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Abstract

Making generative models 3D-aware bridges the 2D
image space and the 3D physical world yet remains chal-
lenging. Recent attempts equip a Generative Adversarial
Network (GAN) with a Neural Radiance Field (NeRF),
which maps 3D coordinates to pixel values, as a 3D prior.
However, the implicit function in NeRF has a very local
receptive field, making the generator hard to become aware
of the global structure. Meanwhile, NeRF is built on
volume rendering which can be too costly to produce high-
resolution results, increasing the optimization difficulty. To
alleviate these two problems, we propose a novel frame-
work, termed as VolumeGAN, for high-fidelity 3D-aware
image synthesis, through explicitly learning a structural
representation and a textural representation. We first learn
a feature volume to represent the underlying structure,
which is then converted to a feature field using a NeRF-
like model. The feature field is further accumulated into
a 2D feature map as the textural representation, followed
by a neural renderer for appearance synthesis. Such a
design enables independent control of the shape and the
appearance. Project page is at https://genforce.
github.io/volumegan.

1. Introduction

Learning 3D-aware image synthesis draws wide atten-
tion recently [3,30,36]. An emerging solution is to integrate
a Neural Radiance Field (NeRF) [28] into a Generative
Adversarial Network (GAN) [7]. Specifically, the 2D
Convolutional Neural Network (CNN) based generator is
replaced with a generative implicit function, which maps
the raw 3D coordinates to point-wise densities and colors
conditioned on the given latent code. Such an implicit
function encodes the structure and the texture of the output
image in the 3D space.

However, there are two problems of directly employing
NeRF [28] in the generator. On one hand, the implicit
function in NeRF produces the color and density for each
3D point using a Multi-Layer Perceptron (MLP) network.
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Figure 1. Images of faces and cars synthesized by VolumeGAN,
which enables the control of viewpoint, structure, and texture.

With a very local receptive field, it is hard for the MLP
to represent the underlying structure globally when synthe-
sizing images. Thus only using the 3D coordinates as the
inputs [3,30,36] is not expressive enough to guide the gen-
erator with the global structure. On the other hand, volume
rendering generates the pixel values of the output image
separately, which requires sampling numerous points along
the camera ray regarding each pixel. The computational
cost hence significantly increases when the image size
becomes larger. It may cause the insufficient optimization
of the model training, and further lead to unsatisfying
performance for high-resolution image generation.

Prior work has found that 2D GANSs benefits from valid
representations learned by the generator [37,45,46]. Such
generative representations describe a synthesis with high-
level features. For example, Xu et al. [45] confirm that
a face synthesis model is aware of the landmark positions
of the output face, and Yang et al. [46] identify the multi-
level variation factors emerging from generating bedroom
images. These representative features encode rich texture
and structure information, thereby enhancing the synthesis
quality [16] and the controllability [37] of image GANs. In
contrast, as mentioned above, existing 3D-aware generative
models directly render the pixel values from coordinates [3,
36], without learning explicit representations.

In this work, we propose a new generative model, termed
as VolumeGAN, which achieves 3D-aware image synthesis
through explicitly learning a structural and a textural repre-



sentation. Instead of using the 3D coordinates as the inputs,
we generate a feature volume using a 3D convolutional
network, which encodes the relationship between various
spatial regions and hence compensates for the insufficient
receptive field caused by the MLP in NeRF. With the feature
volume modeling the underlying structure, we query a co-
ordinate descriptor from the feature volume to describe the
structural information for each 3D point. We then employ
a NeRF-like model to create a feature field, by taking the
coordinate descriptor attached with the raw coordinate as
the input. The feature field is further accumulated into a
2D feature map as the textural representation, followed by
a CNN with 1 x 1 kernel size to finally render the output
image. In this way, we separately model the structure and
the texture with the 3D feature volume and the 2D feature
map, enabling the disentangled control of the shape and the
appearance.

We evaluate our approach on various datasets and
demonstrate its superior performance over existing alter-
natives. In terms of the image quality, VolumeGAN
achieves substantially better Fréchet Inception Distance
(FID) score [11]. Taking the FFHQ dataset [16] under
256 x 256 resolution as an instance, we improve the FID
from 36.7 to 9.1. We also enable 3D-aware image synthesis
on the challenging indoor scene dataset, i.e., LSUN bed-
room [48]. Our model also suggests stable control of the
object pose and shows better consistency across different
viewpoints, benefiting from the learned structural represen-
tation (i.e., the feature volume). Furthermore, we conduct
a detailed empirical study on the learned structural and
textural representations, and analyze the trade-off between
the image quality and the 3D property.

