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Figure 1. We show three groups of shape reconstruction results generated by NDF [10] (in cyan) and our proposed 3PSDF (in gold)
respectively. Our method is able to faithfully reconstruct high-fidelity, intricate geometric details including both the closed and open
surfaces, while NDF suffers from the meshing problems. Each NDF result is reconstructed from a dense point cloud containing 1 million
points while ours are reconstructed using an equivalent resolution.

Abstract

Recent advances in learning 3D shapes using neural im-
plicit functions have achieved impressive results by break-
ing the previous barrier of resolution and diversity for
varying topologies. However, most of such approaches
are limited to closed surfaces as they require the space
to be divided into inside and outside. More recent works
based on unsigned distance function have been proposed
to handle complex geometry containing both the open and
closed surfaces. Nonetheless, as their direct outputs are
point clouds, robustly obtaining high-quality meshing re-
sults from discrete points remains an open question. We
present a novel learnable implicit representation, called
three-pole signed distance function (3PSDF), that can rep-
resent non-watertight 3D shapes with arbitrary topologies
while supporting easy field-to-mesh conversion using the
classic Marching Cubes algorithm. The key to our method is
the introduction of a new sign, the NULL sign, in addition to
the conventional in and out labels. The existence of the null
sign could stop the formation of a closed isosurface derived
from the bisector of the in/out regions. Further, we propose
a dedicated learning framework to effectively learn 3PSDF
without worrying about the vanishing gradient due to the

null labels. Experimental results show that our approach
outperforms the previous state-of-the-art methods in a wide
range of benchmarks both quantitatively and qualitatively.

1. Introduction

The choice of representation for 3D shapes and surfaces
has been a central topic for effective 3D learning. Various
3D representations, including mesh [18,41], voxels [36,42],
and point cloud [31,32], have been extensively studied over
the past years. Recently, the advent of neural implicit func-
tions (NIF) [6, 20, 26, 29] has brought impressive advances
to the state-of-the-art of learning-based 3D reconstruction
and modeling.

Classic NIF approaches are built upon the signed dis-
tance function (SDF); they train a deep neural network to
classify continuous 3D locations as inside or outside the sur-
face via occupancy prediction or regressing the SDF. How-
ever, they can only model closed surfaces that support the
in/out test for level surface extraction. Recent advances that
leverage unsigned distance function (UDF) [10,39,40] have
made it possible to learn open surfaces from point clouds.
But instantiating this field into an explicit mesh remains
cumbersome and is prone to artifacts. It requires the gen-
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eration of dense point cloud and leveraging UDF’s gradient
field to iteratively push the points onto the target surface.
Such process is vulnerable to complex gradient landscape,
e.g., parts with many details, and could easily get stuck at
a local minima. In addition, reconstruction of mesh from
UDF has to use the Ball Pivoting (BP) algorithm which has
several drawbacks. 1) It is very sensitive to the input ball
radius. A slightly larger or smaller radius would lead to
an incomplete meshing result. 2) It is prone to generate
self-intersections and disconnected face patches with incon-
sistent normals even with surfaces of moderate complexity
(see the clothing result in Figure 3). 3) The BP algorithm
is very time-consuming especially dealing with dense point
clouds. Finally, learning UDF becomes a regression task
instead of classification like for SDF, making the training
more difficult. We show in the closeups of Figure 1 that
NDF [8] cannot reconstruct the face details of the first char-
acter even with 1 million sampling points.

We overcome the above limitations by presenting a new
learnable implicit representation, called Three-Pole Signed
Distance Function (3PSDF), which is capable of represent-
ing highly intricate geometries containing both closed and
open surfaces with high fidelity (see Figure 1). In addi-
tion, 3PSDF makes the learning an easy-to-train classifica-
tion task, and is compatible with classic and efficient iso-
surface extraction techniques, e.g. the Marching Cubes al-
gorithm. The key idea of our approach is the introduction of
a direction-less sign, the NULL sign, into the conventional
binary-sided signed distance function. Points with null sign
will be assigned with nan value, preventing the decision
boundary to be formed between them and their neighbors.
Therefore, by properly distributing the null signs over the
space, we are able to cast surfaces with arbitrary topolo-
gies (see Figure 2). Similar to previous works based on
occupancy prediction [6, 26], we train a neural network to
classify continuous points into 3 categories: inside, outside,
and null. The resulting labels can be converted back to the
3PSDF using a simple mapping function to obtain meshing
result.

We evaluate 3PSDF on three different tasks with gradu-
ally increased difficulty: shape reconstruction, point cloud
completion and single-view reconstruction. 3PSDF can
consistently outperform the state-of-the-art methods over
a wide range of benchmarks, including ShapeNet [5],
MGN [4], Maximo [1], and 3D-Front [16], both quantita-
tively and qualitatively. We also conduct comparisons of
field-to-mesh conversion time with NDF and analyze the
impact of different resolutions and sampling strategies on
our approach. Our contributions can be summarized as:

• We present a new learnable 3D representation, 3PSDF,
that can represent highly intricate shapes with both
closed and open surfaces while being compatible with
existing level surface extraction techniques.

• We propose a simple yet effective learning paradigm
for 3PSDF that enables it to handle challenging task
like single-view reconstruction.

• We obtain SOTA results on three applications across a
wide range of benchmarks using 3PSDF.

2. Related Work

Learning with explicit representations. Explicit repre-
sentations of 3D shapes are often well regularized and struc-
tured. Voxel based methods [11, 17, 19] are compatible
with convolutional neural networks for learning; to reduce
the high memory cost, octree-based partitions are adopted
[23, 36, 42]. However, inner parts of objects usually occupy
a large portion of the voxels, leading to compromised 3D
accuracy due to memory limitation. Mesh-based methods
mostly deform a pre-defined mesh to approximate a given
3D shape [14, 18, 28, 41]. One key limitation of such meth-
ods is the difficulty of changing mesh topologies, confining
its 3D representation capability. Point clouds have achieved
much attention recently [32,33,38,44] due to its simplicity.
Although such methods are convenient for shape analysis,
generating 3D shapes with high precision remains difficult.

