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Abstract

Human-Object Interaction (HOI) detection is the task
of identifying a set of 〈human, object, interaction〉 triplets
from an image. Recent work proposed transformer encoder-
decoder architectures that successfully eliminated the need
for many hand-designed components in HOI detection
through end-to-end training. However, they are limited to
single-scale feature resolution, providing suboptimal per-
formance in scenes containing humans, objects, and their
interactions with vastly different scales and distances. To
tackle this problem, we propose a Multi-Scale TRansformer
(MSTR) for HOI detection powered by two novel HOI-
aware deformable attention modules called Dual-Entity at-
tention and Entity-conditioned Context attention. While ex-
isting deformable attention comes at a huge cost in HOI
detection performance, our proposed attention modules of
MSTR learn to effectively attend to sampling points that
are essential to identify interactions. In experiments, we
achieve the new state-of-the-art performance on two HOI
detection benchmarks.

1. Introduction
Human-Object Interaction (HOI) detection is a task to

predict a set of 〈human, object, interaction〉 triplets in an
image [9]. Previous methods have indirectly addressed
this task by detecting human and object instances and in-
dividually inferring interaction labels for every pair of the
detected instances with either neural networks (i.e., two-
stage HOI detectors [1, 6–8, 10, 17, 19, 20, 22–25, 27, 29–
31, 34, 35, 37]) or triplet matching (i.e., one-stage HOI de-
tectors [13, 21, 32]). The additional complexity caused by
this indirect inference structure and post-processing (e.g.,

*this work was done in Kakao Brain

Figure 1. Multi-scale attention of MSTR on interactions including:
(a) large human with small object, (b) distant human and object,
and (c) small human and a large object. The top row (high resolu-
tion) and the bottom row (low resolution) captures the context of
the interaction in various scales. Best viewed in color.

NMS) stage behaved as a major bottleneck in inference time
in HOI detection. To deal with this bottleneck, transformer-
based HOI detectors [4, 14, 26, 39] have been proposed to
achieve end-to-end HOI detection without the need for the
post-processing stage mentioned above. These works have
shown competitive performance in both accuracy and infer-
ence time with direct set-level prediction and transformer
attentions that can exploit the contextual information be-
tween humans, objects, and their interactions.

However, due to the huge computational costs raised
when processing multi-scale feature maps (with about 20×
more image tokens) with transformer attention, current
transformer-based HOI detectors are limited to using only
single-scale feature maps. Due to this limitation, previous
transformer-based approaches demonstrate suboptimal per-

1

ar
X

iv
:2

20
3.

14
70

9v
1 

 [
cs

.C
V

] 
 2

8 
M

ar
 2

02
2



formance, especially for scenes where humans, objects, and
the contextual information for their interactions exist at var-
ious scales.

In this paper, we propose Multi-Scale TRasnformer
(MSTR), a transformer-based HOI detector that can exploit
multi-scale feature maps for HOI detection. Inspired by pre-
viously proposed deformable attention for standard object
detection [38], we aim to efficiently explore multi-scale fea-
ture maps by attending to only a small number of sampling
points generated from the query element instead of calcu-
lating the attention values for the entire spatial dimension.
Yet, we found out in our preliminary experiments that di-
rectly applying naı̈ve deformable attention in HOI detection
leads to a serious performance drop.

To overcome this deterioration, we equipped MSTR with
two novel HOI-aware deformable attentions, referred by
Dual-Entity Attention and Entity-conditioned Context At-
tention, which are designed to capture the complicated
semantics of Human-Object Interaction throughout multi-
resolution feature maps (see Figure 1). Specifically, precise
entity-level semantics for humans and objects are captured
by Dual-Entity attention, while the contextual information
for the interaction is conditionally reimbursed by Entity-
conditioned Context attention. To further improve perfor-
mance, we delve into decoder architectures that can effec-
tively handle the multiple semantics obtained from the two
HOI-aware attentions above.

The main contributions of our work are threefold:

• We propose MSTR, the first transformer-based HOI
detector that exploits multi-scale visual feature maps.

• We propose new deformable attention modules, called
Dual-Entity attention and Entity-conditioned Context
attention, which effectively and efficiently capture hu-
man, object, and context information associated with
HOI queries.

• We explore decoder architectures to handle the mul-
tiple semantics captured by our proposed deformable
attentions and further improve HOI detection perfor-
mance.

2. Preliminary

In this section, we start with a basic pipeline of a
transformer-based end-to-end HOI detector [26]. Then, we
explain the deformable attention module [38] that reduces
computational cost in attention, thus enabling the trans-
former to take multi-scale feature maps as an input. After-
ward, we discuss why the direct application of multi-scale
deformable attentions is not suitable for HOI detection.

2.1. End-to-End HOI Detection with Transformers

Out of the multiple candidates [4,14,26,39] using trans-
formers for HOI detection, we adopt QPIC [26] as our base-
line due to its simple structure and good performance.

Set Prediction. Transformer-based HOI detectors formu-
late the task as a set-level prediction problem. It is achieved
by exploiting a fixed number of HOI queries, each of which
generates four types of predictions: 1) the coordinate of the
human bounding box (i.e., subject of the interaction), 2) the
coordinate of the object bounding box (i.e., target of the in-
teraction), 3) the object class and 4) the interaction type.
Note that the set-level predictions are learned using losses
based on Hungarian Matching with ground-truths.

Transformer Encoder-Decoder Architecture. The ar-
chitecture of QPIC [26] consists of a backbone CNN, a
transformer encoder, and a transformer decoder. Given an
image, a single-scale visual feature map is extracted by the
backbone CNN, and then positional information is added to
the feature map. The transformer encoder takes the visual
features and returns contextualized visual features with self-
attention layers. In the transformer decoder, HOI queries
are first processed by the self-attention layer, and then the
cross-attention layer associates the HOI queries with the
contextualized visual features (given by the encoder) to
capture relevant HOI representations. Finally, predictions
for HOI are computed from individual contextualized HOI
query embeddings as mentioned above. Note that both self-
attention and cross-attention adopt multi-head attention.

