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Abstract

Grounded situation recognition is the task of predicting
the main activity, entities playing certain roles within the
activity, and bounding-box groundings of the entities in the
given image. To effectively deal with this challenging task,
we introduce a novel approach where the two processes for
activity classification and entity estimation are interactive
and complementary. To implement this idea, we propose
Collaborative Glance-Gaze TransFormer (CoFormer) that
consists of two modules: Glance transformer for activity
classification and Gaze transformer for entity estimation.
Glance transformer predicts the main activity with the help
of Gaze transformer that analyzes entities and their rela-
tions, while Gaze transformer estimates the grounded enti-
ties by focusing only on the entities relevant to the activity
predicted by Glance transformer. Our CoFormer achieves
the state of the art in all evaluation metrics on the SWiG
dataset. Training code and model weights are available at
https://github.com/jhcho99/CoFormer.

1. Introduction
Humans make decisions via dual systems of thinking as

stated in the cognitive theory by Kahneman [14]. Those two
systems are known to work in tandem and complement each
other [8, 28]. Consider a comprehensive scene understand-
ing task as a specific example of such decision making. As
illustrated in Figure 1, humans cast a quick glance to figure
out what is happening, and slowly gaze at details to analyze
which objects are involved and how they are related. These
two processes are mutually supportive, e.g., understanding
involved objects and their relations leads to more accurate
recognition of the event depicted in the scene.

Inspired by this, we propose a collaborative framework
which leverages the two processes for Grounded Situation
Recognition (GSR) [29]. GSR is a comprehensive scene un-
derstanding task that is recently introduced as an extension
of Situation Recognition (SR) [41]. The objective of SR is
to produce a structured image summary that describes the
main activity and entities playing certain roles within the
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Figure 1. Two processes in comprehensive scene understanding.
Glance figures out what is happening, and Gaze analyzes entities
engaged in the main activity and their relations. In our CoFormer,
these two processes are interactive and complementary.

activity, where the roles are predefined for each activity by
a lexical database called FrameNet [7]. In GSR, those in-
volved entities are grounded with bounding boxes; Figure 2
presents example results of GSR. Following conventions,
we call an activity verb and an entity noun in this paper.

The common pipeline of SR and GSR in the litera-
ture [3,4,19,27,29,32,40,41] resembles the two processes:
predicting a verb (Glance), then estimating a noun for each
role associated with the predicted verb (Gaze). Regarding
this pipeline, correctness of the predicted verb is extremely
important since noun estimation entirely depends on the
predicted verb. If the result of verb prediction is incorrect,
then estimated nouns cannot be correct either because the
predicted verb determines the set of roles, i.e., the basis of
noun estimation. Moreover, verb prediction is challenging
since a verb is highly abstract and situations for the same
verb could significantly vary as shown in Figure 2. In spite
of its importance and difficulty, verb prediction has been
made in naı̈ve ways, e.g., using a single classifier on top
of a convolutional neural network (CNN), which is anal-
ogous to Glance only. Existing methods allow Glance to
assist Gaze by informing the predicted verb but not vice
versa; this could limit the performance of verb prediction,
and consequently, that of the entire pipeline.

We resolve the above issue by a collaborative framework
that enables Glance and Gaze to interact and complement
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Figure 2. Two examples of Grounded Situation Recognition [29].
These show various situations for the same verb.

each other. To fully utilize this framework, we propose
Collaborative Glance-Gaze TransFormer (CoFormer) that
consists of Glance transformer and Gaze transformer as il-
lustrated in Figure 3. Glance transformer predicts a verb
by aggregating image features through self-attentions, and
Gaze transformer estimates nouns and their groundings by
allowing each role to focus on its relevant image region
through self-attentions and cross-attentions. As shown in
Figure 3, there are two steps for Gaze in our CoFormer.
Gaze-Step1 transformer estimates nouns for all role candi-
dates and assists Glance transformer for more accurate verb
prediction. Meanwhile, Gaze-Step2 transformer estimates
a noun and its grounding for each role associated with the
predicted verb by exploiting the aggregated image features
obtained by Glance transformer.

The collaborative relationship between Glance and Gaze
transformers lead to more accurate verb and grounded noun
predictions for GSR. In CoFormer, Gaze-Step1 supports
Glance by analyzing involved nouns and their relations,
which enables noun-aware verb prediction. Glance assists
Gaze-Step2 by informing the predicted verb, which reduces
the role candidates considered in grounded noun prediction.
Contributions. (i) We propose a collaborative framework
where the two processes for verb prediction and noun esti-
mation are interactive and complementary, which is novel
in GSR. (ii) Our method achieves state-of-the-art accuracy
in every evaluation metric on the SWiG dataset. (iii) We
demonstrate the effectiveness of CoFormer by conducting
extensive experiments and provide in-depth analyses.

2. Related Work
Visual reasoning such as image captioning [2, 10, 13,

35, 42], scene graph generation [15, 26, 38, 39], and
human-object-interaction detection [16,21,36,43] has been
widely studied for comprehensive understanding of images.
Given an image, image captioning aims at describing activ-
ities and entities using natural language, and scene graph
generation or human-object-interaction detection aims at
capturing a set of triplets 〈subject, predicate, object〉 or

