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Figure 1. Our generalizable GeoNeRF model infers complex geometries of objects in a novel scene without per-scene optimization and
synthesizes novel images of higher quality than the existing works: IBRNet [54] and MVSNeRF [6].

Abstract

We present GeoNeRF, a generalizable photorealistic
novel view synthesis method based on neural radiance
fields. Our approach consists of two main stages: a ge-
ometry reasoner and a renderer. To render a novel view, the
geometry reasoner first constructs cascaded cost volumes
for each nearby source view. Then, using a Transformer-
based attention mechanism and the cascaded cost volumes,
the renderer infers geometry and appearance, and ren-
ders detailed images via classical volume rendering tech-
niques. This architecture, in particular, allows sophis-
ticated occlusion reasoning, gathering information from
consistent source views. Moreover, our method can eas-
ily be fine-tuned on a single scene, and renders com-
petitive results with per-scene optimized neural render-
ing methods with a fraction of computational cost. Ex-
periments show that GeoNeRF outperforms state-of-the-
art generalizable neural rendering models on various syn-
thetic and real datasets. Lastly, with a slight modifica-
tion to the geometry reasoner, we also propose an alter-
native model that adapts to RGBD images. This model di-
rectly exploits the depth information often available thanks
to depth sensors. The implementation code is available at
https://www.idiap.ch/paper/geonerf.

1. Introduction

Novel view synthesis is a long-standing task in com-
puter vision and computer graphics. Neural Radiance Fields

(NeRF) [37] made a significant impact on this research area
by implicitly representing the 3D structure of the scene and
rendering high-quality novel images. Our work addresses
the main drawback of NeRF, which is the requirement to
train from scratch for every scene separately. The per-scene
optimization of NeRF is lengthy and requires densely cap-
tured images from each scene.

Approaches like pixelNeRF [61], GRF [51], MINE [29],
SRF [8], IBRNet [54], MVSNeRF [6], and recently intro-
duced NeRFormer [43] address this issue and generalize
NeRF rendering technique to unseen scenes. The common
motivation behind such methods is to condition the NeRF
renderer with features extracted from source images from
a set of nearby views. Despite the generalizability of these
models to new scenes, their understanding of the scene ge-
ometry and occlusions is limited, resulting in undesired ar-
tifacts in the rendered outputs. MVSNeRF [6] constructs a
low-resolution 3D cost volume inspired by MVSNet [58],
which is widely used in the Multi-View Stereo research, to
condition and generalize the NeRF renderer. However, it
has difficulty rendering detailed images and does not deal
with occlusions in a scene. In this work, we take MVSNeRF
as a baseline and propose the following improvements.

• We introduce a geometry reasoner in the form of cas-
caded cost volumes (Section 3.1) and train it in a semi-
supervised fashion (Section 3.4) to obtain fine and
high-resolution priors for conditioning the renderer.

• We combine an attention-based model which deals
with information coming from different source views
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at any point in space, by essence permutation invariant,
with an auto-encoder network which aggregates infor-
mation along a ray, leveraging its strong Euclidean and
ordering structure (Section 3.3).

• Thanks to the symmetry and generalizability of our ge-
ometry reasoner and renderer, we detect and exclude
occluded views for each point in space and use the re-
maining views for processing that point (Section 3.3).

In addition, with a slight modification to the architecture,
we propose an alternate model that takes RGBD images
(RGB+Depth) as input and exploits the depth information
to improve its perception of the geometry (Section 3.5).

Concurrent to our work, the followings also introduce a
generalizable NeRF: RGBD-Net [38] builds a cost volume
for the target view instead of source views, NeuralMVS [45]
proposes a coarse to fine approach to increase speed, and
NeuRay [32] proposes a method to deal with occlusions.

2. Related Work
Multi-View Stereo. The purpose of Multi-View Stereo
(MVS) is to estimate the dense representation of a scene
given multiple overlapping images. This field has been
extensively studied: first, with now called traditional
methods [9, 18, 27, 47] and more recently with methods
relying on deep learning such as MVSNet [58], which
outperformed the traditional ones. MVSNet estimates the
depth from multiple views by extracting features from
all images, aggregating them into a variance-based cost
volume after warping each view onto the reference one, and
finally, post-processing the cost volumes with a 3D-CNN.
The memory needed to post-process the cost volume being
the main bottleneck of [58], R-MVSNet [59] proposed
regularizing the cost volume along the depth direction with
gated recurrent units while slightly sacrificing accuracy.
To further reduce the memory impact, [7, 19, 57] proposed
cascaded architectures, where the cost volume is built at
gradually finer scales, with the depth output computed
in a coarse to fine manner without any compromise on
the accuracy. Replacing the variance-based metric with
group-wise correlation similarity is another approach to
further decrease the memory usage of MVS networks [56].
We found MVS architectures suitable for inferring the
geometry and occlusions in a scene and conditioning a
novel image renderer.

Novel View Synthesis. Early work on synthesizing novel
views from a set of reference images was done by blending
reference pixels according to specific weights [11, 28]. The
weights were computed according to ray-space proxim-
ity [28] or approximated geometry [4, 11]. To improve
the computed geometry, some used the optical flow [5, 15]

or soft blending [42]. Others synthesized a radiance field
directly on a mesh [10, 21] or on a point cloud [1, 35]. An
advantage of these methods is that they can synthesize
new views with a small number of references, but their
performance is limited by the quality of 3D reconstruc-
tion [22, 46], and problems often arise in low-textured
or reflective regions where stereo reconstruction tends to
fail. Leveraging CNNs to predict volumetric represen-
tations stored in voxel grids [20, 24, 42] or Multi-Plane
Images [16, 17, 50, 63] produces photo-realistic renderings.
Those methods rely on discrete volumetric representations
of the scenes limiting their outputs’ resolution. They also
need to be trained on large datasets to store large numbers
of samples resulting in extensive memory overhead.