To be specific, given a single-scale input feature map
x ∈ RC×H×W where C is the feature dimension, the
single-scale multi-head attention fsgq = SSAttn(zq, x) for
the qth query feature zq (either an image token for the en-
coder or an HOI query for the decoder) is calculated by

fsgq =

M∑
m=1

Wm

[ ∑
k∈Ωk

Amqk ·W ′mxk
]
, (1)

where Amqk indicates an attention weight calculated with

learnable weights Um, Vm ∈ RCv×C as exp
( zTq UT

mVmxk√
Cv

)
.

Throughout this paper, for the attention module, we let m
index the attention head (1 ≤ m ≤ M ), q ∈ Ωq indexes a
query element with feature zq ∈ RC , k ∈ Ωk indexes a key
element with feature zk ∈ RC , while Ωq and Ωk specify the
set of query and key elements, respectively. Wm and W ′m
are learnable embedding parameters for mth attention head,
and Amqk is normalized as

∑
k∈Ωk

Amqk = 1.

Complexity. Given an input feature map x ∈ RC×H×W
and N HOI queries, the complexity of transformer en-
coder and decoder are O(H2W 2C) and O(HWC2 +
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NHWC + 2NC2 + N2C), respectively. Since the com-
plexity grows in quadratic scale as the spatial resolution
(H ,W ) increases, it raises significant complexity when ex-
ploiting multi-resolution feature maps where there are about
20× more features to process.

Towards Multi-Scale HOI detection. In HOI detection,
not only do humans and objects exist at various scales, but
they also interact at various distances in images. Therefore,
it is essential to exploit multi-scale feature maps {x}Ll=1

(where xl ∈ RC×Hl×Wl , l indexes the feature level) to deal
with the various scales of objects and contexts to capture in-
teractions precisely. However, as multi-scale feature maps
have almost ×20 more elements to process than a single-
scale feature map, it provokes a serious complexity issue in
calculating Eq. (1).

2.2. Revisiting Deformable Transformers

The deformable attention module is proposed to deal
with the problem of high complexity in the transformer at-
tention. The core idea is to reduce the number of key ele-
ments in the attention module by sampling the small num-
ber of spatial locations related to regions of interest for each
query element.

Sampling Locations for Deformable Attention. Given
a multi-scale input feature map {xl}Ll=1 where xl ∈
RC×Hl×Wl , the K sampling locations of interest for each
attention head and each feature level are generated from
each query element zq ∈ RC . Because direct prediction
of coordinates of sampling location is difficult to learn, it
is formulated as prediction of a reference point rq ∈ [0, 1]2

and K sampling offsets ∆rq ∈ RM×L×K×2. Then, the kth

sampling location at lth feature level and mth attention head
for query element zq is defined by pmlqk = φl(rq)+∆rmlqk
where φl(·) is a function to re-scale the coordinate of refer-
ence point to the input feature map of the lth level.

Deformable Attention Module. Given a multi-scale in-
put feature map {xl}Ll=1, the multi-scale deformable atten-
tion fmsq = MSDeformAttn(zq, pq, {xl}Ll=1) for query ele-
ment zq is calculated using a set of predicted sampling lo-
cations pq as follows:

fmsq =

M∑
m=1

Wm

[ L∑
l=1

K∑
k=1

Amlqk ·W ′mΦmlqk
]
, (2)

where l, k and m index the input feature level, the sampling
location and the attention head, respectively, while Amlqk
indicates an attention weight for the kth sampling location
at the lth feature level and the mth attention head. Φmlqk
means the sampled kth key element at lth feature level and

mth attention head using the sampling location, which is
obtained by bilinear interpolation as Φmlqk = xl(pmlqk) =
xl(φl(rq) + ∆rmlqk). Note that for each query element,
the attention computation is performed with only sampled
regions of interest where the sampled number (= LMK)
is much smaller than the number of all the key elements
(
∑L
l=1HlWl), thus leads to a reduced computational cost.

Problem with Direct Application to HOI Detection.
Deformable attention effectively reduces the complexity of
exploiting multi-scale features with transformers to an ac-
ceptable level. However, while the sampling procedure
above does not deteriorates performance in standard object
detection, it causes a serious performance drop in HOI de-
tection (29.07 → 25.53) as shown in Table 3. We conjec-
ture that this is partly due to the following reasons. First,
unlike the object detection task where an object query is
associated with a single object, an HOI query is entangled
with multiple semantics (i.e., human, object, and their in-
teraction); thus learning to sample the region of interest for
multiple semantics with individual HOI queries (especially
with sparse information) is much challenging compared to
the counterpart of object detection. Second, deformable at-
tention is learned to attend only to the sampling points near
the localized objects; this leads to the loss of contextual in-
formation that is an essential clue for precise HOI detection.
The following sections describe how we resolve these issues
and improve performance.

3. Method
In this section, we introduce MSTR, a novel deformable

transformer architecture that is suitable for multi-scale HOI
detection. To resolve the problems described in our prelimi-
nary, MSTR features new HOI-aware deformable attentions
designed for HOI detection, referred by Dual-Entity atten-
tion and Entity-conditioned Context attention.

3.1. HOI-aware Deformable Attentions

The objective of our HOI-aware deformable attentions
(Dual-Entity attention and Entity-conditioned Context at-
tention) is to efficiently and effectively extract information
of HOIs from multi-scale feature maps for a given HOI
query. Figure 2 shows conceptual illustrations of (a) de-
formable attention in literature [38], (b) Dual-Entity atten-
tions and (c) Entity-conditioned Context attention.