2. Related work

Neural Implicit Representations. Recent methods [5,

, 27,28, 33,40] propose to represent 3D scenes with
neural implicit functions, such as occupancy field [27],
signed distance field [33], and radiance field [28]. To
recover these representations from images, they develop
differentiable renderers [19,21, 31, 42] that render implicit
functions into images, and optimize the network parameters
by minimizing the difference between rendered images
and observed images. These methods can reconstruct
high-quality 3D shapes and perform photo-realistic view
synthesis, but they have several strong assumptions on the
input data, including dense camera views, precise camera
parameters, and constant lighting effects. More recently,
some methods [3,13,25,26,30,36] have attempted to reduce
the constraints on the input data. By appending an ap-
pearance embedding to each input image, [25] can recover
3D scenes from multi-view images with different lighting
effects. [13, 26] reconstructs neural radiance fields from
very sparse views by applying a discriminator to supervise

the synthesized images on novel views. Different from
these methods requiring multi-view images, our approach
can synthesize high-resolution images by training networks
only on unstructured single-view image collections.

Image Synthesis with 2D GANs. Generative Adversarial
Networks (GANs) [7, 14] have made significant progress in
synthesizing photo-realistic images but lack the ability to
control the generation. To obtain better controllability in
synthesizing process, [37, 38, 46, 51] investigate the latent
space of the pre-trained GANs to determine the semantic
direction. Many works [4, 34] add regularizers or modify
the network structure [10, 15—17] to improve the disentan-
glement of variation factors without explicit supervision.
Besides, recent methods [1, 9,45, 52] adopt optimization
or train encoders for controlling attributes of real images
by pre-trained GANs. However, these efforts control the
generation only in 2D space and ignore the 3D nature of the
physical world, resulting in a lack of consistency for view
synthesis.

3D-Aware Image Synthesis. 2D GANs lack knowledge
of 3D structure. Some prior works directly introduce
3D representation to perform 3D-aware image synthesis.
VON [53] generates a 3D shape represented by voxels
which is then projected into 2D image space by a differ-
entiable renderer. HoloGAN [29] propose voxelized and
implicit 3D representations and then render it to 2D space
with a reshape operation. While these methods can achieve
good results, the synthesized images suffer from the fine
details and identity shift because of the voxel resolution
restriction. Instead of voxel representation, GRAF [30]
and 7-GAN [3] propose to model 3D shapes by neural
implicit representation, which maps the coordinates to the
RGB color. GOF [44] and ShadeGAN [32] introduce the
occupancy field and albedo field instead of radiance field
for image rendering. However, due to the computationally
intensive rendering process, they cannot synthesize high-
resolution images with good visual quality. To overcome
this problem, [30] first render low-resolution feature maps
with neural feature fields and then generate high-resolution
images with 2D CNNs, also with the coordinates as the
input. However, severe artifacts across different camera
views are introduced because CNN-based decoder harms
the 3D consistency. Unlike previous attempts, we leverage
the feature volume to provide the feature descriptor for each
coordinate and a neural renderer consisting of 1 x 1 convo-
Iution block to synthesize high-quality images with better
multi-view consistency and 3D control. The concurrent
work StyleNeRF [8] also adopts 1 x 1 convolution block
to synthesize high-quality images. However, we adopt the
feature volume to provide the structural description for the
synthesized object instead of using regularizers to improve
the 3D properties.
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Figure 2. Framework of the proposed VolumeGAN. We first learn a feature volume, starting from a learnable spatial template, as the
structural representation. Given the camera pose £, we sample points along a camera ray and query the coordinate descriptor of each point
from the feature volume via trilinear interpolation. The resulting coordinate descriptors, concatenated with the raw 3D coordinates, are
then converted to a generative feature field and further accumulated as a 2D feature map. Such a feature map is regarded as the fextural
representation, which guides the rendering of the appearance of the output synthesis with the help of a neural renderer.

3. Method

This work targets at learning 3D-aware image generative
models from a collection of 2D images. Previous attempts
replace the generator of a GAN model with an implicit
function [28], which maps 3D coordinates to pixel values.
To improve the controllability and synthesis quality, we
propose to explicitly learn the structural and the textural
representations that are responsible for the underlying struc-
ture and texture of the object respectively. Concretely,
instead of directly bridging coordinates with densities and
RGB colors, we ask the implicit function to transform
3D feature volume (i.e., the structural representation) to a
generative feature field, which are then accumulated into
a 2D feature map (i.e., the textural representation). The
overall framework is illustrated in Fig. 2. Before going into
details, we first briefly introduce the Neural Radiance Field
(NeRF), which is a core module of the proposed model.

