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Abstract

Perceiving the similarity between images has been a
long-standing and fundamental problem underlying various
visual generation tasks. Predominant approaches measure
the inter-image distance by computing pointwise absolute
deviations, which tends to estimate the median of instance
distributions and leads to blurs and artifacts in the gener-
ated images. This paper presents MoNCE, a versatile met-
ric that introduces image contrast to learn a calibrated met-
ric for the perception of multifaceted inter-image distances.
Unlike vanilla contrast which indiscriminately pushes neg-
ative samples from the anchor regardless of their similar-
ity, we propose to re-weight the pushing force of negative
samples adaptively according to their similarity to the an-
chor, which facilitates the contrastive learning from infor-
mative negative samples. Since multiple patch-level con-
trastive objectives are involved in image distance measure-
ment, we introduce optimal transport in MoNCE to modu-
late the pushing force of negative samples collaboratively
across multiple contrastive objectives. Extensive experi-
ments over multiple image translation tasks show that the
proposed MoNCE outperforms various prevailing metrics
substantially. The code is available at MoNCE.

1. Introduction
Multifarious image generation tasks [26, 27, 30, 45, 46,

50, 56, 57] often entail multifaceted metrics to measure the
inter-image similarity with regard to different properties
such as image structures, image semantics and image per-
ceptual realism, etc. Defining generic metrics to fulfil mul-
tiple objectives is challenging as different visual properties
are usually entangled in pixels and the notion of visual sim-
ilarity is often subjective. Image similarity measurement
remains a very open research challenge in visual generation
tasks.

To measure and minimize the content variation in un-
paired image translation, Zhu et al. [56] design a cycle-
consistency loss to ensure that input images can be recov-
ered from the output images. Different from unpaired image
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Figure 1. Comparison of different contrastive objectives: For
the contrastive objective of a single image patch, vanilla con-
trastive objective repels all negative samples indiscriminately. The
introduced weighted contrastive objective adaptively adjusts the
weights of negative pairs according to the pair similarity. With
inverse weighting strategies for unpaired and paired translation
tasks, the weighted objective can be applied to improve the gener-
ation performance substantially. The modulated contrastive objec-
tive introduces optimal transport to modulate the learning objec-
tives of all image patches as a whole.

translation, paired image translation entails certain metrics
to measure the perceptual similarity between output images
and ground truth. Among various distance metrics [36, 37],
perceptual loss [17] emerges as a powerful metric in line
with human perception by leveraging the internal activation
of pre-trained networks. However, above metrics are de-
signed based on point-wise deviations, which undesirably
minimize the average deviation to all possible instances.
For example, a semantic map corresponds to numerous real
images, minimizing the average deviation to all possible
real images tends to produce blurred generation results.

Instead of minimizing the point-wise deviation, the pre-
vailing contrastive learning [5, 14, 41] aims to pull positive
samples towards an anchor and push negative samples far
away from it. It has recently been adopted in image gen-
eration tasks for preserving image contents in unpaired im-
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age translation [26], perceiving image similarity in paired
image translation [2], or serving as a contrastive regulariza-
tion term in image dehazing [38]. However, all these studies
adopt the vanilla contrast that shares a critical constraint –
negative samples are indiscriminately pushed away from the
anchor regardless of their similarity to the anchor.

In this work, we formulate contrastive learning as a ver-
satile metric for various image translation tasks as shown in
Fig. 1. In unpaired image translation, contrastive learning
allows to preserve image contents by maximizing the mu-
tual information of corresponding patches [26]. In paired
image translation, contrastive learning is employed to mea-
sure the perceptual similarity between images in line with
human judgement, by leveraging pre-trained networks for
feature extraction. However, vanilla contrastive objective
repels all negative samples indiscriminately, which is ap-
parently sub-optimal as negative samples usually have dif-
ferent similarity with the anchor. Certain weighting strategy
is desired to formulate more effective contrast by adaptively
adjusting the pushing force of negative samples.