Implicit function learning. With the development of
deep learning, implicit representation of 3D shapes has
achieved great progress in recent years [6, 8, 15, 24, 27, 35].
A good example is signed distance field (SDF), which cre-
ates a continuous implicit field in 3D space [29, 30] where
outside and inside points are denoted by positive and neg-
ative SDFs. Zero-isosurface, i.e., the object’s surface, can
be efficiently extracted by Marching Cubes [25]. Such rep-
resentation supports infinite resolution and can simplify the
SDF learning as a binary classification process [26]. How-
ever, SDF is only applicable to objects with closed surfaces.

To deal with open surfaces, unsigned distance field
(UDF) [10] and deep unsigned distance embeddings [40]
are proposed. These methods use absolute distance to de-
scribe point position, and the zero-isosurface is extracted
by Ball-Pivoting algorithm [3]. However they have several
major limitations: 1) learning UDF is a regression problem,
harder than that in SDF; 2) ball pivoting [3] is more com-
putational expensive and less stable than Marching Cubes
[25]; 3) gradient vanishes on the surface, resulting in arti-
facts. Venkatesh et al [39] proposed Closest Surface-Point
(CSP) representation to prevent gradient vanishing and im-
prove the speed. Zhao et al. [45] proposed Anchor UDF
to improve reconstruction accuracy. However, the first two
limitations of UDF-type methods still remain.
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Figure 2. 2D illustration of 3PSDF. (a) Conventional signed distance function (SDF) can only represent closed surface. (b) By introducing
the null sign into SDF, 3PSDF can disable specified decision boundaries to cast arbitrary topologies that contain open surfaces. We propose
practical framework for computing 3PSDF based on local cells ((c) and (d)). While 3PSDF may introduce approximation error (the yellow
dash line in (d)) for open surface enclosed within a cell, the approximation error can be significantly reduced with finer space decomposition.
We propose octree-based subdivision approach (e) to improve approximation performance with high computation efficiency.

3. Three-Pole Signed Distance Function
3.1. Definition

A watertight 3D shape can be implicitly represented by
a signed distance function. Given a 3D query point p ∈ R3,
previous works apply deep neural networks to either predict
the occupancy of p as f(p) : R3 7→ [0, 1] [20] or directly
regress SDF as f(p) : R3 7→ R [29, 43]. Our key obser-
vation is that the formation of closed surface is inevitable
as long as both the positive and negative signs exist in the
space (note that we do not consider space clipping where
SDF is only computed in a limited bounding area). To re-
solve this issue, we introduce the third direction-less pole –
the NULL sign into the field such that the “curse” of close-
ness can be lifted: no iso-surfaces can be formed at the bi-
sector of either positive/null or negative/null pairs. There-
fore, the null sign acts as a surface eliminator that cancels
out unwanted surfaces and thus can flexibly cast arbitrary
topologies including those with open surfaces.

Formally, for a 3D point p ∈ R3, we propose that in
addition to a continuous signed distance, it can be also be
mapped to null value: Ψ(p) : R3 7→ {R, nan}. Hence,
given an input surface S, we aim to learn such a mapping
function Ψ so that

argmin
Ψ

||S −M(Ψ(p))||, (1)

whereM is the meshing operator that converts the resulting
field into an explicit surface and || · || returns the surface to
surface distance. Next, we will introduce how to compute
the corresponding 3PSDF for a given shape.

3.2. Field Computation

For non-watertight surface without closed boundaries,
it is not possible to perform in/out test for a query point.
Hence, we leverage the surface normal to determine the sign
of the distance. In particular, we decompose the 3D space

into grid of local cells. As shown in Figure 2, for each cell
Ci, if it does not contain any surface of interest, we set its
enclosed space as null region and any sample point pi that
lies inside Ci has nan distance to the target surface S:

Ψ(pi,S) = nan, if pi ∈ Ci and Ci ∩ S = Ø (2)

For a local cell Ci that encloses a surface patch Si, given
a query point pi ∈ Ci, we find pi’s closest point qi on
Si. We set the surface normal at qi as n(qi). If vector −−→qipi
aligns with n(qi), i.e. n(qi)·−−→qipi ≥ 0, we set pi’s distance
to the input surface S as positive; otherwise, it is negative.
The computation can be summarized as:

Ψ(pi,Si) =

{
d(pi,Si) if n(qi) · −−→qipi ≥ 0,

−d(pi,Si) otherwise,
(3)

where d(p,Si) returns the absolute distance between pi
and Si. With finer decomposition of 3D space, cells con-
taining geometry would only distribute around the surface
of interest while the null cells would occupy the majority of
the space. This differs a lot from the conventional signed
distance field, where the entirety of the space is filled with
distances of either positive or negative sign. Our proposed
3PSDF better reflects the nature of 3D surface of any topol-
ogy – the high sparsity of surface occupancy.

Surface approximation ability. If an enclosed surface
subdivides its hosting cell into several closed sub-regions,
our implicit representation can faithfully approximate the
original shape without loss of accuracy (Figure 2(c)). If a
local cell contains protruding open surface(s), our approach
is prone to generate elongated surface patch (Figure 2(d)).
However, such approximation error only happen locally and
is limited to the size of the local cell. Hence, with a denser
3D decomposition, we can significantly reduce the approx-
imation error. We provide additional experiments in Sec-

3



tion 4.5 showing different reconstruction performance with
respect to varying sampling resolutions.