3.1. Preliminary

The neural radiance field [28] is formulated as a continu-
ous function F'(x,d) = (c, o), which maps a 3D coordinate
x € R? and the viewing direction d € S? to the RGB
color ¢ € R3 and a volume density o € R. Then, given
a sampled ray, we can predict the colors and densities of
all the points that the ray goes through, which are then
accumulated into the pixel value with volume rendering
techniques. Typically, the function F(-,-) is parameterized
with a multi-layer perceptron (MLP), ®(-), as the backbone,
and two independent heads, ¢, (-, -) and ¢4(+), to regress the
color and density:

c(x,d) = ¢(®(x),d), (D
o(x) = ¢a(®(x)), 2)
where the color is related with the viewing direction d due

to the variation factors like lighting, while the density o is
independent of d.

NeRF is primarily proposed for 3D reconstruction and
novel view synthesis, which is trained with the supervision
from multi-view images. To enable random sampling by
learning from a collection of single-view images, recent
attempts [3, 36] introduce a latent code z to the function
F(-,). In this way, the geometry and appearance of the
rendered image will vary according to the input z, resulting
in diverse generation. Such a stochastic implicit function
is asked to compete with a discriminator of GANs [7] to
mimic the distribution of real 2D images. In the learning
process, the revised function F(x,d,z) = (c,o) is sup-
posed to encode the structure and the texture information
simultaneously.

3.2. 3D-aware Generator in VolumeGAN

To improve the controllability and image quality of the
NeRF-based 3D-aware generative model, we propose to
explicitly learn a structural representation and a textural
representation, which control the underlying structure and
texture respectively. In this part, we will introduce the
design of the structural and the textural representations, as
well as their integration through a generative neural feature
field.

3D Feature Volume as Structural Representation. As
pointed out by NeRF [28], the low-dimensional coordinates
x should be projected into a higher-dimensional feature to
describe the complex 3D scenes. For this purpose, a typical
solution is to characterize x into Fourier features [41].
However, such a Fourier transformation cannot introduce
additional information beyond the spatial position. It may
be enough for reconstructing a fixed scene, but yet far from
encoding a distributed feature for the image synthesis of
different object instances. Hence, we propose to learn a grid
of features providing the inputs of implicit functions, which
gives a more detailed description of each spatial point. We
term such a 3D feature volume, V, as the structural repre-
sentation which characterizes the underlying 3D structure.
To obtain the feature volume, we employ a sequence of



3D convolutional layers with the Leaky ReLU (LReLU)
functions [24]. Inspired by Karras er al. [16], we apply
Adaptive Instance Normalization (AdaIN) [12] to the output
of each layer to introduce diversity to the feature volume.
Starting from a learnable 3D tensor, Vg, the structural
representation is generated with

V:’(/}nsflown572o---ow0(VO)v (3)
¥;(V;) = AdaIN (LReLU(Conv(Up(Vi, i) z) . @

where ns denotes the number of layers for structure learn-
ing. s; € {1, 2} is the upsampling scale for the i-th layer.

2D Feature Map as Textural Representation. As dis-
cussed before, volume rendering can be extremely slow
and computationally expensive, making it costly to directly
render the raw pixels of a high-resolution image. To
mitigate the issue, we propose to learn a feature map at
a low resolution, followed by a CNN to render a high-
fidelity result. Here, the 2D feature map is responsible for
describing the visual appearance of the final output. The
tailing CNN consists of several Modulated Convolutional
Layers (ModConv) [17], also activated by LReLU. To avoid
the CNN from weakening the 3D consistency [30], we use
1 x 1 kernel size for all layers such that the per-pixel feature
can be processed independently. In particular, given a 2D
feature map, M, as the textural representation, the image is
generated by

UV =fo10fn—20.0fo(M), ()
fi:(M;) = LReLU (ModConv(Mi7 ts, z)) , (6)

where n; denotes the number of layers for texture learning.
t; € {1,2} is the upsampling scale for the i-th layer.