Neural Scene Representations. Recently, using neural
networks to represent the geometry and appearance of
scenes has allowed querying color and opacity in contin-
uous space and viewing directions. NeRF [37] achieves im-
pressive results for novel view synthesis by optimizing a 5D
neural radiance field for a scene. Building upon NeRF many
improvements were made [3, 13, 30, 34, 40, 41, 44, 48, 49],
but the network needs to be optimized for hours or days
for each new scene. Later works, such as GRF [51], pix-
elNeRF [61] and MINE [29], try to synthesize novel views
with very sparse inputs, but their generalization ability to
challenging scenes with complex specularities is highly re-
stricted. MVSNeRF [6] proposes to use a low-resolution
plane-swept cost volume to generalize rendering to new
scenes with as few as three images without retraining.
Once the cost volume is computed, MVSNeRF uses a
3D-CNN to aggregate image features. This 3D-CNN re-
sembles the generic view interpolation function presented
in IBRNet [54] that allows rendering novel views on un-
seen scenes with few images. Inspired by MVSNeRF,
our work first constructs cascaded cost volumes per source
view and then aggregates the cost volumes of the views in
an attention-based approach. The former allows capturing
high-resolution details, and the latter addresses occlusions.

3. Method

We use volume rendering techniques to synthesize novel
views given a set of input source views. Our proposed archi-
tecture is presented in Figure 2, and the following sections
provide details of our method.

3.1. Geometry Reasoner

Given a set of V nearby views {Iv}Vv=1 with sizeH×W ,
our geometry reasoner constructs cascaded cost volumes for
each input view individually, following the same approach
in CasMVSNet [19]. First, each image goes through a Fea-
ture Pyramid Network (FPN) [31] to generate semantic 2D
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Figure 2. The overview of GeoNeRF. 2D feature pyramids are first generated via Feature Pyramid Network (FPN) [31] for each source
view v. We then construct cascaded cost volumes at three levels for each view by homography warping of its nearby views (see Section 3.1).
Guided by the distribution of the cascaded cost volumes in the 3D space, N = Nc + Nf points {xn}Nn=1 are sampled along a ray for a
novel pose (see Section 3.2). By interpolating both 2D and 3D features (f (0)

n,v , {Φ(l)
n,v}2l=0) from FPN and cascaded cost volumes for each

sample point xn, one view independent token tn,0 and V view-dependent tokens {tn,v}Vv=1 are generated. These V +1 tokens go through
four stacked Multi-Head Attention (MHA) layers and yield more refined tokens {t′n,v}Vv=0. The MHA layers are shared among all sample
points on a ray. Thereafter, the view-independent tokens {t′n,0}Nn=1 are regularized and aggregated along the ray samples through the AE
network, and volume densities {σn}Nn=1 of the sampled points are estimated. Other tokens {t′n,v}Vv=1, supplemented with the positional
encodings {γ(θn,v)}Vv=1, predict the color weights {wn,v}Vv=1 with respect to source views, and the color ĉn of each point is estimated
in a weighted sum fashion (see Section 3.3). Finally, the color of the ray ĉ is rendered using classical volume rendering.

features at three different scale levels.

f (l)
v = FPN (Iv) ∈ R

H

2l
×W

2l
×2lC ∀l ∈ {0, 1, 2} (1)

where FPN is the Feature Pyramid Network, C is the chan-
nel dimension at level 0, and l indicates the scale level.
Once 2D features are generated, we follow the same ap-
proach in CasMVSNet to construct plane sweeps and cas-
caded cost volumes at three levels via differentiable ho-
mography warping. CasMVSNet originally estimates depth
maps D̂(l) of the input images at three levels. The coars-
est level (l = 2) consists of D(2) plane sweeps covering

the whole depth range in the camera’s frustum. Then, sub-
sequent levels narrow the hypothesis range (decrease D(l))
but increase the spatial resolution of each voxel by creat-
ing D(l) finer plane sweeps on both sides of the estimated
depths from the previous level. As a result, the finer the
cost volume is, the thinner the depth range it covers. We
make two modifications to the CasMVSNet architecture and
use it as the geometry reasoner. Firstly, we provide an ad-
ditional output head to the network to produce multi-level
semantic 3D features Φ(l) along with the estimated depth
maps D̂(l). Secondly, we replace the variance-based met-
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ric in CasMVSNet with group-wise correlation similarity
from [56] to construct light-weight volumes. Group-wise
correlation decreases memory usage and inference time.

To be more specific, for each source view Iv , we first
form a set of its nearby views Γv . Then, by constructing
D(l) depth plane sweeps and homography warping tech-
niques, we create multi-level cost volumes P (l)

v from 2D
feature pyramids f (l) of images in Γv using the group-wise
correlation similarity metric from [56]. We finally further
process and regularize the cost volumes using 3D hourglass
networks R(l)

3D and generate depth maps D̂(l)
v ∈ R

H

2l
×W

2l
×1

and 3D feature maps Φ(l)
v ∈ RD

(l)×H

2l
×W

2l
×C :

D̂(l)
v ,Φ(l)

v = R
(l)
3D

(
P (l)

v

)
∀l ∈ {0, 1, 2} (2)

3.2. Sampling Points on a Novel Ray

Once the features from the geometry reasoner are gener-
ated, we render novel views with the ray casting approach.
For each camera ray at a novel camera pose, we first sam-
ple Nc points along the ray uniformly to cover the whole
depth range. Furthermore, we estimate a stepwise proba-
bility density function p0(x) along the ray representing the
probability that a point x is covered by a full-resolution
partial cost volume P (0). Voxels inside the thinnest, full-
resolution cost volumes {P (0)

v }Vv=1 contain the most valu-
able information about the surfaces and geometry. There-
fore, we sample Nf more points from p0(x) distribution.
Unlike previous works [2, 37, 43, 54, 61] that require train-
ing two networks simultaneously (one coarse and one fine
network) and rendering volume densities from the coarse
network to resample more points for the fine one, we sample
a mixture of N = Nc + Nf valuable points before render-
ing the ray without any computation overhead or network
duplication thanks to the design of our geometry reasoner.