3.3. Learning Framework

Though the introduction of the null sign provides the
flexibility of eliminating unwanted surface, the nan value
prohibits computing meaningful gradient required for up-
dating a deep neural network. To resolve this issue, a
straightforward way is to combine binary classification (nan
v.s. non-nan) and regression, where the former gener-
ates a mask of the valid narrow band around the surface
and the later regresses the surface within this narrow band.
While we experimentally validate that it is possible to learn
3PSDF via this approach, additional challenges would arise
in aligning the narrow-band mask from binary classification
and the regressed decision boundary from the regression
branch. A misalignment of the two branches’ results would
lead to discontinuity in the final reconstruction. Hence, we
propose an alternative learning framework that formulates
the learning of 3PSDF as a 3-way classification problem as
elaborated below. While we provide the method and results
of the 3-way classification framework in the main paper,
we provide detailed comparisons between the two learning
methods in the supplemental materials.

Similar to the previous works on occupancy predic-
tion [6,26], the 3-way classification method proposes to ap-
proximate the target function (Equation 2 and 3) with a neu-
ral network that infers per-point label: {in, out, null}. We
represent the label semantics using discrete numbers with-
out loss of generality. Formally, we aim to learn a mapping
function o : R3 7→ {0, 1, 2}, where the labels {0, 1, 2} rep-
resent inside, outside, and null respectively.

When applying such a network for downstream tasks
(e.g. 3D reconstruction) based on observation of the object
(e.g. point cloud, image, etc.), the network must be condi-
tioned on the input. Therefore, in addition to the coordinate
of points p ∈ R3, the network also consumes the observa-
tion of object x ∈ X as input. Specifically, such a mapping
function can be parameterized by a neural network Φθ that
takes a pair (p,x) as input and outputs its 3-class label:

Φθ(p,x) : R3 ×X 7→ {0, 1, 2}. (4)

Training. To learn the parameters θ of the neural network
Φθ(p,x), we train the network using batches of point sam-
ples. For the i-th sample in a training batch, we sample N
points pij ∈ R3, j = 1, . . . , N . The mini-batch loss LB is:

LB =
1

|B|N

|B|∑
i=1

N∑
j=1

L(Φθ(pij , xi), yij), (5)

where L(·, ·) computes the cross-entropy loss, xi is the i-th
observation of batch B, yij denotes the ground-truth label
for point pij .

Octree-based subdivision. Since the computation of
3PSDF is done locally, to ensure a high reconstruction accu-
racy, it would be preferable not to include too many intricate
geometric details and open surfaces in one cell. We propose
an octree-based subdivision [37, 42] method as shown in
Figure 2(e). We only subdivide a local cell if it intersects
with the input shape. As the subdivision depth increases,
the complexity of surface patch contained by each local cell
decreases, leading to better approximation accuracy. In ad-
dition, since regions containing no shapes will not be fur-
ther divided, we are able to accomplish a balanced trade-off
between the computational complexity and reconstruction
accuracy. In all of our experiments, we use the octree-based
subdivision for ground truth computation unless otherwise
stated. Our experiments in Section 4.5 validate the benefits
of performance from octree-based sampling.

3.4. Surface Extraction

Once the network is learned, we are able to label each
query point with our predictions. To extract the iso-surface,
we first convert the inferred discrete labels back to the orig-
inal 3PSDF representation. Points with labels 0, 1, and
2 are assigned with sdf values as -1, 1, and nan, respec-
tively. The reconstructed surface can then be extracted as
zero-level surface. Note that the iso-surface represented by
3PSDF can be directly extracted using the classic Marching
Cubes (MC) algorithm. The existence of null value would
naturally prevent MC from extracting valid iso-surfaces at
locations that contain no shapes. In the meantime, in the
vicinity of target surface, the iso-surface extraction can be
performed normally just as the conventional signed distance
field. After MC computation, we only need to remove all
the nan vertices and faces generated by the null cubes. The
remaining vertices and faces serve as the meshing result.

4. Experiments
4.1. Experimental Setup

Tasks and datasets. We validate the proposed 3PSDF us-
ing three types of experiments. First, we analyze the rep-
resentation power of 3PSDF by examining how the 3PSDF
can reconstruct complex 3D shapes from a learned latent
embedding. This gives us an upper bound on the results we
can achieve when conditioned on other inputs. Second, we
condition the learning of 3PSDF on sparse point cloud and
test its performance by feeding 3D features. Finally, we use
image features as input and provide validation on the chal-
lenging task of singe-view reconstruction. All experiments
are compared with the SOTA methods for better verifica-
tion. The experiments are conducted on a wide range of 3D
datasets including ShapeNet [5], MGN [4], 3D-Front [16],
and Maximo [1]. The specific settings are detailed in the
following experiments.
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NDF [10] DeepSDF [29] Ours GT
Figure 3. Visual comparisons of shape reconstruction result using different neural implicit representations.

Metric Method ShapeNet MGN Mixamocar plane boat lamp chair

CD (×10−5) ↓
NDF 0.63 0.25 0.33 0.34 0.45 0.08 0.52

DeepSDF 2.71 0.58 0.61 1.99 0.91 0.09 1.82
Ours 0.44 0.21 0.24 0.30 0.35 0.07 0.32

EMD (×102) ↓
NDF 2.39 2.46 2.11 2.05 1.47 0.33 2.81

DeepSDF 4.23 2.56 2.29 2.78 1.66 0.62 4.56
Ours 2.10 2.23 2.04 1.92 1.38 0.21 2.55

Table 1. Quantitative comparisons of shape reconstruction using different neural implicit representations.

Implementation details. For the task of reconstruction
from point cloud, we use the same point encoder (IF-Net)
and hyper-parameters with NDF [10]. For single-view re-
construction, we use VGG16 [34] with batch normalization
as the image encoder. Similar to DISN [43], we use both
multi-scale local and global features to predict the 3PSDF
value. We re-orient the normals of the ground-truth surfaces
based on visibility [13] to make them consistent. We re-
fine the results by filling small holes and smoothing the sur-
faces. The ground-truth 3PSDF values are generated with
resolution 1283 and the results are evaluated using resolu-
tion 2563. We use octree-based importance sampling for
all experiments. To ease the learning of 3PSDF, we ensure
the size of the minimum leaf octree cell to be consistent
across different objects by using a unified bounding box for
all samples.