Bridging Representations with Neural Feature Field. To
connect the structural and the textural representations in
the framework, we introduce a neural radiance field [28]
as the bridge. Different from the implicit function in the
original NeRF, which maps coordinates to pixel values, we
first query the coordinate descriptor, v, from the feature
volume, V, given a 3D coordinate x, and then concatenate it
with x to obtain v* as the input. Then, the implicit function
transform v* to the density and feature vector of the field.
The above process can be formulated as

v = trilinear(V,x), @)

v* = Concat(v,x), (8)
P(V*) = ¢p-10Pn_20...0do(v¥), ©)
@;(vY) =sin (’yi(z) (W,;vi+b;) + ﬁi(z))), (10)
f(x,d) = qbf(q)(vx),d), (11)
o(x) = ¢a(®(v¥)), (12)

where n denotes the number of layers to parameterize the
neural field, while W; and b; are the learnable layer-wise

weight and bias. Eq. (8) concatenates coordinates x onto
feature v to explicitly introduce the structural information.
Eq. (10) follows Chan et al. [3], which conditions the layer-
wise output of the backbone ®(-) on the frequencies, ;(-),
and phase shifts, /3;(-), learned from the random noise z.
Eq. (11) replaces the color modeling in Eq. (1) with feature
modeling.

A per-pixel final feature m can be obtained via volume
rendering along a ray r (with viewing direction d). A
collection of m regarding different rays group into a 2D
feature map as the textural representation, M, which will
be further used to render the image.

N
m(r) = Y Ti(1 — exp(—o(xx)d5))f(xk, d),  (13)
k=1

N

-1

O'(Xj)(sj). (14)
1

Tj; = exp(—

<.
Il

Eq. (13) approximates the integral of N points {x;}&"_, on
the sampled ray r, where 0, = ||Xx+1 — Xi||2 stands for the
distance between adjacent sampled points.

3.3. Training Pipeline

Generative Sampling. The whole generation process is
formulated as I/ = G(z,¢), where z is a latent code
sampled from a Gaussian distribution A/'(0, 1) and ¢ denotes
the camera pose sampled from a prior distribution p¢. pe is
tuned for different datasets as either Gaussian or Uniform.

Discriminator. Like existing approaches for 3D-aware
image synthesis [3,30,36], we employ a discriminator D(-)
to compete with the generator. The discriminator is a CNN
consisting of several residual blocks like [17].

Training Objectives. During training, we randomly sample
z and £ from the prior distributions, while the real images
I" are sampled from the real data distribution pp. The
generator and the discriminator are jointly trained with

min Lo = Epp, enpe [f(D(G(2,€)))], (15)
min £p = By, [f(=DI") + A|[V-DX7)|[3], (16)

where f(t) = —log(1 + exp(—t) is the softplus function.
The last term in Eq. (16) stands for the gradient penalty
regularizer and A is the loss weight.

4. Experiment
4.1. Settings

Datasets. We evaluate the proposed VolumeGAN on five
real-world unstructured datasets including CelebA [22],
Cats [49], FFHQ [16], CompCars [47], LSUN bed-
room [48], and a synthetic dataset Carla [6]. CelebA
contains around 20K face images from 10K identities. The
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Figure 3. Qualitative comparison between our VolumeGAN and existing alternatives on FFHQ [16], CompCars [47], and LSUN

bedroom [48] datasets. All images are in 256 X 256 resolution.

crop from the top of the hair to the bottom of the chin
is adopted for data preprocessing on CelebA. The Cats
dataset contains 6.5K images of cat heads at 128 x 128
resolution. FFHQ contains 70K images of real human
faces in a resolution of 1024 x 1024. We follow the
protocol of [16] to preprocess the faces of FFHQ. Compcars
includes 136K real cars whose pose varies greatly. The
original images are in different aspect ratios. Hence we
center crop the cars and resize them into 256 x 256. Carla
dataset contains 10K images which are rendered from Carla
Driving simulator [6] using 16 car models with different
textures. LSUN bedroom includes 300K samples in various
camera views and aspect ratios. We also use center cropping
to preprocess the bedroom images. We train VolumeGAN
on resolutions of 128 x 128 for CelebA, Cats, and Carla and
256 x 256 for FFHQ, CompCars and LSUN bedroom.

Baselines. We choose four 3D-aware image synthesis
approaches as the baselines, including HoloGAN [29],
GRAF [36], m-GAN [3] and GIRAFFE [30]. Baseline
models are officially released by the original papers or
trained with the official implementation. More details can

be found in Supplementary Material.'
Implementation Details. The learnable 3D template Vg

are randomly initialized in 4 x 4 x 4 shape and 3D
convolutions with kernel size 3 x 3 x 3 are stacked to
embed the template, resulting in the feature volume in
32 x 32 x 32 resolution. We sample rays in a resolution of
64 x 64, and four conditioned MLPs (SIREN [3, 39]) with
256 dimensions are adopted to model the feature field and
the volume density. We use an Upsample block [17] and
two 1 x 1 ModConv [2, 1 7] at each resolution for the neural
renderer until reaching the output image resolution. We also
apply progressive training strategy used in PG-GAN [14] to
achieve better image qualities. For the network training, we
use Adam [18] optimizer with Sy = 0 and 3; = 0.999 over
8 GPUs. The entire training requires the discriminator to
see 25000K images. The batch size is 64, and the weight
decay is 0. More details can be found in Supplementary
Material.