3.3. Renderer

For all sample points {xn}Nn=1, we interpolate the full-
resolution 2D features f (0)

n,v and the three-level 3D features
{Φ(l)

n,v}2l=0 from all source views. We also define an oc-
clusion mask Mn,v for each point xn with respect to each
view v. Formally, if a point xn stands behind the estimated
full-resolution depth map D̂(0)

v (being occluded) or the pro-
jection of xn to the camera plane of view v lies outside of
the image plane (being outside of the camera frustum), we
set Mn,v = 0 and discard view v from the rendering pro-
cess of point xn. Next, we create a view-independent token
tn,0 and V view-dependent tokens {tn,v}Vv=1 by utilizing
the interpolated features for each point xn:

tn,v = LT
([
f (0)
n,v; {Φ(l)

n,v}2l=0

])
∀v ∈ {1, ..., V }

tn,0 = LT
([
mean{f (0)

n,v}Vv=1; var{f (0)
n,v}Vv=1

]) (3)

where LT(·) and [· ; ·] denote respectively linear transfor-
mation and concatenation. tn,0 could be considered as a
global understanding of the scene at point xn, while tn,v

represents the understanding of the scene from source view
v. The global and view-dependent tokens are aggregated
through four stacked Multi-Head Attention (MHA) layers,
which are introduced in Transformers [14, 52]:

{t′n,v}Vv=0 = 4×MHA
(
tn,0, {tn,v,Mn,v}Vv=1

)
(4)

Our MHA layers also take the occlusion masks Mn,v as
inputs and force the occluded views’ attention scores to zero
to prevent them from contributing to the aggregation.

The global view-independent output tokens {t′n,0}Nn=1

now have access to all necessary data to learn the geome-
try of the scene and estimate volume densities. We further
regularize these tokens through an auto-encoder-style (AE)
network in the ray dimension (n). The AE network learns
the global geometry along the ray via convolutional layers
and predicts more coherent volume densities σn:

{σn}Nn=1 = MLPσ
(

AE
(
{t′n,0}Nn=1

))
(5)

where MLPσ is a simple two-layer perceptron. We argue
that convolutionally processing the tokens with the AE net-
work along the ray dimension (n) is a proper inductive bias
and significantly reduces the computation resources com-
pared to methods like IBRNet [54] and NeRFormer [43],
which employ an attention-based architecture because the
geometry of a scene is naturally continuous, and accord-
ingly, closer points are more likely related.

View-dependent tokens {t′n,v}Vv=1, together with two
additional inputs, are used for color prediction. We project
each point xn to source views’ image planes and interpolate
the color samples cn,v . We also calculate the angle between
the novel camera ray and the line that passes through the
camera center of source view v and xn. This angle θn,v
represents the similarity between the camera pose of source
view v and the novel view. Each point’s color is estimated
via a weighted sum of the non-occluded views’ colors:

wn,v = Softmax
({

MLPc
(

[t′n,v; γ(θn,v)]
)
,Mn,v

}V
v=1

)

ĉn =
V∑

v=1

wn,vcn,v ∀n ∈ {1, 2, ..., N} (6)

where γ(·) is the sinusoidal positional encoding proposed
in [37], and MLPc is a simple two-layer perceptron. The
Softmax function also takes the occlusion masks Mn,v as
input to exclude occluded views.

Once volume densities and colors are predicted, our
model renders, as in NeRF [37], the color of the camera
ray at a novel pose using the volume rendering approach:

ĉ =

N∑

n=1

exp

(
−
n−1∑

k=1

σk

)
(1− exp (−σn)) ĉn (7)
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In addition to the rendered color, our model also outputs the
estimated depth d̂ for each ray:

d̂ =

N∑

n=1

exp

(
−
n−1∑

k=1

σk

)
(1− exp (−σn)) zn (8)

where zn is the depth of point xn with respect to the novel
pose. This auxiliary output is helpful for training and super-
vising our generalizable model (see Section 3.4).

3.4. Loss Functions

The primary loss function when we train our generaliz-
able model on various scenes and the only loss when we
fine-tune it on a specific scene is the mean squared error
between the rendered colors and ground truth pixel colors:

Lc =
1

|R|
∑

r∈R
‖ĉ(r)− cgt(r)‖2 (9)

where R is the set of rays in each training batch and cgt is
the ground truth color.

DS-NeRF [12] shows that depth supervision can help
NeRF train faster with fewer input views. Moreover, nu-
merous works [25, 39, 53, 60] show that despite the high-
quality color rendering, NeRF has difficulty reconstructing
3D geometry and surface normals. Accordingly, for training
samples coming from datasets with ground truth depths, we
also output the predicted depth d̂ for each ray and supervise
it if the ground truth depth of that pixel is available:

Ld =
1

|Rd|
∑

r∈Rd

∥∥∥d̂(r)− dgt(r)
∥∥∥
s1

(10)

where Rd is the set of rays from samples with ground truth
depths and dgt is the pixel ground truth depth and || · ||s1 is
the smooth L1 loss.