〈human, object, interaction〉. However, it is not straight-
forward to evaluate the quality of natural language captions,
and the triplets have limited expressive power. To overcome
such limitations, Yatskar et al. [41] introduce SR along with
the imSitu dataset. SR has more expressive power based on
linguistic sources from FrameNet [7], and its quality evalua-
tion is straightforward. GSR builds upon SR by additionally
estimating bounding-box groundings.
Situation Recognition. Yatskar et al. [41] propose a con-
ditional random field [17] model, and also present a ten-
sor composition method with semantic augmentation [40].
Mallya and Lazebnik [27] employ a recurrent neural net-
work to capture role relations in the predefined sequential
order. Li et al. [19] propose a gated graph neural network
(GGNN) [20] to capture the relations in more flexible ways.
To learn context-aware role relations depending on an in-
put image, Suhail and Sigal [32] apply a mixture kernel
method to GGNN. Cooray et al. [4] employ inter-dependent
queries to capture role relations, and present a verb model
which considers nouns from the two predefined roles; they
construct a query based on two nouns for verb prediction.
Compared with this, CoFormer considers nouns from all
role candidates for accurate verb prediction.
Grounded Situation Recognition. Pratt et al. [29] propose
GSR along with the SWiG dataset, and present two mod-
els: Independent Situation Localizer (ISL) and Joint Situa-
tion Localizer (JSL). They first predict a verb using a single
classifier on top of a CNN backbone, then estimate nouns
and their groundings. In both models, LSTM [12] produces
output features to predict nouns in the predefined sequen-
tial order, while RetinaNet [23] estimates their groundings.
ISL separately predicts nouns and their groundings, and JSL
jointly predicts them. Cho et al. [3] propose a transformer
encoder-decoder architecture, where the encoder effectively
captures high-level semantic features for verb prediction
and the decoder flexibly learns the role relations. Compared
with these models, CoFormer leverages involved nouns and
their relations for accurate verb prediction via transformers.
Transformer Architecture. Transformers [34] have driven
remarkable success in vision tasks [1,2,6,10,16,18,24,26].
Dosovitskiy et al. [6] propose a transformer encoder archi-
tecture for image classification by aggregating image fea-
tures using a learnable token in the encoder. Carion et al. [1]
present a transformer encoder-decoder architecture for ob-
ject detection by predicting a set of bounding boxes using
a fixed number of learnable queries in the decoder. Such
learnable queries have been widely used to extract features
in other transformer architectures [16, 18, 24]. Compared
with those transformers, CoFormer employs two learnable
tokens which aggregate different kinds of features through
self-attentions. In addition, CoFormer constructs a differ-
ent number of learnable queries by explicitly leveraging the
prediction result obtained by two encoders and a classifier.
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Figure 3. Overall architecture of Collaborative Glance-Gaze TransFormer (CoFormer). Glance transformer predicts a verb with the help
of Gaze-Step1 transformer that analyzes nouns and their relations by leveraging role features, while Gaze-Step2 transformer estimates the
grounded nouns for the roles associated with the predicted verb. Prediction results are obtained by feed forward networks (FFNs). The
results from the two noun classifiers placed on top of Gaze-Step1 transformer are ignored at inference time.

3. Method

Task Definition. GSR assumes discrete sets of verbs V ,
nouns N , and roles R. Each verb v ∈ V is paired with
a frame derived from FrameNet [7], where the frame de-
fines the set of roles Rv ⊂ R associated with the verb. For
example, a verb Mowing is paired with a frame which de-
fines the set of roles RMowing = {Agent, Item,Tool,Place}
as shown in Figure 3. Each role r ∈ Rv is fulfilled by a
noun n ∈ N grounded by a bounding box b ∈ R4, called
grounded noun. Formally speaking, the set of fulfilled roles
is Fv = {(ri, ni,bi) | ri ∈ Rv, ni ∈ N ∪ {∅n}, bi ∈
R4 ∪ {∅b} for i = 1, ..., |Rv|}; ∅n and ∅b denote unknown
and not grounded, respectively. The output of GSR is a
grounded situation denoted by S = (v,Fv).

3.1. Overall Architecture

CoFormer predicts a verb, then estimates grounded
nouns as illustrated in Figure 3. As shown in Figure 5, our
transformers consist of common building blocks, encoder
and decoder, whose architectures are illustrated in Figure 6.
For simplicity, we abbreviate Step1 as S1, and Step2 as S2
in the remaining of this paper.
Overview. Given an image, CoFormer extracts flattened
image features via a CNN backbone and flatten operation,
which are fed as input to Glance transformer and Gaze-S1
transformer. From these transformers, the output features
corresponding to Image-Looking (IL) and Role-Looking
(RL) tokens are used for verb prediction. Considering the
predicted verb, Gaze-S2 transformer estimates grounded
nouns for the roles associated with the predicted verb by
exploiting image features obtained by Glance transformer.
Figure 4 shows the collaborative relationship between the
modules; transformers for verb prediction and noun estima-
tion are interactive and complementary in CoFormer.

Glance Gaze−S2
(a)

(c)

(b)

Noun Estimation Verb Prediction

Gaze−S1

Figure 4. Interactive and complementary processes in CoFormer.
(a) RL token feature, (b) predicted verb, (c) loss gradients.

Glance Transformer. This transformer consists of a sin-
gle encoder which takes the flattened image features and
learnable IL token as input. IL token captures the essen-
tial features for verb prediction, while Glance transformer
aggregates the image features through self-attentions.

Gaze-S1 Transformer. This transformer is composed of
a decoder and an encoder. The decoder takes the flattened
image features and learnable role tokens as input, where the
role tokens correspond to all role candidates. This module
extracts role features from the image features via the role
tokens. Then, the encoder takes the role features and learn-
able RL token as input. RL token captures involved nouns
and their relations for verb prediction, while the encoder
aggregates the role features through self-attentions.

Gaze-S2 Transformer. This transformer consists of a sin-
gle decoder, which takes learnable tokens and the aggre-
gated image features obtained from Glance transformer as
input. The input tokens correspond to the predicted verb
and its associated roles. Note that a verb token is added
to role tokens as shown in Figure 5; conditioning on the
predicted verb significantly reduces the search space of the
roles, e.g., the search space of Mowing Tool is much smaller
than that of Tool. Gaze-S2 transformer extracts role features
from the aggregated image features, and the extracted role
features are used for grounded noun prediction.