Dual-Entity attention for Human/Object. In HOI de-
tection, the HOI query includes complex and entangled in-
formation of multiple semantics: human, object, and inter-
action information. Therefore, it is challenging to accu-
rately predict sampling locations appropriate for each se-
mantic from a single HOI query. To make sampling loca-

3



Figure 2. Illustration of (a) Deformable Attention, (b) Dual-Entity Attention, (c) Entity-conditioned Context Attention (abbrevieated as
EC). The sampling point for deformable attention is obtained by combining the reference points with sampling offset. In (a), both reference
points rq = (rqx, rqy) and sampling offsets ∆rq = (∆rqx,∆rqy) are obtained from a single hoi query feature zq . In (b), the reference
points and sampling offsets for the humans hq = (hqx, hqy), ∆hq = (∆hqx,∆hqy) and objects oq = (oqx, oqy), ∆oq = (∆oqx,∆oqy)
are obtained from zhq and zoq , respectively, which is obtained by a linear projection of zq (dotted line). In (c), the sampling offsets
∆cq = (∆cqx,∆cqy) are obtained from zq while the reference points are obtained in conditional to entities in (b).

tions easier, given an HOI query feature zq , our Dual-Entity
attention separately identifies sampling locations for the hu-
mans (phq ) and objects (poq). First, we project zq with two
linear layers to obtain zhq and zoq . The kth sampling location
at lth feature level and mth attention head for human and
object are represented by

phmlqk = φl(hq) + ∆hmlqk,

pomlqk = φl(oq) + ∆omlqk,
(3)

where hq , ∆h is the reference point and sampling offsets
for humans, and oq , ∆o is the reference point and sampling
offsets for objects, each obtained by a linear projection of
zhq and zoq , respectively. Then, based on the sampled loca-
tions, attended features for human (fhq ) and object (foq ) are
computed by

fhq = MSDeformAttn(zhq , p
h
q , {xl}Ll=1),

foq = MSDeformAttn(zoq , p
o
q, {xl}Ll=1).

(4)

Entity-conditioned Context attention. In HOI detec-
tion, contextual information often gives an important clue in
identifying interactions. From this point of view, utilizing
the local features obtained from near the human and object
regions through the Dual-Entity attention is not sufficient to
capture contextual information (see our experimental result
in Table 3). To compensate for this, we define an attention
with an additional set of sampling points, namely Entity-
conditioned Context attention, that is designed to capture
the contextual information in specific.

Given the 2D reference points for the human hq =
(hqx, hqy) and the object oq = (oqx, oqy), the reference

point for Entity-conditioned Context attention is condition-
ally computed with the two references. Motivated by ex-
isting works [21, 32, 36], we define the reference points
for interaction as the center of human and object, i.e.,
cq =

(hqx+oqx
2 ,

hqy+oqy
2

)
. Note that we empirically observe

that such simple reference points offer competitive perfor-
mance compared to ones predicted using an additional net-
work, while being much faster. Then, we predict the sam-
pling offsets ∆cq from the HOI query feature, obtaining
pcmlqk = φl(cq) + ∆cmlqk. Finally, the attended feature
for contextual information f cq is computed using sampling
location pcq as follows:

f cq = MSDeformAttn(zq, p
c
q, {xl}Ll=1). (5)

3.2. MSTR Architecture

In this section, the overall architecture of MSTR with
our suggested two deformable attentions will be described
(see Figure 3). MSTR follows the previous transformer
encoder-decoder architecture, where the encoder performs
self-attention given the image features while the decoder
performs self-attention for HOI queries followed by cross-
attention between updated HOI queries and the encoded im-
age features.

Encoder. The encoder of MSTR takes multi-scale input
feature maps given by a backbone CNN, performs a se-
ries of deformable attention modules in Eq.(2), and finally
generates encoded feature maps. Positional encoding [2]
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Figure 3. Overall pipeline of MSTR. On top of the standard transformer encoder-decoder architecture for HOI detection (i.e., QPIC), we
leverage deformable samplings for the encoder self-attention and the decoder cross-attention modules to deal with the huge complexity
caused by using multi-scale feature maps. For the decoder cross-attention, we leverage three sets of key elements sampled for our Dual-
Entity attention (denoted as DE sampling, DE attention) and Entity-conditioned Context attention (denoted as EC sampling, EC attention).

Figure 4. Comparison of a simple 2-layer Decoder architec-
ture for Transformer-based HOI detectors: (a) conventional one
introduced in QPIC, and (b) HOI-aware one in MSTR. Entity-
conditioned Context attention is abbreviated as Context Attention.
MSTR stacks decoder layers by merging the self attention outputs,
which further improves performance (see Table 3).

is added to preserve spatial information while level embed-
ding [38] is added to denote which resolution did the image
feature comes from.

Decoder. By leveraging our HOI-aware deformable atten-
tions, the cross-attention layer in MSTR decoder extracts
three different semantics (human, object, and contextual
information) for each HOI query from the encoded image
features. For each decoder layer, we discovered that com-
positing the multiple semantics obtained from the previous

cross-attention layer [5] by summing the semantics after ap-
plying individual self-attention demonstrates the best per-
formance (see Table 3 and Appendix). The input for the
(k + 1)-th layer of our HOI-aware deformable attention
z̄k+1
q is written as:

z̄k+1
q = SA(fhq (k)) + SA(foq (k)) + SA(f cq (k)), (6)

where fhq (k), foq (k), f cq (k) denotes the multiple semantic
outputs of the previous (k-th) decoder obtained by Eq.(6)
and Eq.(5), respectively. SA denotes Multi-Head Self-
Attention operation with Eq.(1) [28] and z̄1

q = SA(zq) +

SA(zhq ) + SA(zoq ).