Lastly, we supervise cascaded depth estimation networks
in our geometry reasoner. For datasets with ground truth
depth, the loss is defined as:

L(l)
D =

2−l

|V |
V∑

v=1

〈∥∥∥D̂(l)
v −D(l)

v

∥∥∥
s1

〉
(11)

where D(l)
v is the ground truth depth map of view v resized

to scale level l, and < · > denotes averaging over all pixels.
For training samples without ground truth depths, we self-
supervise the depth maps. We take the rendered ray depths
as pseudo-ground truth and warp their corresponding colors
and estimated depths from all source views using camera
transformation matrices. If the ground truth pixel color of
a ray is consistent with the warped color of a source view,
and it is located in a textured neighborhood, we allow d̂ to

supervise the geometry reasoner for that view. Formally:

L(l)
D =

2−l

|V ||R|
V∑

v=1

∑

r∈R
Mv(r)

∥∥∥D̂(l)
v (rv)− d̂(rv)

∥∥∥
s1

where rv = T→v
(
r, d̂(r)

)
(12)

and Mv(r) =





1 if |Iv(rv)− cgt(r)| < εc
and V5 (Iv(rv)) > εt

0 otherwise

Given a ray r at a novel pose with rendered depth d̂(r),
T→v

(
r, d̂(r)

)
transforms the ray to its correspondent ray

from source view v using camera matrices. d̂(rv) denotes
the rendered depth of the correspondent ray with respect to
source view v, and Mv(r) validates the texturedness and
color consistency. We keep pixels whose variance V5(·) in
their 5×5 pixels neighborhood is higher than εt, and whose
color differs less than εc from the color of the ray r. The
aggregated loss function for our generalizable model is:

L = Lc + 0.1Ld + λ
2∑

l=0

L(l)
D (13)

where λ is 1.0 if the supervision is with ground truth depths
and is 0.1 if it is with pseudo-ground truth rendered depths.
For fine-tuning on a single scene, regardless of the avail-
ability of depth data, we only use Lc as the loss function.

3.5. Compatibility with RGBD data

Concerning the ubiquitousness of the embedded depth
sensors in devices nowadays, we also propose an RGBD
compatible model, GeoNeRF+D, by making a small modifi-
cation to the geometry reasoner. We assume an incomplete,
low-resolution, noisy depth map Dv ∈ RH

4 ×W
4 ×1 is avail-

able for each source view v. When we construct the coarsest
cost volumeP (2)

v withD(2) depth planes, we also construct
a binary volume Bv ∈ RD(2)×H

4 ×W
4 ×1 and concatenate it

with P (2)
v before feeding them to the R(2)

3D network:

Bv(d, h, w) =

{
1 if Q (Dv (h,w)) ≡ d
0 otherwise

(14)

where Q(·) maps and quantizes real depth values to depth
plane indices. Bv plays the role of coarse guidance of the
geometry in GeoNeRF+D. As a result of this design, the
model is robust to quality and sparsity of the depth inputs.

4. Experiments
Training datasets. We train our model on the real
DTU dataset [23] and real forward-facing datasets from
LLFF [36] and IBRNet [54]. We exclude views with
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Method Settings DTU MVS† [23] Realistic Synthetic [37] Real Forward Facing [36]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelNeRF [61] 19.31 0.789 0.382 7.39 0.658 0.411 11.24 0.486 0.671
IBRNet [54] No per-scene 26.04 0.917 0.190 25.49 0.916 0.100 25.13 0.817 0.205
MVSNeRF [6] Optimization 26.63 0.931 0.168 23.62 0.897 0.176 21.93 0.795 0.252
GeoNeRF 31.34 0.959 0.060 28.33 0.938 0.087 25.44 0.839 0.180
IBRNet [54] 31.35 0.956 0.131 28.14 0.942 0.072 26.73 0.851 0.175
MVSNeRF‡[6] Per-scene 28.50 0.933 0.179 27.07 0.931 0.168 25.45 0.877 0.192
NeRF [37] Optimization 27.01 0.902 0.263 31.01 0.947 0.081 26.50 0.811 0.250
GeoNeRF10k 31.66 0.961 0.059 30.42 0.956 0.055 26.58 0.856 0.162
GeoNeRF1k 31.52 0.960 0.059 29.83 0.952 0.061 26.31 0.852 0.164

† The evaluations of the baselines on the DTU MVS dataset [23] are borrowed from the paper MVSNeRF [6]. Also, metrics are calculated
for all methods on this dataset on foreground pixels, whose ground truth depths stand inside the scene bound.
‡ For fine-tuning, MVSNeRF [6] discards CNNs and directly optimizes 3D features. Direct optimization without regularization severely
suffers from overfitting which is not reflected in their reported accuracy because their evaluation is done on a custom test set instead of
the standard one. E.g., their PSNR on NeRF dataset [37] would drop from 27.07 to 20.02 if it was evaluated on the standard test set.