3



(a) Glance Transformer (b) Gaze–Step1 Transformer (c) Gaze–Step2 Transformer

Encoder
(Feature Aggregation)

Decoder
(Feature Extraction)

Encoder
(Feature Aggregation)

Decoder
(Feature Extraction)

…

…

…

…

…

…

……

Role Tokens
Flattened Image Features Aggregated Image Features

Verb TokenRL Token
Flattened Image Features

IL Token Selected Role Tokens

Figure 5. Transformer architectures in CoFormer are composed of common building blocks, encoder and decoder.

3.2. Feature Extraction

Given an input image, a single CNN backbone extracts
image features of size h× w × c, where h× w is the reso-
lution, and c is the number of channels. Then, a 1× 1 con-
volution followed by a flatten operation produces flattened
image features XF ∈ Rhw×d, where d is the number of
channels. The flattened image features XF are fed as input
to Glance transformer (Fig. 5(a)) and Gaze-S1 transformer
(Fig. 5(b)). For the flattened image features XF , positional
encodings are introduced to retain spatial information. As
shown in Figure 6, positional encodings are added to the
queries and keys at the self-attention layers in an encoder,
and to the keys at the cross-attention layers in a decoder.

3.3. Verb Prediction

The input of the encoder in Glance transformer is ob-
tained by the concatenation of the image features XF and
learnable IL token. IL token captures the essential features
for verb prediction, while the encoder aggregates the image
features through self-attentions. As its output, the encoder
produces aggregated image features XA ∈ Rhw×d and IL
token feature. For the aggregated image features XA, posi-
tional encodings are applied.

Gaze-S1 transformer supports Glance transformer for
more accurate verb prediction, while predicting nouns for
all role candidates. To be specific, the decoder of Gaze-S1
transformer takes the flattened image features XF and
learnable role tokens corresponding to all predefined roles;
each role token embedding is denoted by wr ∈ Rd, where
r ∈ R. This decoder extracts role features through self-
attentions on the role tokens and cross-attentions between
the tokens and the image features XF . The input of the
encoder in Gaze-S1 transformer is obtained by the concate-
nation of the extracted role features and learnable RL to-
ken. RL token captures involved nouns and their relations
from all role candidates, while the encoder aggregates the

V K Q

Feed Forward 
Network

LayerNorm

LayerNorm

Multi-Head
Self-Attention

3×

(b) Decoder(a) Encoder

V K Q

3×

V K Q

LayerNorm

LayerNorm

Multi-Head
Self-Attention

Feed Forward 
Network

LayerNorm

Multi-Head
Cross-Attention

Positional
Encodings

Positional
EncodingsX X

X′

Figure 6. Detailed architectures of encoder and decoder. We use
Pre-Layer Normalization [37] for these two modules. An encoder
performs feature aggregation through self-attentions on X, and a
decoder performs feature extraction through self-attentions on X
and cross-attentions between X and X′.

role features through self-attentions. For this encoder, posi-
tional encodings are not added to the queries and keys at the
self-attention layers since roles are permutation-invariant in
GSR. Regarding to Gaze-S1 transformer, the extracted and
aggregated role features are fed as input to noun classifiers;
these classifiers are auxiliary modules and their results are
ignored at inference time. Note that Gaze-S1 transformer
assists Glance transformer via RL token feature which is
aware of involved nouns and their relations.
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IL token feature and RL token feature are concatenated,
then fed as input to the feed forward network (FFN) for verb
classification, which consists of learnable linear layers with
activation functions. The verb classifier FFNVerb followed
by a softmax function produces a verb probability distribu-
tion pv , which is used to estimate the most probable verb
v̂ = argmaxv pv . The predicted verb v̂ supports Gaze-S2
transformer so that the transformer concentrates only on the
roles associated with the predicted verb and estimates their
grounded nouns more accurately in consequence.

3.4. Grounded Noun Prediction

The aggregated image features XA from Glance trans-
former are fed as input to Gaze-S2 transformer (Fig. 5(c)).
The decoder in this transformer takes the image features
XA and frame-role queries as input. Specifically, for each
role r in the frame of the predicted verb v̂, its frame-role
query qr ∈ Rd is constructed by an addition of the learn-
able role token embedding wr ∈ Rd and the learnable verb
token embedding wv̂ ∈ Rd, i.e., qr = wr+wv̂ for r ∈ Rv̂ .
The decoder extracts role features through self-attentions
on the frame-role queries and cross-attentions between the
queries and the image features XA to capture the involved
nouns and their relations from roles relevant to the verb v̂.
Those extracted role features are used for grounded noun
prediction. Note that this task requires to predict a noun, a
bounding box, and a box existence for each role. Accord-
ingly, we employ three feed forward networks FFNNoun,
FFNBox, and FFNBoxExist that take the role features as in-
put for noun classification, bounding box estimation, and
box existence prediction, respectively. Each of these FFNs
consists of learnable linear layers with activation functions.

For each role r ∈ Rv̂ , FFNNoun followed by a soft-
max function produces a noun probability distribution pnr .
FFNBox followed by a sigmoid function produces a bound-
ing box b̂r ∈ [0, 1]4 which indicates the center coordi-
nates, height and width relative to the input image size. The
predicted box b̂r can be transformed into the top-left and
bottom-right coordinates b̂′r ∈ R4. FFNBoxExist followed
by a sigmoid function produces a box existence probability
pbr ∈ [0, 1]. If pbr < 0.5, the predicted box b̂′r is ignored.
Note that the predicted verb v̂ assists Gaze-S2 transformer
via the construction of frame-role queries, while the loss
gradients propagated from Gaze-S2 transformer through the
aggregated image features XA enable Glance transformer to
implicitly consider involved nouns.