MSTR Inference. Given the cross attention results of the
final decoder layer where fhq and foq is obtained by Eq. (6)
and f cq is obtained by Eq. (5), the final prediction heads in
MSTR predict the 〈bboxhq , bboxoq, clsoq, actq〉 using FFN as
follows:

(uqx, uqy, uqw, uqh) = FFNhbox(fhq ), (7)

(vqx, vqy, vqw, vqh) = FFNobox(foq ), (8)

clsq = σ(FFNcls(foq )), (9)

actq = σ(FFNact(f
c
q )), (10)

where clsq and actq each denote predictions for object the
class and the action class after sigmoid function, and fi-
nal bboxhq is predicted with the center point

(
σ(uqx +

σ−1(hqx)), σ(uqy + σ−1(hqy))
)
, width uqw, and height

uqh. Likewise, the bboxoq is predicted with center point as(
σ(vqx + σ−1(oqx)), σ(vqy + σ−1(oqy))

)
, width vqw, and

height vqh. σ and σ−1 denote the sigmoid and inverse sig-
moid function, respectively, and is used to normalize the
reference points hq, oq and the predicted coordinates of hu-
man boxes and object boxes uq{x,y,w,h}, vq{x,y,w,h} ∈ R.
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4. Experiment

In this section, we show the experimental results of our
model in HOI detection. We first describe the experimen-
tal settings such as datasets and evaluation metrics. Next,
we compare MSTR with state-of-the-art works on two dif-
ferent benchmarks (V-COCO and HICO-DET) and provide
detailed ablation study for each component. Through the
experiments, we demonstrate that MSTR successfully ex-
tends conventional transformer-based HOI detectors to uti-
lize multi-scale feature maps, and emphasize that each com-
ponent of MSTR contributes to the final HOI detection per-
formance. Lastly, we provide extensive qualitative results
of MSTR.

4.1. Datasets and Metrics

We evaluate our model on two widely-used public
benchmarks: the V-COCO (Verbs in COCO) [9] and HICO-
DET [3] datasets. V-COCO is a subset of COCO com-
posed of 5,400 trainval images and 4,946 test images. For
V-COCO dataset, we report the AProle over 25 interactions
in two scenarios. HICO-DET contains 37,536 and 9,515
images for each training and test split with annotations for
600 〈verb, object〉 interaction types. We follow the previ-
ous settings and report the mAP over two evaluation set-
tings (Default and Known Object), each with three different
category sets: (1) all 600 HOI categories in HICO (Full),
(2) 138 HOI categories with less than 10 training instances
(Rare), and (3) 462 HOI categories with 10 or more train-
ing instances (Non-Rare). See Appendix for details of the
evaluation settings.

4.2. Quantitative Results

We use the standard evaluation code 1 following the pre-
vious works [4,14,26,39] to calculate metric scores for both
V-COCO and HICO-DET.

Comparison to State-of-The-Art. We compare MSTR
with state-of-the-art methods in Table 1 and Table 2. In
Table 1, MSTR outperforms the previous state-of-the-art
method in V-COCO dataset by a large margin (+3.2p in
AP#1

role and +4.2p in AP#1
role). Similar to this, in Table 2,

MSTR achieves the highest mAP on HICO-DET dataset
in all Full, Rare, and Non-Rare classes obtaining +2.1p,
+3.46p, and +1.69p gain for each compared to the previous
state-of-the-art. We use the same scoring function as QPIC
without any modification for a fair comparison. Note that
MSTR benefits from the advantages of using deformable
attention: the fast convergence for training [38] (see more
details and the convergence graph in our Appendix).

1https://github.com/YueLiao/PPDM

Method Backbone AP#1
role AP#2

role

Models with external features
TIN (RPDCD) [20] R50 47.8 -
Verb Embedding [34] R50 45.9 -
RPNN [37] R50 - 47.5
PMFNet [29] R50-FPN 52.0 -
PastaNet [19] R50-FPN 51.0 57.5
PD-Net [35] R50 52.0 -
ACP [15] R152 53.0 -
FCMNet [22] R50 53.1 -
ConsNet [23] R50-FPN 53.2 -
Sequential HOI Detectors
VSRL [9] R50-FPN 31.8 -
InteractNet [8] R50-FPN 40.0 48.0
BAR-CNN [16] R50-FPN 43.6 -
GPNN [25] R152 44.0 -
iCAN [7] R50 45.3 52.4
TIN (RCD) [20] R50 43.2 -
DCA [31] R50 47.3 -
VCL [12] R50-FPN 48.3 -
DRG [6] R50-FPN 51.0 -
VSGNet [27] R152 51.8 57.0
IDN [18] R50 53.3 60.3
Parallel HOI Detectors
UnionDet [13] R50-FPN 47.5 56.2
IPNet [32] HG104 51.0 -
HOI Transformer [39]† R101 52.9 -
ASNet [4]† R50 53.9 -
GGNet [36] HG104 54.7 -
HOTR [14]† R50 55.2 64.4
QPIC [26]† R50 58.8 61.0

MSTR (Ours) R50 62.0 65.2

Table 1. Comparison of performance on V-COCO test set. AP#1
role ,

AP#2
role denotes the performance under Scenario 1 and Scenario

2 in V-COCO, respectively. † denotes end-to-end HOI detectors
with transformers, which are the main baselines for our work.

4.3. Ablation Study

We perform ablations to check the effects of our pro-
posed Dual-Entity attention, Entity-conditioned Context at-
tention, and our proposed decoder architecture that merges
the self-attention of the multiple semantics.

Baselines. On basis of QPIC [26] structure, we define
several variants for baselines by applying different combi-
nations of sub-components from MSTR: multi-scale feature
maps (MS), Deformable Attention (DA), Dual-Entity atten-
tion (DE), and Entity-conditioned Context attention (EC).
Specifically, since deformable attention can be also applied
to a single-scale feature map, SS-Baseline denotes QPIC
where the attention in the transformer is replaced by DA.
Our work can be seen as a process of improving the score

6



Default Known Object

Method Detector Backbone Feature Full Rare Non Rare Full Rare Non Rare

Sequential HOI Detectors
Functional Gen. [1] HICO-DET R101 A+S+L 21.96 16.43 23.62 - - -
TIN [20] HICO-DET R50 A+S+P 22.90 14.97 25.26 - - -
VCL [12] HICO-DET R50 A+S 23.63 17.21 25.55 25.98 19.12 28.03
ConsNet [23] HICO-DET R50-FPN A+S+L 24.39 17.10 26.56 30.34 23.40 32.41
DRG [6] HICO-DET R50-FPN A+S 24.53 19.47 26.04 27.98 23.11 29.43
IDN [18] HICO-DET R50 A+S 24.58 20.33 25.86 27.89 23.64 29.16