Table 1. Quantitative comparison of our proposed GeoNeRF with existing generalizable NeRF models in terms of PSNR (higher is better),
SSIM [55] (higher is better), and LPIPS [62] (lower is better) metrics. Highlights are best and second best. GeoNeRF is superior to
the existing approaches in all experiments in which the methods are evaluated without any per-scene optimization (the top row). Notably,
GeoNeRF outperforms others with a significant margin on datasets with relatively sparser source views: DTU MVS [23] and NeRF realistic
synthetic [37]. In particular, our method generalizes outstandingly well on the NeRF synthetic dataset [37], although our training dataset
only contains real scenes which greatly differ from the synthetic scenes. The bottom row of the table presents the evaluation of the methods
when they are fine-tuned on each scene separately, as well as a comparison with vanilla NeRF [37], which is per-scene optimized for
200k–500k iterations. After fine-tuning for only 10k iterations, our GeoNeRF10k produces competitive results with NeRF. Remarkably,
even after fine-tuning for 1k iterations (approximately one hour on a single V100 GPU), GeoNeRF1k reaches 98.15% of the GeoNeRF10k’s
performance on average, which is another evidence for efficient convergence of our model on novel scenes.

incorrect exposure from the DTU dataset [23] following the
practice in pixelNeRF [61] and use the same 88 scenes for
training as in pixelNeRF [61] and MVSNeRF [6]. Ground
truth depths of DTU [23], provided by [58], are the only
data that is directly used for depth supervision. For samples
from forward-facing datasets (35 scenes from LLFF [36]
and 67 scenes from IBRNet [54]), depth supervision is in
the self-supervised form.

Evaluation datasets. We evaluate our model on the 16
test scenes of DTU MVS [23], the 8 test scenes of real
forward-facing dataset from LLFF [36], and the 8 scenes
in NeRF realistic synthetic dataset [37]. We follow the
same evaluation protocol in NeRF [37] for the synthetic
dataset [37] and LLFF dataset [36] and the same protocol
in MVSNeRF [6] for the DTU dataset [23]. Specifically,
for LLFF [36], we hold out 1

8 of the views of the unseen
scenes, and for DTU [23], we hold out 4 views of the
unseen scenes for testing and leave the rest for fine-tuning.

Implementation details. We train the generalizable GeoN-
eRF for 250k iterations. For each iteration, one scene is
randomly sampled, and 512 rays are randomly selected as
the training batch. For training on a specific scene, we
only fine-tune the model for 10k iterations (GeoNeRF10k),
in contrast to NeRF [37] that requires 200k–500k optimiza-

tion steps per scene. Since our renderer’s architecture is
agnostic to the number of source views, we flexibly employ
a different number of source views V for training and evalu-
ation to reduce memory usage. We use V = 6 source views
for training the generalizable model and V = 9 for eval-
uation. For fine-tuning, we select V based on the images’
resolution and available GPU memory. Specifically, we set
V = 9 for the DTU dataset [23] and V = 7 for the other
two datasets. We fix the number of sample points on a ray to
Nc = 96 and Nf = 32 for all scenes. We utilize Adam [26]
as the optimizer with a learning rate of 5×10−4 for training
the generalizable model and a learning rate of 2× 10−4 for
fine-tuning. A cosine learning rate scheduler [33] without
restart is also applied to the optimizer. For the details of our
networks’ architectures, refer to the supplementary.

4.1. Experimental Results

We evaluate our model and provide a comparison with
the original vanilla NeRF [37] and the existing general-
izable NeRF models: pixelNeRF [61], IBRNet [54], and
MVSNeRF [6]. The authors of NeRFormer [43] did not
publish their code, did not benchmark their method on
NeRF benchmarking datasets, nor test state-of-the-art gen-
eralizable NeRF models on their own dataset. They perform
on par with NeRF in their experiments with scene-specific
optimization and train and test their generalizable model on
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Figure 3. Qualitative comparison of the methods on the NeRF synthetic dataset [34] (Ship and Drums) and the real forward-facing
dataset [36] (Horns and Fern). Our proposed GeoNeRF more accurately preserves the details of the scenes while it generates fewer
artifacts than IBRNet [54] and MVSNeRF [6] (e.g. the leaves in Fern or the cymbal in Drums). After fine-tuning our model only for 10k
iterations on each individual scene (GeoNeRF10k), the results are competitive with per-scene optimized vanilla NeRF [37]. Compared with
NeRF, GeoNeRF models produce smoother surfaces in Drums and higher quality textures for the water in Ship and for the floor in Horns.
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Figure 4. Qualitative comparison of our generalizable GeoNeRF
model with MVSNeRF [6], the state-of-the-art model on the DTU
dataset [23]. Images are from DTU test scenes. Our method ren-
ders sharper images with fewer artifacts.

specific object categories separately. A quantitative com-
parison is provided in Table 1 in terms of PSNR, SSIM [55],
and LPIPS [62]. The results show the superiority of our
GeoNeRF model with respect to the previous generalizable
models. Moreover, when fine-tuned on the scenes for only
10k iterations, GeoNeRF10k produces competitive results
with NeRF, which requires lengthy per-scene optimization.
We further show that even after 1k iterations (approximately
one hour on a single V100 GPU), GeoNeRF1k’s results are
comparable with NeRF’s.

The qualitative comparisons of our model with exist-
ing methods on different datasets are provided in Figures 3
and 4. The images produced by our GeoNeRF model better
preserve the details of the scene and contain fewer artifacts.
For further qualitative analysis, an extensive ablation study,
and limitations of our model, refer to the supplementary.

4.2. Sensitivity to Source Views

We conducted two experiments to investigate the robust-
ness of our model to the number and quality of input source
views. We first evaluated the impact of the number of source
views on our model in Table 2. The results demonstrate
the robustness to the sparsity of source views and suggest
that GeoNeRF produces high-quality images even with a
lower number of source images. Furthermore, we show that
our method can operate with both close and distant source
views. Table 3 shows the performance when we discard
K nearest views to the novel pose and use the remaining
source views for rendering. While distant source views
are naturally less informative and degrade the quality, our
model does not incur a significant decrease in performance.