Aiming to boost the translation performance, we com-
prehensively investigated different weighting strategies for
negative samples and some non-trivial conclusions are
drawn for the selection of weighting strategies in different
scenarios. Intuitively, hard negative samples (i.e., with high
similarity to the anchor) should be assigned higher weights
(referred as hard weighting), complying with the rationale
of hard negative sampling [29]. It is true for unpaired im-
age translation where negative samples can be easily pushed
apart as illustrated in the similarity distributions of negative
& positive pairs in Fig. 2. However, for paired image trans-
lation, negative samples are hard to be pushed apart from the
anchor (or positive pairs) as there is severe overlap for the
similarity distribution of negative & positive pairs as in Fig.
2. In this scenario, we surprisingly find that the intuitive
hard weighting strategy tends to impair the performance,
and an inverse weighting strategy as shown in Fig. 1 allows
to improve the performance. In addition, as in PatchNCE
loss [26], contrastive learning for measuring image simi-
larity involves several sub-objectives as each image patch
is associated with a contrastive objective. Re-weighting
each sub-objective separately without overall coordination
tends to be sub-optimal. We propose a Modulated Noise
Contrastive Estimation (MoNCE) loss that employs opti-
mal transport [28] to modulate the re-weighting of all nega-
tive samples collaboratively across the multiple objectives.
With a cost matrix designed based on the similarity of neg-
ative pairs, optimal transport allows to retrieve an optimal
transport plan which serves as the weights for negative sam-
ples to reach an overall optimal objective.

The contributions of this work can be summarized in
three aspects. First, we formulate contrastive learning as a
versatile metric in multifarious image translation tasks. Sec-

ond, we extensively investigate the effect of negative pair
weighting in contrastive learning and propose to adopt dif-
ferent weighting strategies according to the similarity dis-
tribution of negative pairs. Third, we propose a modulated
contrast that exploits optimal transport to modulate the re-
weighting of all negative pairs collaboratively across multi-
ple contrastive objectives.

2. Related Work
Image Generation Loss Image generation tasks entail
various losses to achieve dedicated purposes in image syn-
thesis [23, 24, 32, 39, 40, 43, 44, 47–49]. For instance, un-
paired image translation is usually associated with certain
losses to encourage correlation between the input and out-
put images. Specially, Zhu et al. [56] design a cycle-
consistency loss to preserve the image content by ensur-
ing the input image can be recovered from the translation
result. However, cycle-consistency loss assumes the rela-
tionship between the two domains is a bijection which is
often too restrictive for image translation tasks. Therefore,
several works [1, 3, 12] aim to explore one-way translation
and bypass the bijection constraint of cycle-consistency. At
the other end, paired image translation entails certain met-
ric to measure the perceptual similarity between images in
line with human perception. By leveraging the internal
activation of pre-trained neural networks, perceptual loss
[11,13,17,33] emerges as a powerful metric in image trans-
lation that coincides with human perception [53]. However,
all above metrics are designed based on point-wise absolute
deviation, which tends to estimate the median of all possible
instances.

With the emergence of contrastive learning, a popular
line of research introduces contrastive learning in image
generation [10,18,42,51,52]. Specially, CUT [26] proposes
to maximize the mutual information between correspond-
ing patches via noise contrastive estimation [25] for pre-
serving the contents in unpaired image translation. Ando-
nian et al. [2] introduce contrastive learning to measure the
inter-image similarity in paired image translation. AECR-
Net [38] introduces a contrastive regularization for image
dehazing by pulling the restored image closer to the clear
image and push it far away from the hazy image in the rep-
resentation space. NEGCUT [34] presents an instance-wise
hard negative sample generation framework for contrastive
learning in Unpaired image-to-image Translation. How-
ever, all previous losses are designed based on the vanilla
contrastive learning which indiscriminately repels all nega-
tive samples regardless of their similarity to the anchor.