Parallel HOI Detectors
UnionDet [13] HICO-DET R50-FPN A 17.58 11.72 19.33 19.76 14.68 21.27
PPDM [21] HICO-DET HG104 A 21.10 14.46 23.09 24.81 17.09 27.12
HOI Transformer [39]† HICO-DET R50 A 23.46 16.91 25.41 26.15 19.24 28.22
HOTR [14]† HICO-DET R50 A 25.10 17.34 27.42 - - -
GGNet [36] HICO-DET HG104 A 28.83 22.13 30.84 27.36 20.23 29.48
AS-Net [4]† HICO-DET R50 A 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [26]† HICO-DET R50 A 29.07 21.85 31.23 31.68 24.14 33.93

MSTR (Ours) HICO-DET R50 A 31.17 25.31 32.92 34.02 28.83 35.57

Table 2. Performance comparison in HICO-DET. The Detector column is denoted as ‘HICO-DET’ to show that the object detector is fine-
tuned on the HICO-DET training set. Each letter in Feature column stands for A: Appearance (Visual Features), S: Interaction Patterns
(Spatial Correlations), P: Pose Estimation, L: Linguistic Priors, V: Volume. † denotes end-to-end HOI detectors with transformers. Note
that all the baseline models without † are already based on multi-scale feature maps.

Method MS DA DE EC mAP
(a) QPIC 29.07
(b) SS-Baseline X 25.53
(c) SS-Baseline + DE X X 27.06
(d) SS-Baseline + DE + EC X X X 27.70
(e) MS-Baseline X X 27.52
(f) MS-Baseline + DE X X X 28.30
(g) MS-Baseline + DE + EC X X X X 30.14
(h) MSTR (Ours) X X X X 31.17

Table 3. Comparison of MSTR with our baseline QPIC and its
variants in the HICO-DET test set. SS and MS denote the mod-
els using single scale feature map and multi-scale feature maps,
respectively. DE and EC indicate our proposed Dual-Entity atten-
tion and Entity-conditioned Context attention, respectively.

to the state-of-the-art by adapting MS, DE, EC step by step
to SS-Baseline. MS-Baseline+DE+EC represents MSTR
without merging with self-attention, instead simply passing
the sum of the outputs to the next decoder layer.

HOI-Aware Deformable Attentions. In Table 3, we ex-
plore the effect of our proposed HOI-Aware Deformable At-
tentions: Dual-Entity attention and Entity-conditioned Con-
text attention. As deformable attentions can also be applied
in a single-scale feature map, we verify the effectiveness
of our proposed deformable attentions on both single-scale
and multi-scale baselines. As we described in our prelim-
inary, the naı̈ve implementation of deformable attention on

top of QPIC (for single-scale) significantly degrades the
score in both single-scale and multi-scale environments (see
(a vs. b) and (a vs. e)). The use of Dual-Entity atten-
tion (DE) consistently improves the score in both single-
scale (+1.53p in (b vs. c)) and multi-scale environments
(+0.78p in (e vs. f)). As well, Entity-conditioned Con-
text attention (EC) contributes in the multi-scale environ-
ment when jointly used with DE (+0.64p in SS and +1.84p
in MS). Therefore, we conclude that disentangling the ref-
erences (DE) and conditionally reimbursing context infor-
mation (EC) each gradually contributes to the final perfor-
mance of HOI detection in both single-scale and multi-scale
environments, enabling MSTR to effectively explore multi-
scale feature maps to achieve state-of-the-art performance.

Single-scale vs. Multi-scale. In Table 1 and Table 2,
we demonstrate that our method using the multi-scale
feature maps outperform all previous methods, including
transformer-based methods [4, 14, 26, 39] and the ones that
already use multi-scale feature maps heavily [6, 12, 13, 18,
23, 36]. To analyze further, Table 3 compares single-scale
version and the multi-scale version of our baselines (see (b-
e) and (e-h)). In all cases of converting the single-scale fea-
ture map to the multi-scale one, we observe consistent per-
formance gains (see (b vs. e), (c vs. f), and (d vs. g,h)).
The gain is maximized when DE and EC are used together.
We further provide a detailed analysis of the effectiveness
of MSTR in multi-scale environments in our Appendix.
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Figure 5. Visualization of our Entity-conditioned Context atten-
tions on different levels of feature map (1 being the highest and 4
being the lowest resolution). Best viewed in color and scale.

Figure 6. Visualization of the HOI-aware attention of MSTR on
different scales of humans and objects.

Decoder Architecture. We verify the effectiveness of
Figure 4 (b) architecture in Table 3 (g vs. h). As MSTR con-
siders multiple semantics with two suggested deformable
modules, it is important to find suitable decoder architecture
which can effectively merge the semantics [5]. According
to the possible combination ways when merging three kinds
of semantics, various types of decoder architecture can be
candidates for the decoder architectures (described in Ap-
pendix). In our Appendix, we empirically verify that Fig-
ure 4 (b) architecture shows the most powerful and robust
performance across all datasets.

4.4. Qualitative Results

We conduct qualitative analysis of MSTR to observe
how MSTR captures interactions. Figure 1 and Figure 5
show the visualization of the attention map in MSTR in
various feature levels. Interestingly, we can observe that

in the higher resolution feature maps, the sampling points
capture the detail of the interacting human and object while
the lower resolution feature maps tend to capture the over-
all pose or context of the interaction. In Figure 1 and Fig-
ure 6, we can observe how MSTR attends to test images
that include various scales of humans, target objects, and
distances. More details along with quantitative results will
be provided in our Appendix.

5. Related Work

Transformer Based HOI Detectors. Human-Object In-
teraction detection has been initially proposed in [9], and
has been developed in two main streams: sequential meth-
ods [1, 6–8, 10, 17, 19, 20, 22–25, 27, 29–31, 34, 35, 37] and
parallel methods [13, 21, 32]. However, since these works
required hand-crafted post-processing, HOI detectors with
transformers have been proposed to eliminate the post-
processing step through an end-to-end fashioned set pre-
diction approach [4, 14, 26, 39]. Yet, all these methods are
limited to a single-scale feature map due to the complex-
ity caused when processing multi-scale feature maps with
transformer attention.