Number of source views PSNR↑ SSIM↑ LPIPS↓
3 24.33 0.794 0.212
4 25.05 0.823 0.183
5 25.25 0.832 0.178
6 25.37 0.837 0.176
9 25.44 0.839 0.180
IBRNet [54] (10 views) 25.13 0.817 0.205

Table 2. Quantitative analysis of the robustness of our GeoNeRF to
the number of input source views on the LLFF [36] test scenes, be-
sides a comparison with IBRNet [54], which uses 10 source views.

K: 0 2 4 6 8
PSNR↑ 25.44 24.18 23.35 22.74 22.06
SSIM↑ 0.839 0.813 0.791 0.770 0.747
LPIPS↓ 0.180 0.212 0.235 0.253 0.276

Table 3. Quantitative analysis of the sensitivity of our GeoNeRF to
discarded first K nearest neighbors on the LLFF [36] test scenes.

Model PSNR↑ SSIM↑ LPIPS↓
GeoNeRF 31.34 0.959 0.060
GeoNeRF+D 31.58 0.961 0.057

Table 4. A comparison of the performance of our RGBD compat-
ible GeoNeRF+D and original GeoNeRF on DTU [23] test scenes.
For the details of this experiment, see Section 4.3.

4.3. Results with RGBD Images

To evaluate our RGBD compatible model, GeoNeRF+D,
we use the DTU dataset [23] to mimic the real scenario
where incomplete, low-resolution depth images accompany
RGB images. We feed our model the DTU images with a
resolution of 600 × 800, while we resize their incomplete
depths to 150 × 200. The comparison of the performance
of GeoNeRF, with and without depth inputs is presented in
Table 4. The results confirm that our GeoNeRF+D model
adapts to RGBD images and renders higher quality outputs.

5. Conclusion
We proposed GeoNeRF, a generalizable learning-based

novel view synthesis method that renders state-of-the-art
quality images for complex scenes without per-scene op-
timization. Our method leverages the recent architectures
in the multi-view stereo field to understand the scene’s ge-
ometry and occlusions by constructing cascaded cost vol-
umes for source views. The data coming from the source
views are then aggregated through an attention-based net-
work, and images for novel poses are synthesized condi-
tioned on these data. An advanced algorithm to select a
proper set of nearby views or an adaptive approximation of
the optimal number of required cost volumes for a scene
could be promising extensions to our method.
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1. Additional Technical Details
As stated in the main article, we borrow the architecture of our geometry reasoner from CasMVSNet [2]. We construct

D(2) = 48 depth planes for the coarsest cost volume, D(1) = 32 for the intermediate one, and D(0) = 8 for the finest
full-resolution cost volume. We use channel size C = 8 in group-wise correlation similarity calculations. When training the
generalizable model, we create a set of 3–5 nearby source views for constructing each cost volume, whereas for fine-tuning
and evaluating, we always use a set of 5 nearby views. Also, we scale input images with a factor uniformly sampled from
{1.0, 0.75, 0.5} when we train our generalizable model.

The network architectures of Feature Pyramid Network (FPN), 3D regularizer (R(l)
3D), and the auto-encoder (AE) are

provided in Tables 1, 2, and 3 respectively.

2. Additional Qualitative Analysis
Full-size examples of rendered images for novel views by our GeoNeRF model are presented in Figures 1 and 2. Figure 1

includes samples from the real forward-facing LLFF dataset [3], and Figure 2 contains samples from the NeRF realistic
synthetic dataset [4]. In addition to the rendered images, we also show the rendered depth maps for each novel view. Images

Input Layer Output
Input ConvBnReLU(3, 8, 3, 1) conv0 0
conv0 0 ConvBnReLU(8, 8, 3, 1) conv0
conv0 ConvBnReLU(8, 16, 5, 2) conv1 0
conv1 0 ConvBnReLU(16, 16, 3, 1) conv1 1
conv1 1 ConvBnReLU(16, 16, 3, 1) conv1
conv1 ConvBnReLU(16, 32, 5, 2) conv2 0
conv2 0 ConvBnReLU(32, 32, 3, 1) conv2 1
conv2 1 ConvBnReLU(32, 32, 3, 1) conv2
conv2 Conv(32, 32, 1, 1) feat2
conv1 Conv(16, 32, 1, 1) f1 0
conv0 Conv(8, 32, 1, 1) f0 0
(feat2, f1 0) Upsample and Add(x, y) f1 1
(f1 1, f0 0) Upsample and Add(x, y) f0 1
f1 1 Conv(32, 16, 3, 1) feat1
f0 1 Conv(32, 8, 3, 1) feat0

Table 1. Network architecture of Feature Pyramid Network (FPN), where feat2, feat1, and feat0 are output feature pyramids. Conv(cin,
cout, k, s) stands for a 2D convolution with input channels cin, output channels cout, kernel size of k, and stride of s. ConvBnReLU
represents a Conv layer followed by Batch Normalization and ReLU nonlinearity. Upsample and Add(x, y) adds y to the bilinearly
upsampled of x.
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Input Layer Output
Input ConvBnReLU(8, 8, 3, 1) conv0
conv0 ConvBnReLU(8, 16, 3, 2) conv1
conv1 ConvBnReLU(16, 16, 3, 1) conv2
conv2 ConvBnReLU(16, 32, 3, 2) conv3
conv3 ConvBnReLU(32, 32, 3, 1) conv4
conv4 ConvBnReLU(32, 64, 3, 2) conv5
conv5 ConvBnReLU(64, 64, 3, 1) conv6
conv6 TrpsConvBnReLU(64, 32, 3, 2) x 0
(conv4, x 0) Add(x, y) x 1
x 1 TrpsConvBnReLU(32, 16, 3, 2) x 2
(conv2, x 2) Add(x, y) x 3
x 3 TrpsConvBnReLU(16, 8, 3, 2) x 4
(conv0, x 4) Add(x, y) x 5
x 5 ConvBnReLU(8, 8, 3, 1) prob 0
prob 0 Conv(8, 1, 3, 1) prob
x 5 ConvBnReLU(8, 8, 3, 1) feat