3.5. Training CoFormer

The predicted verb, nouns and bounding boxes are used
for computing losses to train CoFormer. At training time,
we construct frame-role queries based on the ground-truth
verb for stable training of Gaze-S2 transformer. Please refer
to the supplementary material for more training details.

Verb Classification Loss. The verb classification loss is the
cross-entropy between the verb probability distribution pv

and the ground-truth verb distribution.
Noun Classification Losses. As illustrated in Figure 3,
CoFormer has three noun classifiers; two of them are placed
on top of Gaze-S1 transformer and the other is incorpo-
rated with Gaze-S2 transformer. For each noun classifier,
we compute the cross-entropy between the estimated noun
probability distribution and the ground-truth noun distribu-
tion for each role r ∈ Rṽ , where ṽ is the ground-truth verb.
The computed cross-entropy loss is averaged over roles Rṽ .
Note that we only train role tokens for the roles in the frame
of the ground-truth verb ṽ, since noun annotations are given
for the roles associated with the verb ṽ in the dataset.
Box Existence Prediction Loss. To deal with roles which
have no ground-truth boxes (i.e., ∅b), e.g., by occlusion,
CoFormer estimates a box existence probability pbr for each
role r ∈ Rṽ . The box existence prediction loss is the cross-
entropy between the probability pbr and the ground-truth
box existence, which is averaged over roles Rṽ .
Box Regression Losses. We employ L1 loss and GIoU
loss [30] for box regression. Let br denote the ground-truth
box in the form of the center coordinates, height and width
relative to the given image size. In the computation of
box regression losses, we ignore the roles which have no
ground-truth boxes (i.e., ∅b). The L1 box regression loss
LL1 is computed by

LL1 =
1

|R̃|

∑
r∈R̃

‖br − b̂r‖1, (1)

where R̃ = {r | br 6= ∅b for r ∈ Rṽ}. To compute the
GIoU loss, GIoU(·) is first computed by

GIoU(b′r, b̂
′
r)

=
|b′r ∩ b̂′r|
|b′r ∪ b̂′r|

− |C(b
′
r, b̂
′
r) \ (b′r ∪ b̂′r)|

|C(b′r, b̂′r)|
, (2)

where b′r indicates the top-left and bottom-right coordinates
transformed from br, and C(b′r, b̂

′
r) denotes the smallest

box which encloses b′r and b̂′r. The GIoU box regression
loss LGIoU is then computed by

LGIoU =
1

|R̃|

∑
r∈R̃

(
1−GIoU(b′r, b̂

′
r)
)
. (3)

4. Experiments
CoFormer is evaluated on the SWiG dataset [29], which

is constructed by adding box annotations to the imSitu
dataset [41]. The imSitu dataset contains 75K, 25K and
25K images for train, development and test set, respectively.
This dataset contains 504 verbs, 11K nouns and 190 roles.
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Top-1 Predicted Verb Top-5 Predicted Verbs Ground-Truth Verb
grnd grnd grnd grnd grnd grnd

Set Method verb value value-all value value-all verb value value-all value value-all value value-all value value-all
Methods for Situation Recognition

dev

CRF [41] 32.25 24.56 14.28 – – 58.64 42.68 22.75 – – 65.90 29.50 – –
CRF w/ DataAug [40] 34.20 26.56 15.61 – – 62.21 46.72 25.66 – – 70.80 34.82 – –
RNN w/ Fusion [27] 36.11 27.74 16.60 – – 63.11 47.09 26.48 – – 70.48 35.56 – –
GraphNet [19] 36.93 27.52 19.15 – – 61.80 45.23 29.98 – – 68.89 41.07 – –
CAQ w/ RE-VGG [4] 37.96 30.15 18.58 – – 64.99 50.30 29.17 – – 73.62 38.71 – –
Kernel GraphNet [32] 43.21 35.18 19.46 – – 68.55 56.32 30.56 – – 73.14 41.68 – –

Methods for Grounded Situation Recognition
ISL [29] 38.83 30.47 18.23 22.47 7.64 65.74 50.29 28.59 36.90 11.66 72.77 37.49 52.92 15.00
JSL [29] 39.60 31.18 18.85 25.03 10.16 67.71 52.06 29.73 41.25 15.07 73.53 38.32 57.50 19.29
GSRTR [3] 41.06 32.52 19.63 26.04 10.44 69.46 53.69 30.66 42.61 15.98 74.27 39.24 58.33 20.19
CoFormer (Ours) 44.41 35.87 22.47 29.37 12.94 72.98 57.58 34.09 46.70 19.06 76.17 42.11 61.15 23.09

Methods for Situation Recognition

test

CRF [41] 32.34 24.64 14.19 – – 58.88 42.76 22.55 – – 65.66 28.96 – –
CRF w/ DataAug [40] 34.12 26.45 15.51 – – 62.59 46.88 25.46 – – 70.44 34.38 – –
RNN w/ Fusion [27] 35.90 27.45 16.36 – – 63.08 46.88 26.06 – – 70.27 35.25 – –
GraphNet [19] 36.72 27.52 19.25 – – 61.90 45.39 29.96 – – 69.16 41.36 – –
CAQ w/ RE-VGG [4] 38.19 30.23 18.47 – – 65.05 50.21 28.93 – – 73.41 38.52 – –
Kernel GraphNet [32] 43.27 35.41 19.38 – – 68.72 55.62 30.29 – – 72.92 42.35 – –

Methods for Grounded Situation Recognition
ISL [29] 39.36 30.09 18.62 22.73 7.72 65.51 50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58
JSL [29] 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45
GSRTR [3] 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 57.45 19.67
CoFormer (Ours) 44.66 35.98 22.22 29.05 12.21 73.31 57.76 33.98 46.25 18.37 75.95 41.87 60.11 22.12

Table 1. Quantitative evaluations of methods in SR and GSR. SR models are evaluated on the imSitu dataset, and GSR models are evaluated
on the SWiG dataset. The only difference between the two datasets is the existence of bounding box annotation.