4.2. Shape Reconstruction

To evaluate the capability of 3PSDF of modeling com-
plex geometry, we perform the shape reconstruction experi-
ment comparing with other SOTA neural implicit represen-
tations: DeepSDF [29] and NDF [10]. Similar to the auto-
encoding method in [29], we embed each training sample
with a 512 dimensional latent code and train neural net-
works to reconstruct the 3D shape from the embedding.
We perform evaluations on five representative categories of

ShapeNet that contain the most intricate geometry, and two
datasets with open surfaces: MGN [4] and Mixamo [1].

Since we are only interested in reconstructing the train-
ing data, we do not use validation and test set for this ex-
periment. As DeepSDF cannot handle open surfaces, we
generate its ground-truth SDF value using [21] which con-
verts complex open surfaces into closed ones using winding
number. For training and evaluation, we use 10 as the depth
for octree-based sampling for our method and the equivalent
resolution of 1024 for DeepSDF. To ensure similar density
of sampling, we generate 1 million surface points for the
NDF. All the NDF results (including the following exper-
iments) are generated using the post-processing scripts re-
leased by the authors to ensure fair comparison. We show
the visual comparisons in Figure 1 and 3 and the quanti-
tative comparisons in Table 1. While DeepSDF is able to
reconstruct fine details, it cannot handle open surfaces like
hair, clothing, and the windshield. NDF can deal with all
topologies, but suffers from meshing problems – lots of self-
intersections and flipped faces are introduced. Our method
can faithfully reconstruct all the intricate geometries while
achieving the best performance in quantitative comparisons.

4.3. Reconstruction from Point Cloud

We further validate 3PSDF on the task of shape recon-
struction from sparse point clouds. Following NDF [10],
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Input OccNet [26] IF-Net [9] NDF [10] Ours GT

Figure 4. Comparisons of point cloud completion trained on watertight shapes (with inner structure removed).

Input SAL [2] NDF [10] Ours GT

Figure 5. Comparisons of point cloud completion trained on non-watertight shapes (with inner structure and open surface). The first row
shows the inner structure of the reconstructed results in the second row.

Chamfer-L2

3K 300
DMC 1.255 2.417
OccNet 0.938 1.009
IF-Net 0.326 1.147
NDF 0.127 0.626
Ours 0.112 0.595

Chamfer-L2

10K 3K
SAL 6.39 7.39
NDF 0.074 0.275
Ours 0.071 0.258

Table 2. Left: results of point cloud completion for closed water-
tight cars from 3000 and 300 points. Right: results of point cloud
completion for unprocessed cars from 10000 and 3000 points.
Chamfer distance is reported in ×10−4.

we first evaluate 3PSDF on reconstructing closed surfaces,
and then demonstrate that 3PSDF can represent complex
surfaces with inner structures and open surfaces.

Reconstruction of closed shapes. To compare with the
SOTA methods: OccNet [26], IF-Net [9], and DMC [22],
we train on the ShapeNet car category pre-processed by [43]
with all open surfaces closed and inner structures removed.
We show the reconstruction results using 300 and 3000
points as input both qualitatively and quantitatively in Fig-
ure 4 and Table 2 respectively. Compared to the other meth-
ods, our approach can better reconstruct the sharp geome-
try details while outperforming all baselines in quantitative
measurement.

Reconstruction of complex surfaces. To validate the
ability of 3PSDF of handling raw, unprocessed data, we
train 3PSDF to reconstruct complex shapes from sparse
point clouds on three datasets: unprocessed cars from
ShapeNet [5], garments with open surfaces from MGN [4],
and the living room scenes from 3D-Front [16]. We use
NDF [10] and SAL [2] as the baselines for reconstructing
unprocessed cars. Since SAL is built upon traditional SDF,
we use the closed shapes as ground truth. We provide vi-
sual comparisons of the reconstructed results in Figure 5
and 6. SAL struggles to model the open surfaces, e.g. the
windshield and the thin outer structure of car. NDF can gen-
erate dense point clouds close to the target surface. How-
ever, the output points are prone to be clustered (as shown
in the closeups of Figure 6) which prevent the BP algorithm
from generating high-quality meshing results. In contrast,
3PSDF is able to faithfully reconstruct the interior struc-
tures as well as the open surfaces. The quantitative compar-
isons in Table 2 and Figure 6 also validates our advantage
over the baselines.

4.4. Single-view 3D Reconstruction

In this experiment, we apply 3PSDF to single-view 3D
reconstruction (SVR) tasks to further demonstrate its rep-
resentational ability. We evaluate on the MGN dataset [4]
and ShapeNet [5]. We use Chamfer-L2 distance and F-score
(τ = 1% volume diagonal length) as the evaluation metrics.

We compare against the representative SVR methods us-
ing implicit fields, including IMNet [7], OccNet [26] and
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Input NDF [10] Ours GT
Figure 6. Comparisons of point cloud completion performance on MGN and 3D-Front. Chamfer-L2 (×10−4) comparison: MGN: NDF -
0.035; ours - 0.033; 3D-Front: NDF - 1.452; ours - 1.378.

Input OccNet DISN Ours GT
Figure 7. Qualitative comparison on MGN dataset with state-of-
the-art single-view reconstruction methods based on implicit func-
tions. The quantitative evaluation results in terms of CD (×10−3)
and F-score (×10−2 ) metrics on the testing set of MGN are: 1.03
and 69.8 (DISN); 1.01 and 71.0 (OccNet); 0.98 and 71.2 (Ours).