Contrastive Learning The contrastive learning [5,14,41]
has recently become a prominent tool in unsupervised rep-
resentation learning, leading to state-of-the-art results. The
goal of contrastive learning (CL) is to learn a generic feature
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Figure 2. Histograms of positive & negative pair similarity in unpaired and paired image translation. The three plots on the left are
the results of 4th, 8th, 12th layers of CUT model [26] for unpaired image translation (Horse to Zebra). The three plots on the right are
the results of relu2 2, relu3 2, relu4 2 layers of pre-trained VGG-19 in SPADE [27] for paired image translation (ADE20K). The very
distinct similarity distribution leads to inverse weighting strategies for unpaired and paired image translation.

embedding by pulling positive points towards an anchor and
push negative points far away from it. However, the objec-
tive of conventional contrastive learning is misleading as
negative samples will be pushed apart indiscriminately with
the same weights regardless of their similarity to the anchor.
To alleviate the undesired repelling of similar pairs, a pop-
ular line of research explores to reweight the NCE loss by
increasing the importance of positive pairs [6] or allocating
different importance for negative pairs [29]. Besides, Chen
et al. [4] propose large-margin contrastive learning (LMCL)
to distinguish intra-cluster and inter-cluster pairs and only
push away inter-cluster pair. However, all described meth-
ods explore to re-weight a single contrastive objective for
feature representation, which is infeasible for the cases ac-
companied with multiple contrastive objectives and cannot
generalize to the area of image generation.

3. Proposed Method

In this section, we first formulate the contrastive learning
as a versatile metric for unpaired and paired image transla-
tion tasks. Then we establish the weighting strategies for
unpaired and paired image translation according to the sim-
ilarity distribution of positive and negative pairs. Finally,
we derive our designed modulated noise contrastive esti-
mation (MoNCE) loss which enables to coordinate the re-
weighting of negative pairs across multiple objectives.

3.1. Versatile Metric for Image Translation

Given images in two domains, image translation aims
to translate images from the input domain to appear like
images from the output domain. The datasets for training
translation model could be unpaired (i.e., unpaired image
translation) and paired (i.e., paired image translation), and
different loss terms are entailed for image translations with
different dataset setting. GAN loss is usually shared across
unpaired and paired image translation to fight against arti-
facts in translated images, and other loss terms are usually
designed specifically to fulfill various objectives, e.g., cy-
cle loss [56] for content preservation, perceptual loss [17]

for assessing human perceptual similarity. However, most
metrics are designed by computing the absolute mean error
which tends to minimize the average deviation to all possi-
ble instances and leads to blurs in the generated images.

In this work, we formulate contrastive loss as a versatile
metric in various translation tasks, just by properly selecting
the positive and negative pairs. For unpaired image transla-
tion, previously proposed PatchNCE [26] has validated the
effectiveness of contrastive learning for the preservation of
content. PatchNCE aims to maximize the mutual informa-
tion between patches in the same spatial location from the
generated image X and the ground truth Y as below:

L(X,Y ) = −
N∑
i=1

log
exi·yi/τ

exi·yi/τ +
∑N
j=1
j 6=i

exi·yj/τ
, (1)

where X = [x1, x2, · · · , xN ] and Y = [y1, y2, · · · , yN ] are
encoded image feature sets, τ is the temperature parame-
ter, N is the number of feature patches. Normally, multi-
layer features (1th, 4th, 8th, 12th and 16th layers of the en-
coder) are employed in PatchNCE, which is formulated as
Lm(X,Y ) =