Table 2. Network architecture of the 3D regularizer (R(l)
3D), where feat is the output 3D feature map Φ(l) and prob is the output probability

which is used to regress the depth map D̂(l). Conv(cin, cout, k, s) stands for a 3D convolution with input channels cin, output chan-
nels cout, kernel size of k, and stride of s. ConvBnReLU represents a Conv layer followed by Batch Normalization and ReLU nonlinearity,
and TrpsConv stands for transposed 3D convolution. Add(x, y) simply adds y to x.

Input Layer Output
Input ConvLnELU(32, 64, 3, 1) conv1 0
conv1 0 MaxPool conv1
conv1 ConvLnELU(64, 128, 3, 1) conv2 0
conv2 0 MaxPool conv2
conv2 ConvLnELU(128, 128, 3, 1) conv3 0
conv3 0 MaxPool conv3
conv3 TrpsConvLnELU(128, 128, 4, 2) x 0
[ conv2 ; x 0 ] TrpsConvLnELU(256, 64, 4, 2) x 1
[ conv1 ; x 1 ] TrpsConvLnELU(128, 32, 4, 2) x 2
[ Input ; x 2 ] ConvLnELU(64, 32, 3, 1) Output

Table 3. Network architecture of the auto-encoder network (AE). Conv(cin, cout, k, s) stands for a 1D convolution with input channels cin,
output channels cout, kernel size of k, and stride of s. ConvLnELU represents a Conv layer followed by Layer Normalization and ELU
nonlinearity, and TrpsConv stands for transposed 1D convolution. MaxPool is a 1D max pooling layer with a stride of 2, and [· ; ·] denotes
concatenation.

indicated by GeoNeRF are rendered by our generalizable model, while images indicated by GeoNeRF10k are rendered after
fine-tuning our model on each scene for 10k iterations.

3. Per-Scene Breakdown
Tables 4, 5, 6, and 7 break down the quantitative results presented in the main paper into per-scene metrics. The results

are consistent with the aggregate results in the main paper. Tables 4 and 5 include the scenes from the real forward-facing
LLFF dataset [3], and Tables 6 and 7 contain the scenes from NeRF realistic synthetic dataset [4]. As it was already shown
in the main paper, our generalizable GeoNeRF model outperforms all existing generalizable methods on average, and after
fine-tuning, it is on par with per-scene optimized vanilla NeRF [4].
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Figure 1. Full-size examples of novel images and their depth map rendered by our generalizable (GeoNeRF) and fine-tuned (GeoNeRF10k)
models. The images are from test scenes of the real forward-facing LLFF dataset [3].
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Figure 2. Full-size examples of novel images and their depth map rendered by our generalizable (GeoNeRF) and fine-tuned (GeoNeRF10k)
models. The images are from test scenes of the NeRF realistic synthetic dataset [4].
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PSNR↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF [7] 12.40 10.00 14.07 11.07 9.85 9.62 11.75 10.55
IBRNet [5] 23.84 26.67 30.00 26.48 20.19 19.34 29.94 24.57
MVSNeRF [1] 21.15 24.74 26.03 23.57 17.51 17.85 26.95 23.20
GeoNeRF 24.61 28.12 30.49 26.96 20.58 20.24 28.74 23.75

SSIM↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF [7] 0.531 0.433 0.674 0.516 0.268 0.317 0.691 0.458
IBRNet [5] 0.772 0.856 0.883 0.869 0.719 0.633 0.946 0.861
MVSNeRF [1] 0.638 0.888 0.872 0.868 0.667 0.657 0.951 0.868
GeoNeRF 0.811 0.885 0.898 0.901 0.741 0.666 0.935 0.877

LPIPS↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF [7] 0.650 0.708 0.608 0.705 0.695 0.721 0.611 0.667
IBRNet [5] 0.246 0.164 0.153 0.177 0.230 0.287 0.153 0.230
MVSNeRF [1] 0.238 0.196 0.208 0.237 0.313 0.274 0.172 0.184
GeoNeRF 0.202 0.133 0.123 0.140 0.222 0.256 0.150 0.212

Table 4. Per-scene Quantitative comparison of our proposed GeoNeRF with existing generalizable NeRF models on real forward-facing
LLFF dataset [3] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics.

PSNR↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF [4] 25.17 27.40 31.16 27.45 20.92 20.36 32.70 26.80
GeoNeRF10k 25.24 28.57 30.75 28.12 21.40 20.39 31.51 26.63
GeoNeRF1k 25.08 28.74 30.83 27.66 21.16 20.41 30.52 26.07

SSIM↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF [4] 0.792 0.827 0.881 0.828 0.690 0.641 0.948 0.880
GeoNeRF10k 0.829 0.890 0.900 0.912 0.781 0.674 0.956 0.910
GeoNeRF1k 0.824 0.892 0.905 0.908 0.769 0.673 0.946 0.901

LPIPS↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF [4] 0.280 0.219 0.171 0.268 0.316 0.321 0.178 0.249
GeoNeRF10k 0.185 0.120 0.125 0.126 0.183 0.247 0.126 0.181
GeoNeRF1k 0.189 0.114 0.117 0.130 0.198 0.248 0.135 0.188

