 27.7 56.9 120.1 21.4
GCN-LSTM [38] 77.3 - - 36.8 27.9 57.0 116.3 20.9 80.5 - - 38.2 28.5 58.3 127.6 22.0
SGAE [36] 77.6 - - 36.9 27.7 57.2 116.7 20.9 80.8 - - 38.4 28.4 58.6 127.8 22.1
AoANet [10] 77.4 - - 37.2 28.4 57.5 119.8 21.3 80.2 - - 38.9 29.2 58.8 129.8 22.4
Transformer [28] 76.4 60.3 46.5 35.8 28.2 56.7 116.6 21.3 80.5 65.4 51.1 39.2 29.1 58.7 130.0 23.0
M2 Transformer [6] - - - - - - - - 80.8 - - 39.1 29.2 58.6 131.2 22.6
APN [35] - - - - - - - - - - - 39.6 29.2 59.1 131.8 23.0
NG-SAN [8] - - - - - - - - - - - 39.9 29.3 59.2 132.1 23.3
X-Transformer [22] 77.3 61.5 47.8 37.0 28.7 57.5 120.0 21.8 80.9 65.8 51.5 39.7 29.5 59.1 132.8 23.4
CLIP-Res101 [29] - - - - - - - - - - - 39.2 29.1 - 130.3 23.0
CLIP-Res50×4 * [29] - - - - - - - - - - - 40.2 29.7 - 134.2 23.8
Up-Down † [2] 78.1 62.6 49.1 38.3 28.6 57.9 120.7 21.6 81.3 66.2 51.5 39.4 29.2 59.3 131.9 22.8
Transformer † [28] 78.0 62.4 48.9 38.0 29.0 57.9 123.6 22.1 81.6 66.9 52.6 40.6 29.9 59.8 136.2 23.9
X-Transformer † [22] 78.3 62.9 49.3 38.2 29.2 58.3 124.5 22.6 82.0 67.2 53.1 41.2 30.2 60.0 137.2 24.2
COS-Net 79.2 63.8 50.2 39.2 29.7 58.9 127.4 22.7 82.7 68.2 54.0 42.0 30.6 60.6 141.1 24.6

Table 3. The performances of various methods on COCO Karpathy test split (ensemble model setup).
Cross-Entropy Loss CIDEr Score Optimization

B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

GCN-LSTM [38] 77.4 - - 37.1 28.1 57.2 117.1 21.1 80.9 - - 38.3 28.6 58.5 128.7 22.1
SGAE [36] - - - - - - - - 81.0 - - 39.0 28.4 58.9 129.1 22.2
AoANet [10] 78.7 - - 38.1 28.5 58.2 122.7 21.7 81.6 - - 40.2 29.3 59.4 132.0 22.8
M2 Transformer [6] - - - - - - - - 82.0 - - 40.5 29.7 59.5 134.5 23.5
X-Transformer [22] 77.8 62.1 48.6 37.7 29.0 58.0 122.1 21.9 81.7 66.8 52.6 40.7 29.9 59.7 135.3 23.8
COS-Net 79.6 64.4 50.9 40.0 30.0 59.4 129.5 22.9 83.5 69.1 54.9 42.9 30.8 61.0 143.0 24.7

sual inputs. Note that for fair comparisons with our COS-
Net, we re-implement several upgraded variants of exist-
ing standard methods (e.g., Up-Down †, Transformer †,
X-Transformer †) by using the same CLIP grid features
as visual inputs. As shown in this table, our COS-Net
consistently outperforms the state-of-the-art methods across
all the evaluation metrics. In particular, under the set-
ting of CIDEr score optimization, the CIDEr Score of
COS-Net can reach 141.1%, which leads to the abso-
lute improvement of 3.9% against the best competitor X-
Transformer † (CIDEr: 137.2%). This generally demon-
strates the key advantage of jointly comprehending and or-
dering the semantics in an image to facilitate sentence gen-
eration. Compared to the methods that leverage RNN-
based structure (e.g., Up-Down and GCN-LSTM), Trans-
former and M2 Transformer improve the performances by
utilizing Transformer-based scheme that strengthens vision-
language interaction via cross-attention. Instead of using
the pre-trained Faster R-CNN to encode visual content in
primary Up-Down, Up-Down † utilizes the CLIP grid fea-
tures to trigger bottom-up and top-down attention, lead-
ing to clear performance boosts. The results indicate the
stronger capability of semantic comprehending in CLIP that
is trained on diverse and large-scale data. When further up-
grading the conventional Transformer with CLIP grid fea-
tures, Transformer † also manages to achieve better per-
formances. However, these upgraded runs of existing ap-
proaches solely hinge on the visual content encoding via
pre-trained CLIP without any interaction between CLIP and
sentence decoder, and meanwhile ignore the inherent lin-
guistic ordering of semantics. As an alternative, our COS-
Net encourages a more comprehensive and accurate seman-
tic understanding, and further learns to allocate the semantic