∑L
l=1 L(Xl, Yl), where Xl and Yl denote the

corresponding feature sets in l layer of the encoder.
For paired image translation, we aim to measure the per-

ceptual similarity between translated images and the ground
truth in line with human perception. Consistent with the
multi-layer setting in perceptual loss [17], we employ pre-
trained VGG-19 network [31] to extract the same layer fea-
tures (relu1 2, relu2 2, relu3 2, relu4 2, relu5 2) from
translated images and ground truth to construct contrastive
learning pairs. By treating feature patches in same spatial
location from the translated image and the ground truth as
positive pairs and feature patches in different location as
negative pairs, Eq. (1) can be utilized to maximize the mu-
tual information between translated images and the ground
truth. According to the experimental results in Table 3, the
PatchNCE with pre-trained VGG-19 for feature extraction
rivals the well-known perceptual loss [17] in terms of paired
image translation in various evaluation metrics.
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Figure 3. Image translation performance (FID) using different
weighting strategies with varying temperature β. The two graphs
are the results of unpaired image translation (Horse→ Zebra using
CUT model [26] with WeightNCE) and paired image translation
(ADE20K using SPADE model [26] with WeightNCE), respec-
tively.

Considering the superior performance of PatchNCE for
unpaired and paired image translation, contrastive learning
can serve as a versatile metric in various image translation
tasks. However, the vanilla objective of PatchNCE will re-
pel all negative samples indiscriminately regardless of their
similarity to the anchor, which tends to be sub-optimal as
the inherent information of negative samples is not equal.

3.2. Weighted Contrastive Objective

As each negative sample poses different similarity to an-
chor, the pushing force of each negative sample should be
accordingly adjusted for better contrastive learning [35]. To
adjust the pushing force of a negative samples, a simple yet
feasible approach is to adjust its weight in the contrastive
objective. According to Eq. (1), a higher weight of a neg-
ative pair (e.g., exi·yj/τ ) indicates a higher importance in
contrastive objective, i.e., enlarged pushing force for this
negative pair. Thus, the weighted version of Eq. (1) (de-
noted by WeightNCE) can be formulated as:

−
N∑
i=1

log
exi·yi/τ

exi·yi/τ +Q(N − 1)
∑N
j=1
j 6=i

wij · exi·yj/τ
, (2)

where Q denotes the weight of negative terms (Q = 1
by default) in the denominator, wij (j 6= i) denotes the
weight between sample yj and anchor xi and is subjected
to

∑N
j=1
j 6=i

wij = 1, i ∈ [1, N ].

The weighting strategy could essentially boil down to
two categories: assigning higher weights to hard negative
samples (referred as hard weighting w+

ij) and assigning
higher weights to easy negative samples (referred as easy
weighting w−ij). To determine the weighting strategy for
unpaired and paired image translation, we illustrate the sim-
ilarity histograms of positive and negative pairs in three
middle layers (4th, 8th, 12th for unpaired image transla-
tion, relu2 2, relu3 2, relu4 2 for paired image transla-

tion) after the contrastive learning is completed. As shown
in Fig. 2, for unpaired image translation, there is few over-
lap between the similarity histograms of positive and neg-
ative pairs after contrastive learning, which indicates that
positive and negative pairs can be easily pushed apart. In
this end, the hard weighting strategy may help to boost
the performance, as the model can focus on learning from
more informative negative samples (hard negative samples)
which has been proved to be beneficial for contrastive learn-
ing [29, 35]. However, for paired image translation, there is
severe overlap for the similarity histogram of positive and
negative pairs, which indicates many negative samples are
hard to be distinguished from the positive samples. In this
case, hard weighting may not make for contrastive learning
as naively using too hard negative samples may degrade the
contribution of moderate ones, yielding worse representa-
tion [16]. It is reasonable to conjecture that easy weighting
may contribute to the contrastive learning in this scenario
by assigning lower weights to these hard negative samples
which reduces their effects in the contrastive objective.