'We fail to reproduce HoloGAN on LSUN bedroom with the official
implementation, hence we do not report the quantitative results. The
qualitative results of bedrooms are borrowed from the original paper [29].



Table 1. Quantitative comparisons on different datasets. FID [

indicate the improvements of our VolumeGAN over the second method.

] (lower is better) is used as the evaluation metric. Numbers in brackets

Method CelebA 128 Cats 128 Carla 128 FFHQ 256 | CompCars 256 | Bedroom 256

HoloGAN [29] 39.7 40.4 126.4 72.6 65.6 —

GRAF [36] 41.1 28.9 41.6 81.3 222.1 63.9

m-GAN [3] 15.9 17.7 30.1 53.2 194.5 33.9

GIRAFEFE [30] 17.5 20.1 30.8 36.7 27.2 442

VolumeGAN (Ours) | 8.9 (-7.0) 51(-12.6) | 7.9(-22.2) | 9.1(-27.6) 12.9 (—14.3) 17.3 (—16.6)
4.2. Main Results

Qualitative Results. Fig. 3 compares the synthesized
images of our method with baselines on FFHQ, CompCars
and LSUN bedroom. The images are sampled from three
views and synthesized in a resolution of 256 x 256 for
visualization. Although all baseline methods can synthesize
images under different camera poses on FFHQ, they suffer
from low image quality and the identity shift across dif-
ferent angles. When transferred to challenging CompCars
with larger viewpoint variations, some baselines such as
GRAF [36] and 7m-GAN [3] struggle to generate realistic
cars. HoloGAN can achieve good image quality but suffers
from multi-view inconsistency. GIRAFFE can generate re-
alistic cars while the color of the cars changes significantly
under different views. When tested on bedroom, HoloGAN,
GRAF, m-GAN and GIRRAFE cannot handle such indoor
scene data with larger structure and texture variations.
VolumeGAN can synthesize high-fidelity view-
consistent images. Compared with the existing approaches,
it generates more fine details, such as teeth (face),
headlights (car) and windows (bedroom). Even on
the more challenging CompCars and LSUN bedroom
datasets, VolumeGAN still achieves satisfying synthesis
performance thanks to the feature volume and the neural
renderer.
Quantitative Results. We quantitatively evaluate the visual
quality of the synthesized images using Frechet Inception
Distance (FID) [11]. We follow the evaluation protocol of
StyleGAN [16] which adopts S0K real and fake samples to
calculate the FID score. All baseline models are evaluated
with the same setting for a fair comparison. As shown in
Tab. 1, our approach leads to a significant improvement
compared with baselines, particularly on the challenging
datasets with the larger pose variation or the finer details.
Note that although GIRAFFE also uses the neural renderer,
our method still outperforms it with a clear margin. It
demonstrates that the structural information encoded in
the feature volume provides representative visual concepts,
resulting in better images quality.

4.3. Ablation Studies

‘We conduct ablation studies on CelebA 128 x 128 to ex-
amine the importance of each component in VolumeGAN.
Metrics. In addition to the FID score that measures the
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Figure 4. Synthesized results with the front camera view by
m-GAN [3] and our VolumeGAN, where the faces proposed by
VolumeGAN are more consistent to the given view, suggesting a
better 3D controllability.

image quality, we also provide two quantitative metrics to
measure the multi-view consistency and the precision of 3D
control as follows. 1) Reprojection Error. We first extract
the underlying geometry of an object from the generated
density using marching cubes [23]. Then, We render each
object in sequence and sample five viewpoints uniformly to
synthesize the images.

The depth of each image is rendered from the resulting
extracted mesh, which is used to calculate the reprojection
error on two consecutive views by warping them each other.
Specifically, we fix the yaw to be 0 and sample pitch from
[—0.3, 0.3]. The threshold of marching cube is set to 10 due
to the best visualization results of meshes. The reprojection
error is calculated in the normalized image space [—1, +1]
like [1, 45, 52] to evaluate the multi-view consistency. 2)
Pose Error. We synthesize 20,000 images and regard the
results predicted from the head pose estimator [50] as the
ground truth. The L1 distance between the given camera
pose and the predicted pose is reported to evaluate the 3D
control quantitatively.