Deformable Transformers for Object Detection. DETR
has been recently proposed to eliminate the need for many
hand-designed components in object detection [2]. De-
formable DETR [38] mitigates the slow convergence and
high complexity issues of DETR and successfully exploits
multi-resolution feature maps. The deformable attention
modules in [38] attend to a small set of sampling locations
as a pre-filter for prominent key elements out of all the fea-
ture map pixels. However, unlike object detection, we ob-
served that this pre-filter seriously deteriorates performance
when applied to HOI detection. Therefore, in this paper, we
focus on finding a proper way to incorporate deformable at-
tention into HOI detection for exploiting multi-scale feature
maps.

6. Conclusion

In this paper, we present MSTR, the first multi-scale ap-
proach in transformer-based HOI detectors. MSTR over-
comes the issues of extending transfomer-based HOI de-
tectors to multi-scale feature maps with novel HOI-Aware
Deformable attentions named as Dual-Entity attention and
Entity-conditioned Context attention. In virtue of the two
attention modules and our decoder architecture that effec-
tively collects the multiple semantics from each of the at-
tentions, MSTR achieves the state-of-the-art performance
in two benchmark datasets in HOI detection.
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A. Appendix
In this Appendix, we provide i) extended quantitative

analysis of MSTR capturing HOI detection in a multi-scale
environment, ii) exploration for various possible decoder ar-
chitectures, iii) implementation details of MSTR, iv) de-
tails on experimental datasets and metrics, v) details of
training, vi) analysis on convergence speed, vii) additional
qualitative result on our Dual-Entity attention and Entity-
conditioned Context attention, and finally, viii) limitations
of our work.

A.1. Additional Quantitative Results for MSTR

First, we perform an extended quantitative analysis on
the HICO-DET test set to validate the effectiveness of
MSTR in a multi-scale environment. MSTR uses multi-
scale feature maps to explore the semantics of HOI exist-
ing in different scales. In this section, we provide extensive
quantitative results that shows the effectiveness of MSTR
in capturing the interactions between humans and objects
not only at different scales, but in various distances also
(e.g., adjacent interaction such as ‘holding a book’ or re-
mote interaction such as ‘throwing a frisbee’). To this end,
we show quantitative results for multi-scale interactions ac-
cording to 1) relative area of the human and the object, 2)
the size of humans/objects, 3) distance between the human
and object. For each criterion, we measure the performance
across three bins where each bin has an equal and suffi-
cient amount of HOI ground-truth labels to cover (∼11,000
HOIs). For comparison, we set QPIC [26], the state-of-the-
art transformer-based approach that uses a single-scale fea-
ture map, as our baseline. Note that in this appendix, the
size, area, and distance are all calculated in normalized im-
age coordinates.

Relative area of human vs. object. To observe how
MSTR handles interaction between humans and objects
with different scales, we first calculate the average precision
(AP) over interaction labels that have different relative ar-
eas of humans and objects ( area(hbox)

area(obox) ). We cover three main
cases according to their relative areas: i) APh<o where the
object area is significantly larger than the human area (e.g.,
human sitting on a bench), ii) APh=o where the human and
the object exists in comparable sizes, and iii) APh>o where
the object area is significantly smaller than the human area
(e.g., human throwing a ball). We set the threshold for
the relative areas so that each bin has an equal number of
ground-truth instances (i.e., area(hbox)

area(obox) < 0.48 for APh<o and
area(hbox)
area(obox) > 4.33 for APh>o). In Table 4, MSTR outper-
forms QPIC in all three types of interaction categories. Note
that the improvement is more substantial in cases where the
human and object have vastly different scales (+3.01p for
APh<o and +1.85p for APh>o), verifying that MSTR is ef-

Method APh<o APh=o APh>o

QPIC 34.10 30.57 25.22
MSTR 37.11 31.68 27.07
∆AP +3.01 +1.11 +1.85

Table 4. Comparison of MSTR with QPIC under interactions with
different human/object scale ratio.

fectively utilizing multi-scale feature maps.

Human & object size. Here, we compare the average pre-
cision over the sizes of humans and objects. APL, APM,
APS each denotes the average precision for Large, Middle,
and Small humans and objects. In Table 5, MSTR outper-
forms QPIC in all three categories in both human and ob-
ject scales. For the human scales, the improvement is more
recognizable in interactions including small human areas
(+3.06p in APS) while for object scales, the improvement
is consistent over all three scales.

Human Size Object Size

Method APL APM APS APL APM APS

QPIC 28.65 35.36 24.14 33.09 28.65 24.87
MSTR 30.04 37.02 27.20 34.87 30.48 26.60
∆AP +1.39 +1.66 +3.06 +1.78 +1.83 +1.73

Table 5. Comparison of MSTR with QPIC under different sizes of
humans and objects.

Interactions in various distances. Not only does MSTR
capture interactions with various sized participants, but
MSTR also captures interactions with various sized con-
texts, i.e., interaction in various distances. To correctly
measure how remote an interaction is, we note that the
distance between center points [26] should be normal-
ized by both the image size and the size of the human
and object box participating in the interaction. Given the
interaction between hbox (hx1, hy1, hx2, hy2) and obox
(ox1, oy1, ox2, oy2), the normalized box area as area (hbox)
and area (obox), we define the distance dinteraction as

dcenter =
√

(hx1+hx2
2 − ox1+ox2

2 )
2
+(hy1+hy2

2 − oy1+oy2
2 )

2
,

dinteraction = dcenter/(area(hbox) · area(obox)).
(11)

Then, we measure the average precision over three cate-
gories: i) APadjacent where the human is interacting with
a nearby object, ii) APdistant where the interacting hu-
man/object is within moderate distance, and APremote where
the human is interacting with an object sufficiently far away.
As in previous sections, we set the distance threshold so that
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Method APadjacent APdistant APremote

QPIC 31.09 31.25 21.81
MSTR 32.66 33.48 23.70
∆AP +1.57 +2.23 +1.89

Table 6. Comparison of MSTR with QPIC under interactions with
various distances.

each bin has an equal number of ground-truth instances. Ta-
ble 6 shows the improvement of MSTR over QPIC. Note
that while MSTR shows improvement across all three cat-
egories, the improvement is more distinguishable in cases
where humans are interacting with objects in considerable
distance (+2.23p for APdistant and +1.89p for APremote, re-
spectively).