We validate above conjecture by apply both hard weight-
ing and easy weighting strategy to unpaired and paired im-
age translation, respectively. For the contrastive objective of
a single patch, hard weighting weightsw+

ij and easy weight-
ing weights w−ij are determined with a positive and negative
relation to the similarity between sample yj and anchor xi
as below:

w+
ij =

e(xi·yj)/β∑N
j=1 e

(xi·yj)/β
w−ij =

e(1−xi·yj)/β∑N
j=1 e

(1−xi·yj)/β
, (3)

where β denotes the weighting temperature parameter. We
take the value of temperature β and the FID score of gen-
erated images as the abscissa and ordinate, respectively, as
show in Fig. 3. Treating the generation performance with-
out weighting as the baseline, we can observe that the per-
formance of unpaired image translation benefits from hard
weighting strategy, and presents a positive correlation with
the decreasing of β. On the other hand, paired image trans-
lation performance benefits from easy weighting strategy,
and also presents a positive correlation with the decreas-
ing of β, which is consistent with our conjecture. Despite
some previous work [29,35] proves the effectiveness of hard
negative samples for contrastive learning, we would clarify
that the bad effect of excessively hard samples have over-
whelmed their positive effect in the case of paired image
translation.

In the above experiments, the weighting strategy in Eq.
(3) is applied to each contrastive sub-objective separately.
However, all contrastive sub-objectives are contributing to
the final objective as in Eq. 2. Weighting each sub-objective
independently without overall coordination may result in
conflicts between different sub-objectives, and thus tends
to be sub-optimal for the final objective.
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Figure 4. Framework of the proposed modulated contrast. There are multiple sub-objectives for the contrastive learning between feature
set X = [x1, x2, x3, · · · , xN ] and Y = [y1, y2, y3, · · · , yN ]. To modulate the weights of negative pairs across multiple sub-objectives,
optimal transport with a cost matrix C (defined by Cij = exi·yj/β for unpaired translation, Cij = e(1−xi·yj)/β for paired translation)
is conducted between feature sets X and Y to minimize the total transport cost, yielding an optimal transport plan which serves as the
weights of the corresponding negative pairs.

3.3. Modulated Contrastive Objective

As we are exploring re-weighing strategies, the total
weight associated with a feature (xi or yj) is expected to
be constant, thus yielding below constraints:

N∑
i=1

wij = 1,

N∑
j=1

wij = 1, i, j ∈ [1, N ]. (4)

Considering the contrastive objective as illustrated in Fig.
4, a feature yj serves as negative sample for multiple sub-
objectives. As the total weights associated with yj is con-
stant (i.e.,

∑N
i=1 wij = 1), there may be conflicts for

the weighting strategies of yj in different sub-objectives,
e.g., several sub-objectives all expect a higher weight for
yj while the total weights of yj is constrained. There-
for, we aims to modulate the assignment of weights wij
(i, j ∈ [1, N ], i 6= j) across multiple sub-objectives with
the constraint of constant total weight.

Targeting to modulate the weights assignment for all
negative pairs, a weight modulation goal shared across all
contrastive sub-objectives should be determined. We take
easy weighting strategy as an example to derive the final
weight modulation goal. By assigning higher weights to
negative pairs with low similarity, the easy weighting strat-
egy for a contrastive sub-objective in Eq. (2) is equivalent
to reducing the negative term

∑N
j=1
j 6=i

wij · exi·yj/τ . As the

contrastive objectives of all image patches are summed to
form the final objective, the shared modulation goal across
multiple contrastive objectives can be regarded as reducing
the total loss of negatives terms. To derive the expression
mathematically, the objective of the modulation goal is for-
mulated as minimizing the total loss of negative terms with

regarding to wij , i, j ∈ [1, N ]:

min
wij ,i,j∈[1,N ]

[
N∑
i=1

N∑
j=1
j 6=i

wij · exi·yj/τ

]
. (5)

The formation of Eq. (5) with constraint in Eq. (4) can be
regarded as an optimal transport (OT) [28] problem between
[x1, x2, · · · , xN ] and [y1, y2, · · · , yN ] with a cost matrix C
defined by Cij = exi·yj/β for i 6= j and Cij = inf for
i = j. Similar to weighting temperature in Eq. (3), β in the
cost matrix C serves as a cost temperature that indicates the
smoothness of the optimal transport. A smaller β tends to
assign higher weights for small cost entries Cij and a large
β tends to assign equal weights for all cost entries. Detailed
parameter study of β can be found in the experiment part.