DISN [43]. We further implement an image-based NDF
[10] estimator but find reasonable results cannot be gener-
ated by solely using image features. Since the models in
these two datasets usually contain non-watertight surfaces
which cannot be directly handled by the baseline methods,
we first convert these models to watertight ones. Note that
our representation is directly trained on the original shapes
without this extremely time-consuming process.

Single-view reconstruction on MGN. The models in the
MGN dataset [4] are represented as open freeform sur-
faces with single sheets, which is challenging to the exist-
ing single-view reconstruction methods with implicit func-
tions. We render an RGB image using the textured mesh for
each garment model, and train a network conditioned on im-
ages to predict the shape representations. As shown in Fig-
ure 7, our results capture the original open-surface structure
as well as more high frequency geometric features such as
the wrinkles. The 3PSDF representation also achieves the
best quantitative results on the testing set.

Single-view reconstruction on ShapeNet. We use a sub-
set of ShapeNet [5] for evaluation, from which we choose
5 categories (airplane, car, lamp, chair, boat) resulting in

Input IMNet OccNet DISN Ours GT
Figure 8. Qualitative comparison results with SOTA single-view
reconstruction methods based on implicit functions.

17803 shapes. We use the same image renderings (24 views
per shape) and train/test split as Choy et al. [12]. Figure 8
shows a set of qualitative comparisons. Despite being de-
signed for handling open surfaces, 3PSDF is still a versatile
representation for reconstructing various 3D shapes in the
ShapeNet with either closed or open surfaces. We not only
faithfully preserve the original structure of the target shape,
but also captures more detailed geometries. Instead, the ex-
isting implicit functions always rely on watertight shapes,
which substantially limits their representational ability and
usually leads to over-smoothed geometries, lack of details,
as well as inconsistent typologies. As shown in Table 3,
3PSDF achieves state-of-the-art performance compared to
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Method ShapeNet
car plane boat lamp chair

CD ↓
IMNet 3.48 5.07 4.17 9.51 1.81
OccNet 1.74 1.74 3.48 14.55 2.22
DISN 1.23 1.71 4.84 6.11 1.54
Ours 0.76 1.66 3.27 7.67 3.29

FS ↑
IMNet 31.8 33.7 39.8 34.3 61.1
OccNet 54.4 59.7 44.9 50.6 59.6
DISN 65.8 77.2 57.8 50.4 63.8
Ours 77.0 72.8 66.6 49.3 58.5

Table 3. Quantitative comparisons of single-view reconstruction.
Chamfer-L2 and F-score are reported in ×10−3 and ×10−2 re-
spectively.

the existing methods, where it has 5 metrics ranking the first
and comparable results for the remaining metrics.

4.5. Further Discussions

Reconstruction accuracy/appearance with different res-
olutions. Since 3PSDF is continuously defined in the 3D
space, it can represent a shape using arbitrary resolution.
Figure 9 gives a coarse-to-fine shape approximation results,
where we discretize the volumetric space and use different
grid resolutions to represent a 3D shape. The experimental
results show that the approximation quality of 3PSDF in-
creases as the resolution grows, leading to smoother shape
boundaries and higher reconstruction accuracies.

643 1283 2563 5123

Figure 9. Reconstruction results of a shape using different reso-
lutions. From the left to right, the CD (×10−5) values for these
shapes are: 14.49, 2.52, 2.21 and 2.12; the EMD (×102) values
are: 3.42, 0.336, 0.267 and 0.227 .

Timing cost for field-to-mesh conversion. We quantita-
tively evaluate the timing cost for field-to-mesh conversion
in different output sampling densities. For the octree depth
of 6 (643), 7 (1283), 8 (2563) and 9 (5123), the average
field-to-mesh conversion times of 3PSDF for a single shape
are 0.006s, 0.11s, 0.54s, and 3.72s respectively. In contrast,
the conversion times for NDF [10] given the comparable
number of sampling points are: 2.1s, 15mins, 3hrs, 34hrs,
using the provided post-processing setting (radius=0.005)
by NDF. The experiments are conducted on a machine with
a 48-Core AMD EPYC CPU and 64GB memory.

Different sampling strategies. We further study the im-
pact of different sampling strategies on the performance of

Random Uniform Octree
CD (×10−4) ↓ 7.43 2.16 1.08
EMD (×103) ↓ 3.28 1.55 1.12

Table 4. Reconstruction accuracy using different sampling strate-
gies.

3PSDF; we evaluate on the task of shape reconstruction
from point cloud on the unprocessed car data. Three strate-
gies are used to generate sampling points: 1) randomly draw
samples in the space; 2) uniform sampling which generates
adjacent points in equal distance; 3) octree-based sampling
that uses the corner points of leaf octree cells as training
samples. We use around 18 million sampling points for
all strategies. Table 4 shows that the octree-based sam-
pling yields the best result. Compared to the other methods,
octree-based sampling is able to densely sample points with
inside/outside labels, generating a more balanced training
set containing all the 3 labels. We use octree-based sam-
pling for all of our experiments unless otherwise stated.
Limitation. 3PSDF has difficulty in reconstructing multi-
layer surfaces that are very close to each other, especially
when the resolution is low. This is because 3PSDF requires
denser sampling rate compared to SDF in order to insert a
null layer in between to prevent artifact surface. Besides,
given the enhanced representational ability of 3PSDF, it re-
quires more informative features to learn and longer time to
train; for example, the network converges much faster and
achieves better geometry given point clouds as input, com-
pared to single images.