Top-1 Predicted Verb Top-5 Predicted Verbs Ground-Truth Verb
grnd grnd grnd grnd

Method verb value value verb value value value value-all value value-all
w/o Gaze-S1 Transformer 42.46 34.21 28.23 70.89 55.47 45.34 76.02 41.96 61.21 23.15
w/o Gaze-S2 Transformer 43.02 31.24 23.27 71.17 51.70 36.59 69.68 32.94 48.44 13.05
w/o Noun Classifiers on Gaze-S1 Transformer 41.30 33.33 27.50 69.76 55.05 44.96 75.97 41.94 61.32 23.39
w/o Gradient Flow from Gaze-S2 Transformer to Glance Transformer 42.96 33.82 25.77 70.97 54.59 41.11 73.91 38.59 55.10 17.10
w/o Verb Token in Gaze-S2 Transformer 44.36 35.57 29.16 72.84 56.79 46.19 74.53 39.83 60.07 21.83
CoFormer (Ours) 44.41 35.87 29.37 72.98 57.58 46.70 76.17 42.11 61.15 23.09

Table 2. Ablation study of CoFormer on the SWiG dev set. The contributions of different components used in our model are evaluated.

The number of roles in the frame of a verb ranges from 1 to
6. Each image is paired with the annotation of a verb, and
three nouns from three different annotators for each role. In
addition to this annotation, the SWiG dataset provides a box
annotation for each role (except role Place).

4.1. Evaluation Metric

Metric Details. The prediction accuracy of verb is
measured by verb, that of noun is evaluated by value
and value-all, and that of grounded noun is assessed by
grounded-value and grounded-value-all. Regarding to the
noun metrics, value measures whether a noun is correct
for each role, and value-all measures whether all nouns
are correct for entire roles in a frame simultaneously. The
noun prediction is considered correct if the predicted noun
matches any of the three noun annotations given by three
annotators. For the grounded noun metrics, grounded-value
measures whether a noun and its grounding are correct
for each role, and grounded-value-all measures whether all
nouns and their groundings are correct for entire roles in a

frame simultaneously. The grounding prediction is consid-
ered correct if the predicted box existence is correct and the
predicted bounding box has Intersection-over-Union (IoU)
value at least 0.5 with the box annotation. Note that the
above metrics are calculated per verb and then averaged
over all verbs, since the number of roles in a frame depends
on a verb and each verb might be associated with a different
number of samples in the dataset.

Evaluation Settings. Three evaluation settings are pro-
posed for comprehensive evaluation: Top-1 Predicted Verb,
Top-5 Predicted Verbs, and Ground-Truth Verb. In Top-1
Predicted Verb setting, the predicted nouns and their
groundings are considered incorrect if the top-1 verb pre-
diction is incorrect. In Top-5 Predicted Verbs setting, the
predicted nouns and their groundings are considered incor-
rect if the ground-truth verb is not contained in the top-5
predicted verbs. In Ground-Truth Verb setting, the predicted
nouns and their groundings are obtained by conditioning on
the ground-truth verb.
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Figure 7. Attention scores from IL token to image features, from RL token to role features, and on frame-role queries. We visualize the
attention scores computed from the last self-attention layer of the encoder in Glance transformer, the encoder in Gaze-S1 transformer, and
the decoder in Gaze-S2 transformer, respectively. Higher attention scores are highlighted in red color on images.

Image Role #1 Role #2 Role #3 Role #4 Prediction

Agent Horse Item Tool Cart Place StreetCarting Agent Item Tool Place

Agent Person Reference City Tool Pen Place Agent Reference Tool PlaceDrawing

Man

∅

Figure 8. Attentions scores from frame-role queries to image features. We visualize the attention scores computed from the last cross-
attention layer of the decoder in Gaze-S2 transformer. Higher attention scores are highlighted in red color on images.

4.2. Implementation Details

We use ResNet-50 [11] pretrained on ImageNet [5] as a
CNN backbone following existing models [3, 29] in GSR.
Given an image, the CNN backbone extracts image features
of size h × w × c, where h = w = 22 and c = 2048.
The embedding dimension of each token is d = 512. We
employ AdamW Optimizer [25] with 10−4 weight decay,
β1 = 0.9, and β2 = 0.999. We train CoFormer with 10−4

learning rate (10−5 for the CNN backbone) which decreases
by a factor of 10 at epoch 30. Training CoFormer with batch
size of 16 for 40 epochs takes about 30 hours on four RTX
3090 GPUs. Complete details including loss coefficients
are provided in the supplementary material.

4.3. Quantitative Evaluations

CoFormer achieves the state of the art in all evaluations
as shown in Table 1. Existing SR models [4, 19, 27, 32]
use at least two VGG-16 [31] backbones, and GSR mod-
els [29] employ two ResNet-50 [11] backbones for verb
and noun prediction, while CoFormer only employs a sin-
gle ResNet-50 backbone. Compared with GSRTR [3], the
improvements in the verb prediction accuracies range from
3.35%p to 4.03%p. Regarding to the noun prediction ac-
curacies, the improvements range from 1.84%p to 3.89%p,
and those in the grounded noun prediction accuracies range
from 2.11%p to 4.09%p. These results demonstrate that the
proposed collaborative framework is effective for GSR.
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Figure 9. Prediction results. Dashed boxes denote incorrect grounding predictions. Incorrect noun predictions are highlighted in gray color.