A.2. Analysis on Decoder Architecture

As MSTR considers multiple semantics with two sug-
gested deformable modules (Dual-Entity attention and
Entity-conditioned Context attention), it is important to find
a suitable decoder architecture that effectively merges the
semantics. Here, we explore the possible combinations
and various types of decoder architecture candidates when
merging the three kinds of semantics. We empirically ver-
ify that MSTR architecture shows the most powerful perfor-
mance.

Architecture for Dual-Entity attention. In Figure 7, we
explore different architectures for Dual-Entity attention. We
start with the most basic form: (a) is the architecture of
QPIC, and (b) shows a straightforward application of the
deformable attention [38] to QPIC. However, as we dis-
cussed in our main paper, (b) degrades the performance a
lot from (a), because unlike its counterpart in object detec-
tion, multiple localizations need to be entangled to a single
reference point in architecture (b). Therefore, we first use
Dual-Entity attention to disentangle sampling points and at-
tention weights for the participating entities (i.e., human
and object), respectively, to improve HOI detection perfor-
mance. In Figure 7, (c) and (d) shows two options of deal-
ing with the dual semantics obtained from dual reference
points (each for humans and objects). In (c), each refer-
ence point is dealt with a separate stack of decoder layers
(i.e., Double-stream), while in (d) they are handled within a
single-stream by sharing the self-attention layer where the
input is simply the sum of the multiple semantics from the
previous decoder layer. In Table 9, we show that our Dual-
Entity attention shows a valid improvement (see (d) vs. (b)),
while it even shows better performance than (c) requiring
twice the number of decoder parameters.

Figure 7. Comparison of a simple 2-layer Decoder architecture
for: (a) QPIC, and (b) Direct application of Deformable DETR
on QPIC, (c) Dual-Entity attention with two streams of decoder
layers and (d) Dual-Entity attention that shares the self-attention
layer.

Method Default (Full)
(a) QPIC 29.07
(b) QPIC + Deformable attention [38] 27.52
(c) Double-stream 28.15
(d) Dual-Entity attention 28.30

Table 7. Comparison of Dual-Entity attention performance (d)
against architecture in Figure 7 (a-c).

Modeling Conditional Context attention. In HOI detec-
tion, contextual information often gives an important clue in
identifying interactions. In Table 8, we study the two differ-
ent methods of obtaining context attention using (a) stan-
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Figure 8. Comparison of: (a) context sampling with deformable
attention, and (b) Entity-conditioned Context attention.

dard deformable attention and (b) our Entity-conditioned
Context attention; note that in standard deformable atten-
tion, context reference points are directly obtained from
HOI queries with a linear projection while our method con-
ditionally obtain it from human and object reference points
(see Figure 8). It can be observed that despite its simple
structure and minimal delay, our Entity-conditioned Con-
text attention achieves an +0.78p improvement compared to
its counterpart. This implies that the guidance by human
and object points is important to effectively model contex-
tual information.

Method Default (Full)
(a) Standard Deformable attention 29.36
(b) Entity-conditioned Context attention 30.14

Table 8. Comparison of the performance of Entity-conditioned
Context attention against standard deformable attention [38]. Both
(a) and (b) leverage Dual-Entity attention and follow the architec-
tural design of Figure 9 (a) for fair comparison.

Merging the semantics. Figure 9 shows two different
ways of how to merge the three semantics obtained from our
Dual-Entity attention and Entity-conditioned Context atten-
tion. In MSTR, we merge the multiple semantics after ap-
plying self-attention separately to each of the semantic fea-
tures obtained in the previous layer (Figure 9 (b)) instead of
forcedly composing the input features of the self-attention
layer (Figure 9 (a)). Table 9 shows that MSTR architec-
ture (b) outperforms (a) by a margin of +1.03p, achieving
the final performance. Note that while (b) is better, MSTR
outperforms competing algorithms (presented in Table 2 of
main paper) even with architecture (a).

Method Default (Full)
(a) Merge self-attention input 30.14
(b) Merge self-attention output 31.17

Table 9. Comparison of a simple 2-layer Decoder architecture for
Transformer-based HOI detectors: (a) Merging the input of the
self-attention, and (b) architecture of MSTR (merging the output
of self-attention).

Figure 9. Comparison of a simple 2-layer Decoder architecture
for Transformer-based HOI detectors: (a) Merging the input of the
self-attention, and (b) architecture of MSTR (merging the output
of self-attention).

A.3. Implementation Details

Following implementation details in Deformable
DETR [38], we use ImageNet pre-trained ResNet-50 [11]
as our backbone CNN and extract multi-scale feature maps
without FPN. The number of attention heads and sampling
offsets for deformable attentions are set to M = 8 and
K = 4, respectively. The AdamW optimizer is used
with the initial learning rate of 2e-4 and weight decay of
1e-4. All transformer weights are initialized with weights
pre-trained in MS-COCO. For a fair comparison with
QPIC [26], we use only 100 HOI queries instead of using
300 ones as in Deformable DETR [38].

A.4. Details on Datasets and Metrics

We evaluate our model on two widely-used public
benchmarks: the V-COCO (Verbs in COCO) [9] and HICO-
DET [3] datasets. V-COCO is a subset of COCO com-
posed of 5,400 trainval images and 4,946 test images. For
V-COCO dataset, we report the AProle over 25 interactions
in two scenarios. In Scenario 1 (denoted as AP#1

role), detec-
tors should predict an output indicating the non-existence
of an object ([0,0,0,0]) when the target object is occluded,
while in Scenario 2 (denoted as AP#2

role), only the localiza-
tion of human and interaction classification is scored for
such cases. HICO-DET contains 37,536 and 9,515 images
for each training and test splits with annotations for 600
〈verb, object〉 interaction types. In HICO-DET dataset,
there are two different evaluation settings: Default and
Known object. The former measures AP on all the test im-
ages, while the latter only considers the images with the
object class corresponding to each AP. We report our score
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with both settings. Note that the Default is a more challeng-
ing setting as we also need to distinguish background im-
ages. We follow the previous settings and report the mAP
over three different category sets: (1) all 600 HOI categories
in HICO (Full), (2) 138 HOI categories with less than 10
training instances (Rare), and (3) 462 HOI categories with
10 or more training instances (Non-Rare).