Table 5. Per-scene Quantitative comparison of our fine-tuned GeoNeRF with per-scene optimized vanilla NeRF [4] on real forward-facing
LLFF dataset [3] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics. Our model is
fine-tuned on each scene for 10k iterations (GeoNeRF10k) and 1k iterations (GeoNeRF1k), and NeRF [4] is optimized for 200k iterations.
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PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF [7] 7.18 8.15 6.61 6.80 7.74 7.61 7.71 7.30
IBRNet [5] 28.54 21.22 24.23 31.72 24.59 22.20 27.97 23.64
MVSNeRF [1] 23.35 20.71 21.98 28.44 23.18 20.05 22.62 23.35
GeoNeRF 31.84 24.00 25.28 34.33 28.80 26.16 31.15 25.08

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF [7] 0.624 0.670 0.669 0.669 0.671 0.644 0.729 0.584
IBRNet [5] 0.948 0.896 0.915 0.952 0.918 0.905 0.962 0.834
MVSNeRF [1] 0.876 0.886 0.898 0.962 0.902 0.893 0.923 0.886
GeoNeRF 0.973 0.921 0.931 0.975 0.956 0.926 0.978 0.844

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF [7] 0.386 0.421 0.335 0.433 0.427 0.432 0.329 0.526
IBRNet [5] 0.066 0.091 0.097 0.067 0.095 0.115 0.051 0.219
MVSNeRF [1] 0.282 0.187 0.211 0.173 0.204 0.216 0.177 0.244
GeoNeRF 0.040 0.098 0.092 0.056 0.059 0.116 0.037 0.200

Table 6. Per-scene Quantitative comparison of our proposed GeoNeRF with existing generalizable NeRF models on NeRF realistic syn-
thetic dataset [4] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics.

PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [4] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
GeoNeRF10k 33.54 25.13 27.79 36.26 30.32 28.19 33.41 28.76
GeoNeRF1k 32.76 24.74 27.06 35.71 29.79 27.69 32.83 28.11

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [4] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
GeoNeRF10k 0.980 0.935 0.955 0.983 0.965 0.953 0.987 0.890
GeoNeRF1k 0.977 0.930 0.948 0.982 0.961 0.948 0.985 0.883

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [4] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
GeoNeRF10k 0.024 0.073 0.061 0.032 0.041 0.058 0.016 0.137
GeoNeRF1k 0.030 0.081 0.069 0.034 0.046 0.069 0.020 0.145

Table 7. Per-scene Quantitative comparison of our fine-tuned GeoNeRF with per-scene optimized vanilla NeRF [4] on NeRF realistic
synthetic dataset [4] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics. Our model is
fine-tuned on each scene for 10k iterations (GeoNeRF10k) and 1k iterations (GeoNeRF1k), and NeRF [4] is optimized for 500k iterations.

4. Ablation Study
An ablation study of our generalizable model on the NeRF synthetic dataset [4] and the real forward-facing dataset [3] is

presented in Table 8, contrasting the effectiveness of individual components of our proposed model. We evaluated GeoNeRF
in the cases where (a) no self-supervision loss is used, (b) no positional encoding is employed, (c) points on a ray are merely
sampled uniformly, (d) occluded views are not excluded, (e) attention mechanism is removed from the renderer, (f) view-
independent tokens are not regularized with the AE network before predicting volume densities, and (g) only a single cost

6



Experiment Realistic Synthetic NeRF [4] Real Forward Facing LLFF [3] ExamplesPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
a. Without self-supervision 28.10 0.935 0.098 25.37 0.836 0.184 Figure 3.a
b. Without positional encoding 27.19 0.927 0.116 25.02 0.836 0.189 Figure 3.b
c. Uniform sampling along a ray 28.04 0.934 0.089 25.31 0.835 0.184 Figure 3.c
d. Without occlusion masks 27.92 0.932 0.097 25.22 0.834 0.185 Figure 3.d
e. Without attention mechanism 27.69 0.929 0.135 24.95 0.828 0.194 Figure 3.e
f. Without the AE network 23.53 0.884 0.182 24.92 0.821 0.199 Figure 3.f
g. Single cost volume 26.60 0.915 0.132 24.60 0.814 0.211 Figure 3.g
h. Full GeoNeRF 28.33 0.938 0.087 25.44 0.839 0.180 Figure 3.h

Table 8. Ablation study of the key components of GeoNeRF. The evaluation is performed on the NeRF synthetic [4] and the real forward-
facing LLFF [3] test scenes. See Section 4 for the details of these experiments, and see Figure 3 for qualitative analysis.

Figure 3. Qualitative ablation study of the key components of GeoNeRF. The examples are selected from challenging views of the NeRF
synthetic dataset [4]. Columns correspond to the experiments in Table 8.

volume is constructed per-view instead of cascaded multi-level cost volumes.
Figure 3 contains examples from the NeRF synthetic dataset [4] for qualitative analysis corresponding to the experiments

in Table 8. The examples focus on challenging views of the scenes in order to contrast the behavior of the models properly.

5. Limitations
Our model with the experimental settings in the main article can be trained and evaluated on a single GPU with 16 GB

of memory. Failure cases in our model could occur when the stereo reconstruction fails in the geometry reasoner, and the
renderer is misled by incorrect geometry priors. Since the architecture of the geometry reasoner is inspired by multi-view
stereo models, it is prone to failure in textureless areas similarly. Such failure examples are shown in Fig. 4.
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Figure 4. Failure examples in our method where stereo reconstruction fails in the geometry reasoner for textureless areas.
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