Ablation Study. We analyze the effects of different com-
ponents in CoFormer as shown in Table 2. When we train
our model without using Gaze-S1 transformer or Gaze-S2
transformer, the accuracies in verb prediction or grounded
noun prediction largely decrease, which demonstrates the
effectiveness of the collaborative framework. Training our
CoFormer without using the two noun classifiers placed on
top of Gaze-S1 transformer leads to significant drops in the
verb prediction accuracies. In this case, it is difficult for role
features to learn involved nouns and their relations, while
the encoder in Gaze-S1 transformer aggregates the role fea-
tures through self-attentions. To figure out whether Gaze-S2
transformer assists Glance transformer by forcing it to im-
plicitly consider involved nouns, we train CoFormer by re-
stricting the flow of loss gradients through the aggregated
image features from Gaze-S2 transformer to Glance trans-
former. As shown in the fourth row of Table 2, the verb pre-
diction accuracies drop, which demonstrates that Gaze-S2
transformer supports Glance transformer via loss gradients
through the aggregated image features. In CoFormer, each
frame-role query is constructed by an addition of a role to-
ken embedding and a verb token embedding. We study how
effective it is by training CoFormer without using a verb to-
ken embedding for the construction of frame-role queries.
The fifth row of Table 2 shows that the grounded noun pre-
diction accuracies drop, which demonstrates that the verb
token embedding is helpful for grounded noun prediction.

4.4. Qualitative Evaluations

We visualize the attention scores computed in the atten-
tion layers of CoFormer. Figure 7(a) shows that IL to-
ken captures the essential features to estimate a verb for
two Boating images. Figure 7(b) shows how much RL to-
ken focuses on the roles in the frame of the ground-truth

verb, and the classification results from the noun classifier
placed on top of the encoder in Gaze-S1 transformer; atten-
tion scores among 190 roles sum to 1. This demonstrates
that RL token effectively captures involved nouns and their
relations through self-attentions in the encoder of Gaze-S1
transformer. Figure 7(c) shows how role relations are cap-
tured through self-attentions on frame-role queries, which
demonstrates that CoFormer similarly captures the relations
if the situations in images are similar; attention scores sum
to 1 in each column. Figure 8 shows the local regions where
frame-role queries focus on, and the predicted grounded
nouns corresponding to the queries. Figure 9 shows predic-
tion results of CoFormer on the SWiG test set. The first row
shows the correct predictions, and the second row shows
several incorrect predictions.

5. Conclusion

We propose a collaborative framework for GSR, where
the two processes for verb prediction and noun estimation
interact and complement each other. Using this framework,
we present CoFormer which outperforms existing methods
in all evaluation metrics on the SWiG dataset. We also pro-
vide in-depth analyses of how CoFormer draws attentions
on images and captures role relations with the ablation study
on the effects of different components used in our model. A
limitation of CoFormer is that the model sometimes suffers
from predicting the boxes which have extreme aspect ratios
or small scales. This issue will be explored in future work.
Acknowledgement. This work was supported by the NRF grant

and the IITP grant funded by Ministry of Science and ICT, Ko-
rea (NRF-2021R1A2C3012728, No.2019-0-01906 Artificial Intel-
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Collaborative Transformers for Grounded Situation Recognition

— Supplementary Material —

This supplementary material provides method details
(Section A), implementation details (Section B), qualitative
evaluations (Section C), an application of this task (Sec-
tion D), computational evaluations (Section E) and a lim-
itation (Section F), which could not be included in the main
paper due to the limited space.

A. Method Details
Transformer architectures in our CoFormer consist of

common building blocks, encoder and decoder. The main
components of these building blocks are attention layers.
Section A.1 provides more details of the attention layers.

In Section 3.5 of the main paper, the losses to train our
model are described: verb classification loss, noun classifi-
cation losses, box existence prediction loss, and box regres-
sion losses. Section A.2 provides more details of the losses.

A.1. Attention Layer

Multi-Head Attention. The input of the multi-head atten-
tion layer is the sequence of query, key and value. The
query sequence is denoted by Q ∈ RLQ×d, where LQ is
the sequence length and d is the size of the hidden dimen-
sion. The key sequence is denoted by K ∈ RLKV ×d and
value sequence is denoted by V ∈ RLKV ×d, where LKV is
the sequence length. In the multi-head attention layer, we
employ H attention heads; the hidden dimension of each
attention head is dh = d/H . For each attention head i,
Q, K and V are linearly projected via parameter matrices
WQ

i ,W
K
i ,W

V
i ∈ Rd×dh . In details,

Qi = QWQ
i ∈ RLQ×dh , (A.1)

Ki = KWK
i ∈ RLKV ×dh , (A.2)

Vi = VWV
i ∈ RLKV ×dh . (A.3)

The output of each attention head i is obtained by a
weighted summation of the value Vi, where the weights are
computed by the scaled dot-product between the query Qi

and the key Ki followed by a softmax function. In details,

Attention(Qi,Ki,Vi) = Softmax(
QiK

T
i√

dh
)Vi. (A.4)

The output of each attention head i is concatenated along
hidden dimension, then linearly projected via a parameter

matrix WO ∈ Rd×d. In details,

MultiHead(Q,K,V) = [Head1; ...; HeadH ]WO, (A.5)

where [; ] is a concatenation along hidden dimension and
Headi = Attention(Qi,Ki,Vi) for i = 1, ...,H .
Multi-Head Cross-Attention. This is the multi-head atten-
tion layer where the key sequence K is same with the value
sequence V, but the query sequence Q is different.
Multi-Head Self-Attention. This is the multi-head atten-
tion layer where the query sequence Q, key sequence K,
and value sequence V are same, i.e., Q = K = V.

A.2. Loss

Figure A1 shows the losses to train CoFormer. The verb
classification loss is denoted by LVerb. The noun classi-
fication loss from the classifier involved in the decoder of
Gaze-S1 transformer is denoted by L1

Noun, the loss from the
classifier involved in the encoder of Gaze-S1 transformer is
denoted by L2

Noun, and the loss from the classifier involved
in the decoder of Gaze-S2 transformer is denoted by L3

Noun.
The box existence prediction loss is denoted by LBoxExist.
The L1 box regression loss is denoted by LL1. The GIoU
box regression loss is denoted by LGIoU.