words in linguistic ordering as humans, thereby achieving
the best performances in terms of all evaluation metrics.

Ensemble Model on Karpathy Test Split. Next,
we evaluate our COS-Net with ensembles of four mod-
els, which are trained with different random seeds. As
shown in Table 3, the performance trends in the ensem-
ble model setup are similar to those in single model setup.
Concretely, the ensemble version of COS-Net surpasses
the current state-of-the-art standard technique (ensemble
X-Transformer) by an absolute improvement of 7.7% in
CIDEr score. The results again demonstrate the effective-
ness of jointly screening & enriching the primary semantic
cues and further ordering semantics for image captioning.

Online Evaluation on Official Test Split. We further
include more evaluations on the official test split by submit-
ting COS-Net to online test server. Table 4 shows the per-
formances with regard to 5 reference captions (c5) and 40
reference captions (c40). Since most top-performing meth-
ods in this online leaderboard adopt the ensemble model
setup, here we report the performances of the ensemble
COS-Net for fair comparison. Similarly, COS-Net sur-
passes all state-of-the-art approaches across all metrics.

Hallucination Analysis on Robust Split. To better un-
derstand the impact of semantic comprehending and order-
ing in our COS-Net, we conduct hallucination analysis [27]
to assess the rate of object hallucination (i.e., the image rel-
evance of the generated captions) on the robust split. Table
5 lists the performances over both typical sentence metrics
and the image relevance metrics (CHs and CHi). Following
the evaluation in single model setup, we include two groups
of baselines (i.e., the standard methods and their upgraded
version with CLIP grid features). Similar trends are also ob-
served in this hallucination analysis. Specifically, by equip-



Table 4. The performances of various methods on the official test split in online test server.

Model B@1 B@2 B@3 B@4 M R C
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [2] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
SGAE [36] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
GCN-LSTM [38] 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
APN [35] - - - - - - 38.9 70.2 28.8 38.0 58.7 73.7 126.3 127.6
AoANet [10] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
X-Transformer [22] 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
M2 Transformer [6] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
COS-Net 83.3 96.8 68.6 92.3 54.2 84.5 42.0 74.7 30.4 40.1 60.6 76.4 136.7 138.3

Table 5. Hallucination analysis on the robust split. † denotes our
implementations by using CLIP grid features as visual inputs.

B@1 B@4 M R C S CHs CHi

Att2In [25] - - 24.0 - 85.8 16.9 14.1 10.1
Up-Down [2] - - 24.7 - 89.8 17.7 11.3 7.9
Att2In † [25] 76.5 35.7 26.7 55.7 104.4 19.8 9.0 5.9
Up-Down † [2] 76.8 36.3 27.1 56.0 106.3 20.1 8.6 5.6
Transformer † [28] 76.9 36.3 27.4 56.1 109.3 20.5 7.9 5.1
COS-Net 78.0 37.3 27.9 56.8 112.1 21.2 6.2 3.9

ping the standard approaches (e.g., Att2In and Up-Down)
with CLIP grid features, Att2In † and Up-Down † achieve
lower CHs and CHi scores, which show the stronger seman-
tic understanding capability of CLIP. Moreover, our COS-
Net goes beyond Transformer † by additionally mining pri-
mary semantic cues via cross-modal retrieval and further re-
fining & ordering the semantics, leading to lower CHs and
CHi scores. The results confirm that COS-Net is more ro-
bust by alleviating object hallucination.