5. Conclusions and Discussions
We introduce 3PSDF, a learnable implicit distance func-

tion to represent 3D shapes with arbitrary topologies. Dif-
ferent from the widely used implicit representations like
SDF that can only encode watertight shapes, 3PSDF can
faithfully represent various shapes with both open and close
surfaces. The key insight of the 3PSDF is the introduction
of the NULL sign to additionally indicate the inexistence of
surface. We further formulate a classification-based learn-
ing paradigm to effectively learn this representation. As a
result, the representational power of the distance function is
significantly enhanced. Extensive evaluations demonstrate
that 3PSDF is a versatile implicit representation that accom-
modates various 3D reconstruction tasks.
Future work. We have shown in the supplemental that
3PSDF can be learned via an alternative method that com-
bines binary classification and regression. Compared to 3-
way classification, such a method has the potential to gener-
ate smoother surface with fewer sampling points at training
time. However, it is not as robust as the 3-way counterpart
as it requires the results of the two branches align well in or-
der to prevent holes and artifacts. It would be an interesting
future avenue to investigate how to resolve this issue.
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In this supplemental material, we discuss an alternative
framework of learning 3PSDF (Section A), use 3PSDF to
model functions or manifolds (Section B), provide addi-
tional implementation details (Section C), network structure
for each experiment (Section D), comparison between our
proposed 3PSDF and TSDF (Section E), and more results
(Section F).

A. Alternative Learning Framework
In addition to 3-way classification, 3PSDF can be

learned using an alternative framework that combines bi-
nary classification and regression. Specifically, the binary
classification branch learns to classify the space into nan
and non-nan regions, where the non-nan region forms a
valid narrow band for extracting surface as demonstrated
in Figure 2(b) as shown in the main paper. The regression
branch strives to regress a continuous SDF in the narrow-
band region as generated by the classification branch. For-
mally, we formulate this alternative framework as follows:

ΦC(p,x) : R3 ×X 7→ [0, 1], (6)

ΨR(p,x) = SDF (p). (7)

In particular, the classification branch ΦC consumes a
3D query point p and its corresponding observation x and
predicts the probability of the query point locating in the
non-nan region; the regression branch ΦR directly infers
the signed distance of p as defined in Equation (3) in the
main paper.

3-way classification binary cls + regression

Figure 10. Comparisons of two ways of learning 3PSDF.
Quantitative comparisons of shape reconstruction, Mixamo:
0.32:0.31(CD); 0.944:0.950(F-score); MGN: 0.07:0.07(CD);
0.991:0.993(F-score). Note all numbers are reported in format of
(3-way cls. : bin. cls.+reg.).

Surface extraction. The framework based on binary clas-
sification and regression requires training of two branches,
which can be implemented either using two heads of a back-
bone network or two independent networks. Once the net-
works are trained, the sampling points that are classified as
nan points by the classification branch are assigned with nan
value. The rest points are assigned with continuous SDF

distance using the predictions of the regression branch. The
resulting 3PSDF field can be directly converted into mesh
using the Marching Cubes (MC) algorithm with the iso-
value set to 0. Same as 3-way classification, after MC com-
putation, we only need to remove all the nan vertices and
faces generated by the null cubes. The remaining vertices
and faces serve as the meshing result.

A.1. Comparisons with 3-way Classification

We provide in-depth comparisons between the two can-
didate learning frameworks: binary classification + regres-
sion (BR) v.s. 3-way classification (3C) in this section.
Specifically, we evaluate both methods in the task of shape
reconstruction and point cloud completion.

Shape reconstruction. We use the same experiment set-
tings with that of the main paper for evaluating the two
candidate frameworks. Both methods are validated us-
ing two datasets that contain non-watertight open surfaces:
MGN [4] and Mixamo [1].

We show both the qualitative and quantitative compar-
isons in Figure 10. While the two methods are trained using
the same data, the BR framework can generate smoother re-
construction compared to that of 3C method, thanks to its
continuous SDF output. This is also reflected in the quanti-
tative measurements, where BR can achieve comparable or
even better results.

Chamfer-L2

3K 300
BR 0.312 1.025
3C 0.112 0.595

Chamfer-L2

10K 3K
BR 0.095 0.314
3C 0.071 0.258

Table 5. Left: results of point cloud completion for closed water-
tight cars from 3000 and 300 points. Right: results of point cloud
completion for unprocessed cars from 10000 and 3000 points.
Chamfer distance is reported in ×10−4.

Reconstruction from point cloud. We also validate the
performance of both candidate frameworks in the task of
surface reconstruction from sparse point cloud. Specifi-
cally, we evaluate their performance on reconstructing both
closed and open surface with the same setting as that of
the main paper. We show in Figure 11 that in the BR
framework, though both the classification and regression
branches can generate reasonable reconstructions, the fi-
nal merged results still exhibit incompleteness. We fur-
ther demonstrate the cause of incomplete reconstructions in
the overlaid visualization of the two branches (Figure 12).
Since the results of the two branches are not perfectly
aligned due to the different natures of their tasks, the clas-
sification branch would mistakenly remove part of the re-
gressed surfaces generated by the regression branch. This
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Input Bin. cls.+Reg. Bin. cls. Regression 3-way cls. GT

Figure 11. Comparisons of point cloud completion trained on watertight shapes by using two candidate learning frameworks of 3PSDF:
binary classification (bin. cls.)+regression (reg.) and 3-way classification (cls.). For the results of BR, we also show the results generated
from the two branches.

Figure 12. We overlay the reconstruction results of the classifica-
tion and regression branches under the BR framework as shown
in Figure 11. The classification results are highlighted in orange
while the regression results are marked with blue. The misalign-
ment of the two branches’ results leads to the incomplete recon-
struction in Figure 11.

could render holes and discontinuity in the results of the
BR method. In comparisons, the 3C method does not suffer
from such a problem as it only requires a single branch to
generate the final reconstruction. This is also reflected in
the quantitative measurements in Table 5.