The total training loss is the linear combination of
LVerb,L1

Noun,L2
Noun,L3

Noun,LBoxExist,LL1, and LGIoU.
In this total loss, the loss coefficients are as follows:
λVerb, λ

1
Noun, λ

2
Noun, λ

3
Noun, λBoxExist, λL1, λGIoU > 0.

B. Implementation Details
In Section 4.2 of the main paper, some implementation

details are described. For completeness, we describe more
architecture details (Section B.1), loss details (Section B.2),
augmentation details (Section B.3), and training details
(Section B.4) of our CoFormer.

B.1. Architecture Details

Following previous work [3, 29], we use ResNet-50 [11]
pretrained on ImageNet [5] as a CNN backbone. Given an
image, the CNN backbone produces image features of size
h×w× c, where h = w = 22 and c = 2048. A 1× 1 con-
volution followed by a flatten operation produces flattened
image features XF ∈ Rhw×d, where d = 512. To retain
spatial information, we employ positional encodings. We
use learnable 2D embeddings for the positional encodings.
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Figure A1. Transformer architectures in CoFormer including the losses to train our model. The losses for training our CoFormer are as
follows: LVerb,L1

Noun,L2
Noun,L3

Noun,LBoxExist,LL1,LGIoU.

We initialize encoders and decoders using Xavier Initial-
ization [9], and these modules are trained with the dropout
rate of 0.15. The number of heads in the attention layers of
these modules is 8. Each of feed forward networks in these
modules is 2-fully connected layers with a ReLU activation
function, whose hidden dimensions are 4d and dropout rate
is 0.15. These modules take learnable tokens, and each em-
bedding dimension of the tokens is d.

The verb classifier FFNVerb is 2-fully connected layers
with a ReLU activation function, whose hidden dimensions
are 2d and dropout rate is 0.3. Each of the two noun classi-
fiers placed on top of Gaze-S1 transformer is a linear layer.
The noun classifier FFNNoun is 2-fully connected layers
with a ReLU activation function, whose hidden dimensions
are 2d and dropout rate is 0.3. The bounding box estimator
FFNBox is 3-fully connected layers with two ReLU activa-
tion functions, whose hidden dimensions are 2d and dropout
rate is 0.2. The box existence predictor FFNBoxExist is
2-fully connected layers with a ReLU activation function,
whose hidden dimensions are 2d and dropout rate is 0.2.

B.2. Loss Details

Complete Details of Noun Losses. In the SWiG dataset,
each image is associated with three noun annotations given
by three different annotators for each role. For the noun
classification losses L1

Noun, L2
Noun, L3

Noun, each noun loss
is obtained by the summation of three classification losses
corresponding to three different annotators.
Regularization. We employ label smoothing regulariza-
tion [33] in the loss computation for verb classification loss
LVerb and noun classification losses L1

Noun, L2
Noun, L3

Noun.

In details, the label smoothing factor in the computation of
verb classification loss is 0.3, and the factor in the compu-
tation of noun classification losses is 0.2.
Loss Coefficients. Total loss to train CoFormer is a linear
combination of losses. In our implementation, the loss co-
efficients are λVerb = λ3Noun = 1, λ1Noun = λ2Noun = 2,
and λBoxExist = λL1 = λGIoU = 5.

B.3. Augmentation Details

For data augmentation, we employ random scaling, ran-
dom horizontal flipping, random color jittering, and random
gray scaling. The input images are randomly scaled with
the scaling factors of 0.5, 0.75, and 1.0. Also, the input
images are horizontally flipped with the probability of 0.5.
The brightness, saturation and hue of the input images are
randomly changed with the factor of 0.1 for each change.
The input images are randomly converted to grayscale with
the probability of 0.3.

B.4. Training Details

We employ AdamW Optimizer [25] with the weight de-
cay of 10−4, β1 = 0.9, and β2 = 0.999. For stable training,
we apply gradient clipping with the maximal gradient norm
of 0.1. The transformers, classifiers and learnable embed-
dings are trained with the learning rate of 10−4. The CNN
backbone is fine-tuned with the learning rate of 10−5. Note
that we have a learning rate scheduler and the learning rates
are divided by 10 at epoch 30. For batch training, we set the
batch size to 16. We train CoFormer for 40 epochs, which
takes about 30 hours on four RTX 3090 GPUs.
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Figure C2. Attention scores from IL token to image features. We visualize the attention scores computed from the last self-attention layer
of the encoder in Glance transformer. Higher attention scores are highlighted in red color on images.

0.044
0.038

0.032 0.032 0.030 0.030 0.027 0.024 0.023
0.019

From

Garden

Pawed
Item

Soil

Decomposer

Dirt

Wrapped
Item

Garden

Created
Item

∅

Place

Garden

Undergoer

Soil

Decorated

Soil

Destroyed
Item

Soil

Blocked

∅

Destroyed 
Item

Wall

Wrapped
Item

Wall

Recipients

Man

Item

Door
Frame

Pitched

Door
Frame

Cloth

Wood

Pawed
Item
Door

Frame

Brancher

Wall

From

Wall

Follower

Man

0.034
0.030

0.026 0.026 0.025
0.022 0.021 0.020 0.020 0.019

Figure C3. Attention scores from RL token to role features. We visualize the attention scores computed from the last self-attention layer of
the encoder in Gaze-S1 transformer. Note that we show the roles where RL token has top-10 attentions scores. In Figure 7(b) of the main
paper, we show the results corresponding to the roles in the frame of the ground-truth verb.