4.4. Qualitative Results

In order to qualitatively show the effectiveness of COS-
Net, we showcase several qualitative results of our COS-
Net and two upgraded baselines (i.e., Transformer † and
Up-Down †), coupled with the human-annotated ground-
truth sentences (GT) in Figure 3. In general, it is easy to
observe that all the three approaches are able to produce
linguistically coherent descriptions. Nevertheless, when ex-
amining the semantic relevance between visual content and
generated sentence, our COS-Net outperforms the other two
baselines by capturing more relevant semantic words that
are worthy of mention. For instance, in the first example,
both Transformer † and Up-Down † only partially mine the
major semantic words (red, plane, flying, and sky), while
ignoring the salient semantic of smoke. Instead, COS-Net
manages to comprehend all major semantics in this image
(red, plane, flying, sky, and smoke) and further allocates
them in linguistic order as humans, yielding both visually-
grounded and linguistically coherent description.

5. Conclusion and Discussion
In this work, we delve into the idea of comprehending

and ordering the rich semantics in an image for image cap-
tioning. To verify our claim, we present a new Transformer-
style encoder-decoder structure, i.e., COS-Net, that unifies

Order Semantic Words: herd -> sheep -> hay
COS-Net: a herd of sheep eating hay in a field
Transformer  : a herd of sheep standing next to a fence
Up-Down  : a herd of sheep standing next to a fence
GT1: a herd of sheep grazing from truck of hay
GT2: many sheep gather on a truck and in a field eating hay
GT3: the sheep are grazing in the barn where a trolley full of 
hay is brought

Order Semantic Words: dogs -> laying -> couch
COS-Net: two dogs laying on top of a couch
Transformer  : a dog laying on top of a couch
Up-Down  : a dog laying on top of a couch
GT1: two dogs laying down on a brown couch
GT2: a couple of dogs are laying on a coach
GT3: there are two large dogs sleeping on the couch

Order Semantic Words: red -> plane -> flying -> sky -> smoke
COS-Net: a red plane flying in the sky with a smoke trail
Transformer  : a red plane flying in the sky 
Up-Down  : a red plane is flying in the sky 
GT1: a red and black trick plane leaving a smoke trail
GT2: an airplane flying in the sky with smoke coming out of it
GT3: a red and black airplane in a clear blue sky upside down

Order Semantic Words: group -> men -> posing
COS-Net: a group of men posing for a picture
Transformer  : a group of men standing next to each other
Up-Down  : a group of men standing in a room
GT1: a group of four older men posing for a photo
GT2: four men are posing for a picture at an event
GT3: four gentleman posing for a picture at a cocktail party

Order Semantic Words: motorcycle -> city -> street -> night
COS-Net: a motorcycle driving down a city street at night
Transformer  : a police car driving down a city street at night
Up-Down  : a city street at night with a traffic light
GT1: the motorcycle rider is cruising the street at night
GT2: two people ride the motorcycle on the city street
GT3: police on a motorcycle drive down a city street

Figure 3. Qualitative results of our COS-Net, Transformer † and
Up-Down † , coupled with ground-truth descriptions (GT).

the two processes of enriched semantic comprehending and
learnable semantic ordering into a single architecture. Par-
ticularly, a CLIP-based cross-modal retrieval model is ini-
tially utilized to accumulate the primary semantic cues im-
plied in the searched semantically similar sentences. Af-
ter that, a semantic comprehender filters out the irrelevant
semantic words in primary semantic cues and meanwhile
infers the missing relevant semantic words. Subsequently,
a semantic ranker learns to estimate the linguistic position
of each semantic word, leading to a sequence of ordered
semantic words. The ordered semantic words serve as addi-
tional supervisory signals to guide sentence generation. We
validate our proposals through extensive experiments con-
ducted on COCO benchmark.

Broader Impact. Our COS-Net is trained to produce
image descriptions based on the learnt statistics of training
dataset, and as such will reflect biases naturally rooted in
those data, thereby resulting in negative societal impacts.
Thus more future research is necessary to address this issue.
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