Discussion. We have evaluated the performance of both
candidate frameworks in two different tasks. In the ap-
plications where the binary classification and regression
branches are well aligned, e.g. the shape reconstruction
task, the BR method can lead to higher-quality results with
smoother surface compared to the 3C approach. However,
for more challenging scenarios, e.g. point cloud comple-
tion, where the two branches of BR framework may pro-
duce slightly deviated reconstructions, the final reconstruc-
tion may be incomplete despite that the two branches have
obtained faithful reconstructions. In contrast, the 3C frame-
work is robust over all kinds of task without the need of
worrying about the misalignment issue. It would be an
interesting future avenue to investigate how to resolve the
misalignment problem of the BR method while enjoying its
smooth nature.

B. Modeling Functions and Manifolds using
3PSDF

Following NDF, we train 3PSDF on 1 million points
sampled from 1000 functions, which are either linear,
parabola or sinusoids. Figure 13 shows the fitting results
of 3PSDF to a variety of functions and manifolds. In
Figure 13, red dots are points labeled as “inside” while
cyan ones as “outside”. “Nan” points are omitted for clear
demonstration. As shown in the results, 3PSDF can faith-
fully model various functions and manifolds, which further
validate that it is a versatile representation.

Figure 13. Function and manifold fitting using 3PSDF.

C. More Implementation Details
C.1. Reconstruction from Sparse Point Cloud

We use octree-based sampling to generate the ground-
truth data for our approach. The sampling points are the
corner points of the leaf cells generated by octree decom-
position. In particular, we use depth of 6 for generating
training data on pre-processed ShapeNet car category. For
raw, unprocessed ShapeNet car, MGN, and 3D-Front, we
use depth of 8, 7, and 9 respectively for training data gen-
eration. We train separate models for different numbers of
input points. All models are trained using the same set of
hyperparameters. For all experiments, we use the Adam op-
timizer with parameters lr = 1e−4, betas = (0.9, 0.999),
eps = 1e−8, weight decay = 0.

For MGN dataset, we split the data into train and test set
with 9:1 ratio. For 3D-Front dataset, we extract 100 living
rooms, 10 of which is used for testing and the rest is used
for training. For NDF, we generate 1 million points for all
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experiments except the scene reconstruction task where we
generate a more dense point containing 3 million points.
The meshing results of NDF are obtained by running the
script (including Ball Pivoting algorithm (BPA) and post-
processing operations) provided by the authors in Mesh-
Lab. All the results are reported using the test data. For
the ShapeNet car dataset, we use the common train and test
split by [43].

C.2. Single-view Reconstruction on MGN

We evaluate and compare the representation capability
of 3PSDF, DISN [43] and OccNet [26] on MGN dataset [4]
for single-view 3D reconstruction. Each garment model in
MGN dataset is rendered into an 256×256 RGB image from
a front-view textured mesh. All the meshes and images are
aligned with the same camera settings and normalized.

For 3PSDF, open surface models in MGN dataset are di-
rectly sampled with Octree-based subdivision at a resolu-
tion of 1283, resulting in a mean sampling points of 300k
across all models. The training batch size is set to 8 and
the number of sampling points is 10k per sample. We use
Adam optimizer with initial learning rate of 3e-4 and ex-
ponentially decayed to 0.99 at every 10k steps. For DISN
and OccNet, models in MGN dataset are first converted to
watertight form and then sampled with the default strategies
used in the original papers. Each watertight model is sam-
pled with 300k points, equivalent to that in 3PSDF. All the
other training hyperparameters are set to default values.

MGN dataset is split into training and testing datasets
with 9:1 ratio, and all 3 networks are evaluated at 20k
epoches.

C.3. Single-view Reconstruction on ShapeNet

We use 17803 shapes from 5 categories of ShapeNet [5]
for evaluation, including Airplane, Car, Lamp, Chair and
Boat. We use the same image renderings (24 views per
shape) and train/test split as Choy et al. [12].

We directly use the raw mesh of ShapeNet to gener-
ate the ground truth to train 3PSDF, while the competitive
methods are trained using pre-processed watertight meshes.
The ground truth 3PSDF values are sampled with resolution
1283 and the results are evaluated using resolution 2563.
The images are all scaled to the resolution of 224× 224. We
first train the network for 30 epochs with learning rate 1e-4,
and then finetune the network for 80 epochs using learn-
ing rate 5e-5. The batch size is set to 8 and the number of
sampled points is 20k for one shape in each iteration during
training. The reconstruction results are post-processed with
simple hole filling and smoothing.

D. Network Structure

D.1. Network Architecture for Shape Reconstruc-
tion

Figure 14 shows the detailed network structure for the
experiment of shape reconstruction. In particular, the net-
work follows the design of the auto-decoder [29] which
does not requires an encoder for learning the shape priors
of training data. The input to the decoder contains: 1) a
512-dimensional per-object latent code, that is learned dur-
ing training, and 2) a point feature obtained after applying
point feature extractor to the 3D coordinate of the query
point.

2048

4096

2096
1024 512 256 128

FC

3

512

(x,y,z) 64 256

1D Conv

Figure 14. Network structure for shape reconstruction.

The point feature extractor is implemented using 1D con-
volutional operator. The concatenation of the latent code
and the point feature is then fed into the decoder which con-
sists of multiple fully connected layers. The output layer of
the decoder predicts the per-class probability for the 3 cate-
gories defined by 3PSDF.

D.2. Network Architecture for Reconstruction from
Point Cloud

IF-Net
(x,y,z)

Multi-scale 
features

1024

1D Conv

512 512
3

Figure 15. Network structure for reconstruction from point cloud.

We show the detailed network structure for reconstruc-
tion from point cloud in Figure 15. To ensure fair compari-
son, we use the identical network with NDF [10], which is
based on IF-Net [9], for extracting the features from the in-
put point cloud. The extracted multi-scale point features are
then fed into the decoder. The decoder is implemented us-
ing four 1D convolution layers, where the last layer predicts
the per-class probability for 3PSDF.
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Figure 16. Comparison between TSDF and the proposed 3PSDF.
For reconstructing two adjacent single layers of mesh, TSDF
would introduce artifacts (the red layer show on the right of first
row) to the reconstruction result.