The optimal transport aims to retrieve a transport plan
T which minimizes the total transport cost as formulated
below:

min
T
〈C, T 〉, s.t. (T~1) = 1, (T>~1) = 1, (6)

where 〈C, T 〉 denotes the inner product of C and T . Thus,
solving the transport plan T is equivalent to solve the weight
parameters as wij = Tij . The Sinkhorn algorithm [8]
can be applied to Eq. (6) for approximating optimal trans-
port solution, yielding the desired optimal transport plan
T . With the derived transport plan matrix T as the weights
of negative pairs, the modulated objective for easy weight-
ing strategy is accordingly determined. For hard weight-
ing strategy, the modulated objective can be derived simi-
larly, just redefining the cost matrix C in Eq. 6 as Cij =
e(1−xiyj)/β for i 6= j and Cij = inf for i = j.
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Figure 5. Qualitative comparison of different losses for unpaired image translation tasks including Cityscapes (Semantic→ Image), Horse
→ Zebra, Winter→ Summer. The structure of CUT [26] is employed for the translation.

Cityscapes (Semantic→ Image) Horse→ Zebra Winter→ Summer
CUT [26]

FID ↓ mAP ↑ pixAcc ↑ classAcc ↑ FID ↓ SWD ↓ FID ↓ SWD ↓
Baseline (GAN Loss) 139.9 9.705 23.44 14.17 129.8 74.85 136.2 47.80
+Cycle Loss [56] 75.97 20.53 55.87 25.23 76.37 50.54 86.14 38.79
+PatchNCE [26] 57.16 24.29 78.22 30.67 45.33 32.02 80.25 36.92
+WeightNCE 55.94 24.98 77.92 31.96 42.92 31.58 79.32 36.39
+MoNCE 54.67 25.61 78.41 33.02 41.86 30.80 78.18 35.95

Table 1. Unpaired image translation performance on different tasks with CUT [26] as the model structure.

Horse→Zebra Winter→Summer
F/LSeSim [54]

FID ↓ SWD ↓ FID ↓ SWD ↓

Random SeSim [20] 72.18 48.85 125.1 57.48

FSeSim 43.26 36.77 79.14 35.79

LSeSim+PatchNCE 40.12 34.77 78.30 34.47

LSeSim+WeightNCE 38.67 32.59 76.98 33.89

LSeSim+MoNCE 37.21 32.12 76.04 33.10

Table 2. Unpaired image translation with F/LSeSim [54] as the
model structure.

4. Experiments
4.1. Experimental Settings

Datasets: For unpaired image translation, we conducted
experiments on Cityscapes, Horse→ Zebra, and Winter→
Summer. For paired image translation, we conducted ex-
periments on ADE20K, CelebA-HQ, and DeepFashion.
• Cityscapes [7] contains 2,975 training and 500 validation
images captured on street. We conduct unpaired semantic-
to-image translation on this dataset.
• Horse→ Zebra [56] collects 1187 horse images and 1474
zebra images from ImageNet [9] for training and validation.
•Winter→ Summer [56] contains 1,200 winter images and
1,540 summer images for training and validation.
• ADE20k [55] consists of 20k training images with 150-

class segmentation masks. We conduct image generation
by using its semantic segmentation as conditional inputs.

• CelebA-HQ [22] consists of 30,000 face images. We use
its semantic map and edge maps for conditional generation.

•DeepFashion [21] contains 52,712 person images. We use
its keypoints as conditional inputs in experiments.