Ablations on VolumeGAN Components. Our approach
proposes to use Feature Volume as the structural rep-
resentation and adopt the neural renderer consisting of
ModConv to render textural representation into high-fidelity
images. We ablate them to better understand their individual
contributions. Our baseline is built upon 7-GAN [3] using
conditioned MLPs to achieve 3D-aware image synthesis by
mapping coordinates to RGB color. The layer number of
the baseline is set to be 4, the same as our setting illustrated
in Sec. 4.1 for a fair comparison. As shown in Tab. 2,
introducing the feature volume that provides the structural
representation could further improve the FID score of the
baseline approach from 18.7 to 13.6.



More importantly, lower reprojection error and pose
error are also achieved, demonstrating the structural repre-
sentation from the feature volume not only facilitates better
visual results but also maintains the 3D properties regarding
multi-view consistency and 3D explicit controlling. On top
of this, the neural renderer further enhances FID to 8.9 with
a slight drop in reprojection error and pose error, leading to
the new state-of-the-art result on 3D-aware image synthesis.
Notably, involving the neural renderer to the baseline could
also boost the FID score but apparently sacrifice the 3D
properties to some extent according to the 3D metrics. It
also indicates that FID is not a comprehensive metric to
evaluate 3D-aware image synthesis. In addition, Fig. 4 gives
several synthesized samples of m-GAN baseline and our
approach under the front view. More samples can be found
in Supplementary Material. Qualitatively, the poses of our
synthesized samples are closer to the given camera view
which is quantitatively reflected by the pose-error score.
Resolution of the Feature Volume. The feature volume
resolution depicts the spatial refinement of the structural
representation, and thus it plays an essential role in synthe-
sizing images. Tab. 3 presents the metrics of the synthesis
results for various resolutions of feature volume. As the
resolution increases, the multi-view consistency and 3D
control become better consistently while the visual quality
measured by FID fluctuates little. This demonstrates that
a more detailed feature volume provides better geometry
consistency across various camera poses. However, in-
creasing the feature volume resolution inevitably results in
a greater computational burden. As a result, we choose a
feature volume resolution of 32 in all of our experiments to
maintain the balance between efficiency and image quality.
Neural Renderer Depth. The neural renderer is adopted
to convert textural representations into 2D images; thus, its
capacity is critical to the quality of the generated images.
We adjust its capacity by varying the depth of the neural
renderer to investigate its effect. Tab. 4 shows a trade-off
between image quality and 3D properties. As the depth of
the network increases, better image visual quality can be
achieved while the quality of multi-view consistency and
3D control downgrades. This implies that increasing the
capacity of the neural renderer would damage the 3D struc-
ture to some extent, revealing FID is not a comprehensive
metric for 3D-aware image synthesis again. We thus choose
the shallower network as the neural renderer for better 3D
consistency and control.

4.4. Properties of Learned Representations

A key advantage of our approach over previous attempts
is that by separately modeling the structure and texture with
the 3D feature volume and 2D feature map, our model
learns the disentangle representations for the object. These
representations allow us to achieve control of the shape and

Table 2. Ablation studies on the components of VolumeGAN,
including the feature volume (FV) and the neural renderer (NR).
“Rep-Er” and “Pose-Er” are the reprojection-error and pose-error.

FV NR | FID Rep-Er Pose-Er
7-GAN 18.7 0.071 12.7
v 13.6 0.031 8.3
v 113 0.103 12.1
v v 8.9 0.037 8.6

Table 3. Effect of the size of feature volume. “Str Res”
denotes the resolution of the feature volume (i.e., the structural
representation).

StrRes | FID  Rep-Er  Pose-Er | Speed (fps)
16 9.0 0.040 9.1 5.58
32 8.9 0.037 8.6 5.15
64 9.2 0.032 84 3.86

Table 4. Effect of the depth of neural renderer. “Tex Res”
denotes the resolution of the 2D feature map (i.e., the textural
representation).

Depth Tex Res ‘ FID Rep-Er Pose-Er
6 64 8.0 0.051 9.7
4 64 8.8 0.046 9.3
2 64 8.9 0.037 8.6

appearance. The coordinate descriptor and the 3D mesh
extracted from the density are visualized to interpret the
learned representations.