D.3. Network Architecture for SVR

Figure 17 shows the detailed network architecture for 3D
reconstruction based on single-view images. The network
takes a set of sampled 3D points and a single view image
as input. We use several 1D convolution layers to obtain
the point features and a VGG-16 (with batch normalization)
architecture to encode the input image. We adopt a two-
stream network architecture, where the point features are
concatenated with global and local image features respec-
tively, and then fed into two branches to predict the 3PSDF.

The global image features are obtained from an average
pooling and a fully connected layer at the end of the image
encoder. For the local features, we project the input 3D
points to the image plane and retrieve the features on each
feature map using the projected coordinates. The retrieved
features on each feature map are concatenated together to
obtain a local image feature vector.

The decoder has two streams with the same structure,
each of which consists of a set of fully connected layers to
predict the 3PSDF separately. The outputs from the two
branches are summed up and passed through a Softmax
layer to obtain the final prediction.

E. Comparison with TSDF
Truncated Signed Distance Field (TSDF) is widely used

in obtaining reconstruction results from the volumetric
range data, e.g. the RGBD stream from depth sensors. One
mainstream application of TSDF is large-scale tracking and
mapping in reconstructing 3D scenes. As one may have
seen open surfaces, e.g. the walls in the reconstructed 3D
environment, can be reconstructed using TSDF, we provide
detailed comparisons here stating the difference between
TSDF and 3PSDF regarding the ability of modeling sur-
faces with arbitrary topologies.

The motivation of introducing TSDF is to set a lower
bound of reconstruction error during the fusion of differ-
ent SDFs converted from the depth maps. In particular, in
real-world scanning, the raw data obtained from the depth
sensor is highly likely to be contaminated by the noises. In
practice, the depth maps are converted into SDFs in order to
fuse the per-frame observation into a more complete recon-
struction in the canonical space. However, the most widely
adopted way of fusing the SDFs is based on weighted sum-
mation, where the errors brought by each SDF would be ac-
cumulated and affecting the previously fused results. TSDF
alleviates this issue by clipping the minimum and maximum
signed distance value and hence prevents the summed TS-
DFs from deviating too much from the ground-truth value.

After analyzing the motivation of TSDF, we can better
understand the difference between TSDF and our proposed
3PSDF. (1) Unlike 3PSDF, TSDF remains a binary-sided
signed distance function which only has positive and nega-
tive signs. This could render TSDF failed to represent open
surfaces without introducing artifacts in many cases. As
shown in Figure 16 upper row, for two adjacent surfaces
with consistent normals, the positive and negative signs
would intersect with each other in the middle region where
the SDFs are truncated to maximum and minimum respec-
tively. This leads to an additional surface/artifact (the red
boundary on the right) if meshing such a field using the
Marching Cubes algorithm. In contrast, 3PSDF can achieve
artifact-free reconstruction by inserting a NULL layer in be-
tween to prevent the formation of the additional decision
boundary. (2) The way that TSDF models open surfaces
is completely different from that of 3PSDF. In particular,
TSDF generates open surfaces by space clipping, where
only the field within a bounded volume is converted into
mesh. In comparison, 3PSDF is able to model open surfaces
by directly meshing the entire 3D space without requiring a
clipping bounding volume.

F. More Results
Reconstruction of closed surfaces from sparse point
cloud. We provide more qualitative comparison results
with the state-of-the-art approaches on the task of shape
reconstruction from sparse point cloud. In Figure 18, we
show the reconstruction result using the models trained on
preprocessed ShapeNet car data (watertight mesh with inner
structure removed) provided by [43].

Reconstruction of complex surfaces from sparse point
cloud. In Figure 19 we provide more qualitative compar-
isons of shape reconstruction results of complex surfaces
that contain both closed and open surfaces. All the can-
didate approaches, including ours, are trained on on raw,
unprocessed ShapeNet car data, which contain inner struc-
tures and open surfaces. As seen in the highlighted regions
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Figure 17. Detailed network architecture for single view reconstruction.

within the red rectangles, our approach is able to generate
shapes with consistent normals even when the ground truth
data may contain flipped face patches.

Reconstruction of 3D scenes from sparse point cloud.
In Figure 20, we show more visual comparisons of scene
reconstruction results. The input point cloud (for both main
paper and supplementary material) contains 50K points.
Note that we are not able to generate plausible meshing re-
sult for NDF even after experimenting with various parame-
ters of BPA algorithm. Hence we show the raw output point
cloud of NDF in the closeup figure.

Single-view reconstruction. We include more qualita-
tive comparison results on the test set of ShapeNet in Fig-
ure 21.
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Input OccNet [26] IF-Net [9] NDF [10] Ours GT

Figure 18. More shape reconstruction results trained on watertight data. We show four groups of results: the first two rows are reconstructed
from 3000 points while the last two rows are generated given 300 points.

Input SAL [2] NDF [10] Ours GT

Figure 19. More shape reconstruction results trained on unprocessed, raw data. For each group of results, we show the input (10K points)
on the left and two rows of corresponding results on the right. For the second group of result, we show the inner structure of reconstruction
on top of an external view. The highlighted regions within the red rectangles show that our method can generat reconstruction results with
consistent normals even when the ground-truth data contain flipped triangles.
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Input NDF [10] Ours GT

Figure 20. Scene reconstruction results from sparse point cloud. For each method, we show both the closeups (first row) and the global
view (second row). NDF results contain 3 million points. Note that since we are not able to generate plausible meshing results for NDF
even after experimenting with various BPA parameters, we show the output raw point cloud in the closeup of NDF. The other results are
displayed in mesh form.

Input IMNet OccNet DISN Ours GT Input IMNet OccNet DISN Ours GT
Figure 21. More qualitative comparison results with SOTA single-view reconstruction methods based on implicit functions.
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