Evaluation Metrics: Several evaluation metrics are
adopted in our experiment to assess image translation per-
formance. Fréchet Inception Score (FID) [15] and sliced
Wasserstein distance (SWD) [19] are adopted to measure
distribution discrepancy and statistical distances of low
level patches between translated images and real images, re-
spectively. For semantic image translation tasks, we employ
pre-trained segmentation model to evaluate the segmenta-
tion accuracy, e.g., mean average precision (mAP) and pixel
accuracy (Acc).

Implementation Details: All experiments are con-
ducted with an image resolution of 256×256. For con-
trastive learning setting, we keep the same with CUT [26],
e.g., 256 negative samples, temperature parameter τ = 0.07.
The default temperatures β and weight term weight Q in
WeightNCE and MoNCE are 0.1 and 1, respectively, for all
tasks. We re-train all compared methods following above
setting to ensure fair comparison.
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Figure 6. Qualitative comparison of different losses for paired image translation tasks including ADE20K (Semantic), CelebA-HQ (Edge),
and DeepFashion (Keypoint). The structure of SPADE [27] is employed for the translation.

ADE20K (Semantic) CelebA-HQ (Semantic) CelebA-HQ (Edge) DeepFashion (Keypoint)
SPADE [27]

FID ↓ mIoU ↑ Acc ↑ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓
Baseline (GAN Loss) 87.32 31.32 76.79 86.91 25.93 84.04 27.35 28.57 22.18
+PercepLoss [17] 33.68 42.23 81.96 36.54 17.28 31.53 18.25 35.74 24.03
+PatchNCE [26] 33.42 44.91 81.92 33.38 21.90 30.81 23.14 38.04 23.53
+WeightNCE 32.47 45.69 83.52 32.15 18.86 30.49 21.51 36.83 22.98
+MoNCE 31.62 46.30 84.29 30.01 17.39 29.75 18.11 33.96 21.58

Table 3. Paired image translation with different types of conditional input. The model structure of SPADE [27] is employed to compare
the performance of different losses.

4.2. Unpaired Image Translation

We evaluate our proposed loss on the classical unpaired
image translation task. We first adopt the model structure of
CUT [26] to conduct comparison between CycleLoss [56],
PatchNCE loss [26], and our proposed WeightNCE and
MoNCE. Complying with the discussion in the Sec. 3.2,
the weighting strategy of assigning higher weights to hard
negative samples is adopted for unpaired image translation.
As shown in Table 1, the model with GAN Loss only is
used as the Baseline. The four different losses are further
included into the Baseline, respectively, for comparisons.
We can observe that the proposed WeightNCE and MoNCE
both outperform the CycleLoss and PatchNCE consistently
in all compared unpaired translation tasks. With an overall
weight modulation across multiple contrastive objectives,
the proposed MoNCE outperforms WeightNCE across all
evaluation metrics. Fig. 5 shows qualitative comparisons
on unpaired image translation. All compared methods adopt
the same structure with CUT and the only variation comes
from different losses.

Besides CUT model, we also compare the four losses
with the F/LSeSim [54] model, which exploits the spatial
patterns of self-similarity to preserve image structures in
unpaired image translation. The content loss [20] using ran-
dom sampled features for computing self-similarity is se-
lected as the baseline (Random SeSim). F/LSeSim could

employ a pre-trained VGG-16 [31] (namely FSeSim) or a
PatchNCE (namely LSeSim) to learn spatially correlative
maps. Here, we replace the PatchNCE with our WeightNCE
and MoNCE to conduct the comparison. As shown in Table
2, the learnable self-similarity setting (LSeSim+PatchNCE)
outperforms the fixed self-similarity setting with pre-trained
VGG-16 [31]. Consistent with the results in CUT, replacing
the PatchNCE with our WeightNCE and MoNCE also bring
notable improvement in translation quality.