Independent Control of Structure and Texture. At test
time, we could easily swap and combine the latent codes
regarding the structural and textural individually. In this
way, we can investigate whether such two representations
are well disentangled. For example, we could combine
the structural representation (i.e., feature volume code)
of a certain instance with the textural (i.e., generative
feature field and neural renderer code) of another. The
corresponding results are shown in Fig. 5. The faces results
show that the feature volume code controls the shape of
the face and hairstyle, whereas the feature field and neural
renderer code determine the skin and hair color. Concretely,
glasses are controlled by the volume code, in line with
our perception. We can swap the structure and texture
of cars successfully. It demonstrates that our method can
disentangle shape and appearance in synthesizing images.
Different from GRAF [36] and GIRRAFE [30], we do not
explicitly introduce shape code and appearance code to
control image synthesis. Thanks to the structural and tex-
tural representations in our framework, the disentanglement
between shape and appearance emerges naturally.
Coordinate Descriptor Visualization. To further explore
how the feature volume describes the underlying struc-
ture, we visualize the corresponding coordinate descriptors
queried in the feature volume. Specifically, we accumulate



Figure 6. Visualization of coordinate descriptor. PCA is used to
reduce the feature dimension.

the coordinate descriptors on each ray, resulting in a high-
dimensional feature map. PCA [43] is utilized to reduce
the dimension to 3 for visualization. Fig. 6 shows that
the feature volume serves as a coarse structure template.
The face outline, hair, and background can be recognized
easily. Impressively, the eyes have a strong symmetry even
with the glasses. Compared to raw coordinates, the feature
descriptor provides a structured constraint to guide the
image synthesis so that our method inherently synthesize
image with better visual quality and 3D properties.

Underlying Geometry. The volume density of the implicit
representation can construct an underlying geometry of the
object due to its view-independent properties. We extract
the underlying geometry with marching cube [23] on the
density, resulting in a surface mesh. Fig. 7 shows the
meshes with various views and identities. The geometry
is consistent across different views, supporting the good 3D
properties of our method.

5. Conclusion and Discussion

In this paper, we propose a new 3D-aware generative
model, VolumeGAN, for synthesizing high-fidelity images.
By learning structural and textural representations, our

Figure 7. 3D Mesh extracted from the der;s?ty.

model achieves sufficiently higher image quality and better
3D control on various challenging datasets.

Limitations. Despite the structural representation learned
by VolumeGAN, the synthesized 3D mesh surface is still
not smooth and lacks fine details. Meanwhile, even though
we can improve the synthesis resolution via introducing a
deeper CNN (i.e., the neural renderer), it may weaken the
multi-view consistency and 3D control. Future research
will focus on generating fine-grained 3D shape as well as
making the tailing CNN in VolumeGAN with improved 3D
properties through introducing regularizers.

Ethical Consideration. Due to the high-quality 3D-
aware synthesis performance, our approach is potentially
applicable for deep fake generation. We strongly oppose the
abuse of our method in violating privacy and security. On
the contrary, we hope it can be used to improve the existing
fake detection systems.
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3D-aware Image Synthesis via Learning Structural and Textural Representations
Supplementary Material
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1. Overview

This supplementary material is organized as follows.
Sec. 2 and Sec. 3 introduce the network structure and
the training configurations used in VolumeGAN. Sec. 4
describes the details of implementing baseline approaches.
Sec. 5 shows more qualitative results. We also attach a
demo video (https://www.youtube.com/watch?
v=p85TVGIBMFc) to show the continuous 3D control
achieved by our VolumeGAN.

2. Network Structure

Recall that, our VolumeGAN first learns a feature vol-
ume with 3D CNN. The feature volume is then transformed
into a feature field using a NeRF-like model. A 2D
feature map is finally accumulated from the feature field and
rendered to an image with a 2D CNN. Taking 256 resolution
as an instance, we illustrate the architectures of these three
models in Tab. 1, Tab. 2, and Tab. 3, respectively.

Table 1. Network structure for learning a feature volume as the
structural representation. The output size is with order {C' x H x
W x D}, where D denotes the depth dimension.
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Table 2. Network structure of the generative feature field. The
output size is with order { H x W x S x C'}, where S is the number
of sampling points along a certain camera ray. FiLM denotes the
FiLM layer [4] and Sine stands for the Sine activation [6].

Stage Block Output Size

input - 64 x 64 x 12 x (32 + 3)
FC, 256

mlp; FiLM, 256 64 x 64 x 12 x 256
Sine
FC, 256

mlps FiLM, 256 64 x 64 x 12 x 256
Sine
FC, 256

mlp3 FilM, 256 64 x 64 x 12 x 256
Sine
FC, 256

mlpy FiLM, 256 64 x 64 x 12 x 256
Sine

Table 3. Network structure of the neural renderer, which renders
a 2D feature map to a synthesized image. The output size is with
order {C' x H x W}.