C. Qualitative Evaluations

We visualize the attention scores computed in the atten-
tion layers of the transformers in our CoFormer. Figure C2
shows that IL token captures the essential features to esti-
mate the main activities for two Cramming images and two
Ballooning images. Figure C3 shows the roles where RL
token has top-10 attention scores, and the classification re-
sults from the noun classifier placed on top of the encoder
in Gaze-S1 transformer; attention scores among 190 roles
sum to 1. Note that several roles where RL token has high
attention scores are not relevant to the main activity, but the
noun classification results corresponding to those roles are

highly relevant to the activity. Since RL token leverages the
role features which are fed as input to the noun classifier,
it is reasonable to aggregate those role features for accu-
rate verb prediction; the role features are aware of involved
nouns and their relations. Figure C3 demonstrates that RL
token can effectively capture involved nouns and their rela-
tions for noun-aware verb prediction through self-attentions
on the role features in the encoder of Gaze-S1 transformer.
Figure C4 shows how role relations are captured through
self-attentions on frame-role queries, which demonstrates
that CoFormer similarly captures the role relations if the
situations in images are similar; attention scores sum to 1
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Figure C4. Attention scores on frame-role queries. We visualize the attention scores computed from the last self-attention layer of the
decoder in Gaze-S2 transformer.
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Agent Target Tool Place

Mowing Agent Man Tool Lawn Mower Place Backyard

Agent Person Target Paper Tool Pen Place ∅Writing

Item Grass

Role #2 Role #3

Figure C5. Attentions scores from frame-role queries to image features. We visualize the attention scores computed from the last cross-
attention layer of the decoder in Gaze-S2 transformer. Higher attention scores are highlighted in red color on images.

in each column. Figure C5 shows the local regions where
frame-role queries focus on, and the predicted grounded
nouns corresponding to the queries. This demonstrates that
each query effectively captures its relevant local regions
through cross-attentions between the queries and image fea-
tures in the decoder of Gaze-S2 transformer. Note that those
queries are constructed by leveraging the predicted verb,
which significantly reduces the number of role candidates
handled in noun estimation; Gaze-S1 transformer considers
all role candidates, but Gaze-S2 transformer handles a few
roles associated with the predicted verb. Figure C6 shows

the prediction results of CoFormer on the SWiG test set.
The first and second row show correct prediction results.
The third and fourth row show incorrect prediction results.
As shown in Figure C6, three noun annotations are given
for each role in the SWiG dataset. Note that the noun pre-
diction is considered correct if the predicted noun matches
any of the three noun annotations. The grounded noun pre-
diction is considered correct if a noun, a bounding box, and
box existence are correctly predicted for a role.
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Figure C6. Prediction results of our CoFormer on the SWiG test set. Dashed boxes denote incorrect grounding predictions. Incorrect noun
predictions are highlighted in gray color.
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Figure D7. Grounded semantic aware image retrieval on the SWiG dev set. For each query image, we show the retrieval results which
have top-5 similarity scores computed by GrSitSim(·) [29]. This retrieval computes the similarity between two images considering the
predicted verbs, nouns, and bounding-box groundings of the nouns.
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D. Application
As shown in Figure D7, we can apply GSR models to

grounded semantic aware image retrieval. This image re-
trieval computes the similarity between two images con-
sidering their grounded situations. In details, a similarity
score between an image I and an image J is computed
by GrSitSim(I, J) (Eq. D.6). Given an image I , a GSR
model predicts the top-5 most probable verbs v̂I1 , ..., v̂

I
5 .

For each predicted verb v̂Ii , the model predicts nouns

n̂Ii,1, ..., n̂
I
i,|R

v̂I
i
| and bounding boxes b̂′

I

i,1, ..., b̂′
I

i,|R
v̂I
i
|.

These prediction results are used in the computation of
GrSitSim(I, J). By this score function, the similarity score
is maximized if the top-1 predicted verb and the predicted
grounded nouns are same for the two images I and J . Us-
ing this retrieval, we can retrieve images which have similar
grounded situations with the situation of a query image.

E. Computational Evaluations
The number of parameters and inference time of our

CoFormer are shown in Table E1. We also evaluate JSL [29]
and GSRTR [3] on the SWiG test set using a single 2080Ti
GPU with a batch size of 1. JSL uses two ResNet-50 [11]
and a feature pyramid network (FPN) [22] in the CNN back-
bone, while GSRTR and our CoFormer only employ a sin-
gle ResNet-50 in the backbone; these two models demand
much shorter inference time than JSL, which is crucial for
real-world applications. GSRTR and CoFormer are trained
in an end-to-end manner, but JSL is trained separately in
terms of verb model and grounded noun model.

Method Backbone #Params Inference Time
JSL [29] R50, R50-FPN 108 M 80.23 ms (12.46 FPS)
GSRTR [3] R50 83 M 21.69 ms (46.10 FPS)
CoFormer (Ours) R50 93 M 30.62 ms (32.66 FPS)

Table E1. Number of parameters and inference time. Inference
time was measured on the SWiG test set using one 2080Ti GPU.

Area (width× height) Aspect Ratio (width/height)
Metric 0-10% 10-20% 20-100% 0-5% 5-95% 95-100%
value 66.82 69.68 78.64 72.75 76.24 71.88
grnd value 7.42 25.38 65.49 36.88 62.62 31.01

Table F2. Quantitative analysis of our CoFormer on the SWiG
dev set in Ground-Truth Verb evaluation setting. The effects of
box scales and aspect ratios are evaluated. Each range denotes the
ratio of ground-truth boxes when sorted by the value of area or
aspect ratio in ascending order.

F. Limitation
As shown in Table F2, CoFormer suffers from estimat-

ing the noun labels and boxes for objects which have small
scales (Area 0-10% and 10-20%) or extreme aspect ratios
(Aspect Ratio 0-5% and 95-100%). To overcome such lim-
itation, one may leverage multi-scale image features.
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