A.5. Training Details of MSTR

In this section, we explain the details of MSTR train-
ing. MSTR follows a set prediction approach as in previous
transformer-based HOI detectors [4, 14, 26, 39]. We first in-
troduce the cost matrix of Hungarian Matching for unique
matching between the ground-truth HOI triplets and HOI
set predictions.

Hungarian Matching for HOI Detection. MSTR pre-
dicts a fixed number K of HOI triplets that consist of
a human box, object box, and binary classification for
the a types of actions (where a=25 in V-COCO and
117 for HICO-DET). Each prediction captures a unique
〈human,object〉 pair with multiple interactions. K is set to
be larger than the typical number of interacting pairs in an
image (in our experiment, K = 100). Let Y denote the
set of ground truth HOI triplets and Ŷ = {ŷi}Ki=1 as the
set of K predictions. As K is larger than the number of
unique interacting pairs in the image, we consider Y also as
a set of size K padded with ∅ (there are no ground-truth
that matches the prediction). Let y = (bh, bo, co, a) where
the ground-truth interaction yi consists of bhi and boi which
denotes the normalized coordinates for the interacting hu-
man/object box, coi denotes the target object class. and ai
denotes the one-hot for multiple actions. To find a bipartite
matching between these two sets we search for a permuta-
tion of K elements σ ∈ SK with the lowest cost:

σ̂ = argmin
σ∈SK

K∑
i

Cmatch(yi, ŷσ(i)), (12)

where Cmatch is a pair-wise matching cost between ground
truth yi and a prediction with index σ(i). Now, the ground-
truth is written as yi = (bhi , b

o
i , c

o
i , ai) and the prediction is

written as ŷσ(i) = (b̂hσ(i), b̂
o
σ(i), ĉ

o
σ(i), âσ(i)) where ŷσ(i) is

the prediction that has the minimal matching cost with yi.
b̂hσ(i) and b̂oσ(i) are the normalized box coordinates for hu-
mans and objects, respectively, ĉoσ(i) is the classification for
the target object of the interaction, and âσ(i) is the predicted
actions.

Final Cost/Loss function for MSTR. Based on Cmatch,
we calculate the final loss function for all pairs matched.
The cost/loss function for the HOI triplets consists of the
localization loss, object classification loss, and the action

Figure 10. Comparison of convergence curves of QPIC and MSTR
in the HICO-DET dataset. MSTR shows faster convergence than
QPIC under various training schedules for both methods.

classification loss as LH = Lloc + Lcls + Lact where each
function is written as

Lloc =

K∑
i=1

[
Lloc(b

h
i , b̂

h
σ(i)) + Lloc(b

o
i , b̂

o
σ(i))

]
,

Lcls =

K∑
i=1

BCELoss(ci, ĉσ(i)),

Lact =

K∑
i=1

BCELoss(ai, âσ(i)).

(13)

Identical to previous works [2,4,14,26,38,39], the localiza-
tion loss is defined by the weighted sum of the L1-loss and
the gIoU loss.

A.6. Convergence speed

One of the advantages that deformable attention provides
is the fast convergence at training. Figure 10 shows the
convergence curve of MSTR compared to QPIC. Specifi-
cally, MSTR requires a much short number of epochs (50
epochs) compared to QPIC (150 epochs) to reach its best
score. Note that MSTR achieves a competitive score to
QPIC only with 20 epochs, outperforming QPIC with ap-
proximately ×4 shorter training time.

A.7. Qualitative Analysis for MSTR

In this section, we conduct extensive qualitative analy-
sis of MSTR to observe how Dual-Entity attention and the
Entity-conditioned Context attention capture different se-
mantics for interactions in a multi-scale environment.

MSTR attentions on multi-scale feature maps. We con-
duct a qualitative analysis of MSTR on both Dual-Entity at-
tention and the Entity-conditioned Context attention in HOI
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Figure 11. Visualization of the attention for the Dual-Entity attention and Entity-conditioned Context attention of MSTR in multi-scale
feature maps for adjacent interaction: ride.

Figure 12. Visualization of the attention for the Dual-Entity attention and Entity-conditioned Context attention of MSTR in multi-scale
feature maps for remote interaction: fly. It can be seen that in both adjacent interaction and remote interaction, MSTR successfully captures
the multiple semantics of the human, object, and contextual information across the multi-resolution feature maps.
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Figure 13. MSTR attentions (Dual-Entity attention and Entity-
conditioned Context attention) of different scales all visualized at
once.

detection to observe how MSTR captures interactions. Fig-
ure 11 shows the visualization of each attention in an adja-
cent interaction: ride. Figure 12 shows the visualization of
each attention in an remote interaction: fly. For both cases,
we can see that the Dual-Entity attention captures the ap-
pearance of the human and object across multiple scales of
feature maps. In contrast, the Entity-conditioned Context
attention tends to capture an inclusive area that covers both
two regions and their intermediate background, effectively
capturing the context of the interaction.

MSTR attentions on multi-scale feature maps. In Fig-
ure 13, we provide more qualitative visualizations for the
multi-scale attentions of MSTR in various scenes with 1)
large human and small object, 2) small human and large ob-
ject, 3) distant interactions, 4) adjacent interactions.

A.8. Limitations

The main limitation of our work is the bottleneck caused
by the extensive size of the query element (multi-scale im-
age features, there are about ×20 more image tokens to
process compared to the single-scale feature map). Despite
our proposed deformable attentions, MSTR suffers from an
estimated 10% increase in parameters and ∼ ×2 GFLOPs
compared to the single-scale baseline, QPIC [26]. Although
recent related works have tackled the efficiency problem
in deformable attentions by sampling the query element as
well [33], the research scope of this work did not cover this
issue.
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