input Learnable Template 256 x 4 x4 x4

Stage Block Output Size

3%x3x%x3 Conv, 128
AdalN, 128
Upsample

LeakyReLU, 0.2

block; 128 x 8 x 8 x 8

input — 256 x 64 x 64

[ 3x3%x3 Conv, 64 T
AdalIN, 64
Upsample

| LeakyReLU, 0.2 |

blocka 64 x 16 x 16 x 16

1x 1 ModConv, 128
LeakyReLU, 0.2
1x 1 ModConv, 128
Upsample
LeakyReLU, 0.2

blocky 128 x 128 x 128

[ 3x3%x3 Conv, 32 T
AdalN, 32
Upsample

| LeakyReLU, 0.2 |

blocks 32 X 32 x 32 % 32

1x 1 ModConv, 64
LeakyReLU, 0.2
1x 1 ModConv, 64
Upsample
LeakyReLU, 0.2

blocks 64 x 256 x 256

RGB 3x 3 Conv, 3 3 x 256 x 256




Table 4. Training configurations regarding different datasets.

Datasets Fov Rangegepin,  #Steps Rangey, Range, Sample_Dist A
CelebA 12 [0.88,1.12] 12 [7/2—=0.3,7/2+ 0.3] [7/2 —0.15,7/2 + 0.15] Gaussian 0.2
Cat 12 [0.8,1.2] 12 [7/2 —0.5,7/2+ 0.5 [7/2 —0.4,7/2+ 0.4] Gaussian 0.2
Carla 30 [0.7,1.3] 36 [0, 27] (r/2—7/8,7/2+ /8  Uniform 1
FFHQ 12 [0.8,1.2] 14 [7/2-04,7/2+404]  [1/2—02,7/2+0.2] Gaussian 1
CompCars | 20 [0.8,1.2] 30 [0, 27 [7/2 —7/8,7/2 4 /8] Uniform 1
Bedroom 26 [0.7,1.3] 40 [7/2 —m/87/2+7/8] [w/2—m/10,7/2+ 7w/10] Uniform 1

3. Training Configurations

Because of the wildly divergent data distribution, the
training parameters vary greatly on different datasets. Tab. 4
illustrates the detailed training configuration of different
datasets. Fov, Rangegep:n, and #Steps are the field of
view, depth range and the number of sampling steps along a
camera ray. Range;, and Range,, denotes the horizontal and
vertical angle range of the camera pose £. ’Sample_Dist’
denotes the sampling scheme of the camera pose. We only
use Gaussian or Uniform sampling in our experiments. A is
the loss weight of the gradient penalty.

4. Implementation Details of Baselines

HoloGAN [2]. We use the official implementation of Holo-
GAN.! We train HoloGAN for 50 epochs. The generator
of HoloGAN can only synthesize images in 64 x 64 or
128 resolution. We extend the generator with an extra
Upsample and AdaIN block to synthesize 256 x 256 images
for comparison.

GRATF [5]. We use the official implementation of GRAF.”
We directly use the pre-trained checkpoints of CelebA and
Carla provided by the authors. For the other datasets, we
train GRAF with the same data and camera parameters as
ours at the target resolution.

m-GAN [1]. We use the official implementation of 7-
GAN.? We also directly use the pre-trained checkpoints
of CelebA, Carla and Cat for comparison and retrain 7-
GAN models on the other three datasets, including FFHQ,
CompCars and LSUN bedroom. The retrained models
are progressively trained from a resolution of 32 x 32 to
256 x 256 following the official implementation.
GIRAFFE [3]. We use the official GIRAFFE implementa-
tion.* GIRAFFE provides the pre-trained weights of FFHQ
and CompCars in a resolution of 256 x 256. The remaining
datasets are also trained with the same camera distribution
for a fair comparison.

Thttps://github.com/thunguyenphuoc/HoloGAN
Zhttps://github.com/autonomousvision/graf
3https://github.com/marcoamonteiro/pi-GAN
“https://github.com/autonomousvision/giraffe

5. Additional Results

Synthesis with front camera view. To better illustrate the
3D controllability, we show additional results of generating
images with the front view. As shown in Fig. 1, the faces
synthesized by VolumeGAN are more consistent with the
given view, demonstrating a better 3D controllability.

Synthesis with varying camera views. Besides the front
camera view, we also include a demo video (https:
/ /www . youtube .com/watch?v=p85TVGJBMFc),
which shows more results with varying camera views.
From the video, we can see the continuous 3D control
achieved by our VolumeGAN. We also include comparisons
with the state-of-the-art methods, i.e., m-GAN [1] and
GIRRAFE [3], in the demo video.
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Synthesized samples with the front camera view by m-GAN

Figure 1. More Synthesized results with the front camera view by 7-GAN [1] and our VolumeGAN, where the faces proposed by
VolumeGAN are more consistent with the given view, suggesting a better 3D controllability.