4.3. Paired Image Translation

For paired image translation, we adopt the structure of
SPADE [27] to perform the comparison between Perce-
pLoss [17], PatchNCE [26], and our proposed WeightNCE
and MoNCE. The SPADE model with GAN loss only is se-
lected as the baseline. Then the Baseline is combined with
different losses to perform the comparisons. As shown in
Table 3, PatchNCE with pre-trained VGG-19 for feature ex-
traction could rival the well-known PercepLoss across all
generation tasks in terms of generation quality. Consider-
ing the performance of vanilla PatchNCE in unpaired and
paired image translation, contrastive learning has good po-
tential to serve as a versatile metric for measuring image
similarity. Besides, we can observe the MoNCE is advan-
tageous to WeightNCE and both of them outperform the
PatchNCE consistently, which verify the effectiveness of
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Figure 7. The effect of varying temperature parameter β and negative term weight Q on unpaired image translation (Horse→ Zebra) and
paired image translation (ADE20K (Semantic)).

MoNCE Variants Performance

Bidirectional Pre-trained Frozen FID ↓ mIoU ↑
X X X 31.31 46.71
X X 7 30.94 44.89
X 7 7 40.47 38.22
7 7 7 42.86 36.16
7 X 7 31.37 45.44
7 X X 31.62 46.30

Table 4. Ablation study of MoNCE variants on paired image trans-
lation (ADE20K). The configuration at the grey row is the default
setting of MoNCE.

our weighting strategies and modulation mechanism.
Fig. 6 shows qualitative experiments with SPADE with

different losses. We can see that the images translated
with PatchNCE tends to present less artifacts compared
that with PercepLoss, as contrastive learning aims to max-
imize the mutual information of corresponding images in-
stead of naively minimizing the point-wise absolute devi-
ation. With an overall modulation of easy weighting state-
gies, our MoNCE outperforms PatchNCE clearly with more
fine details in generated images.

4.4. Discussion

We conduct experiments on unpaired image translation
(Horse → Zebra) and paired image translation (ADE20K
(Semantic)) to examine the effect of the cost temperature
β in Eq. (6). As show in Fig. 7, the generation perfor-
mance (FID score) of unpaired and paired image translation
improves consistently while decreasing the temperature β.
However, we find the model training tends to be unstable
and even fail with small temperature β, e.g., 0.01. We also
ablate the effect of the negative terms weight Q in Eq. (2).
As shown in Fig. 7, the performance of unpaired image
translation and paired image translation presents positive
correlation and negative correlation with the increasing of
negative term weight Q, respectively. Although the FID
is improved with a larger Q, we observe that the content

preservation performance is actually degraded for unpaired
image translation. Based on above observation, we set the
temperature β as 0.1 and the negative term weight Q as 1
by default.

We also explore several variants of contrastive learning
on paired image translation (ADE20K), including without
pre-trained VGG-19 network, unfrozen pre-trained VGG-
19 network, and bidirectional designing of contrastive
learning (including the contrastive objective with ground
truth patches as anchors) introduced in [2]. As shown in
Table 4, learning the feature extractor from scratch with-
out pre-training tends to impair the generation performance
drastically. Including bidiretional design to the proposed
MoNCE improve the generation performance slightly. Un-
freezing the pre-trained VGG-19 network improves the
FID, while it hurts the mAP score.

5. Conclusion

We have formulated contrastive learning as a versatile
metric for various image translation tasks, which is on par
with the prevailing losses designed in corresponding tasks.
With a target to re-weighting negative pairs for performance
gain, we explore and establish the weighting strategies for
unpaired and paired image translation according to the sim-
ilarity distribution of positive and negative pairs. To modu-
late the re-weighting of all negative pairs associated with the
full image, we further derive a MoNCE which employs op-
timal transport to retrieve the optimal weights for negative
pairs across multiple contrastive objectives. Our thorough
and extensive analysis of negative pair weighting strategies
lays a sound foundation for the exploration of contrastive
learning in image generation.
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