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Abstract

Human action recognition has recently become one of
the popular research topics in the computer vision commu-
nity. Various 3D-CNN based methods have been presented
to tackle both the spatial and temporal dimensions in the
task of video action recognition with competitive results.
However, these methods have suffered some fundamental
limitations such as lack of robustness and generalization,
e.g., how does the temporal ordering of video frames af-
fect the recognition results? This work presents a novel
end-to-end Transformer-based Directed Attention (Direc-
Former) framework1 for robust action recognition. The
method takes a simple but novel perspective of Transformer-
based approach to understand the right order of sequence
actions. Therefore, the contributions of this work are three-
fold. Firstly, we introduce the problem of ordered tempo-
ral learning issues to the action recognition problem. Sec-
ondly, a new Directed Attention mechanism is introduced
to understand and provide attentions to human actions in
the right order. Thirdly, we introduce the conditional de-
pendency in action sequence modeling that includes orders
and classes. The proposed approach consistently achieves
the state-of-the-art (SOTA) results compared with the recent
action recognition methods [4, 18, 72, 74], on three stan-
dard large-scale benchmarks, i.e. Jester, Kinetics-400 and
Something-Something-V2.

1. Introduction
Video understanding has recently become one of the

popular research topics in the computer vision community.
Video data has become ubiquitous and occurs in numerous
daily activities and applications, e.g., movies and camera

1The implementation of DirecFormer is available at https://
github.com/uark-cviu/DirecFormer

Figure 1. Result Preview. Top 1 accuracy against GLOPS ×
Views of our DirecFormer compared to other methods. Direc-
Former achieves SOTA performance while maintaining the low
computational cost.

surveillance [15, 38, 47, 61]. In the field of video under-
standing [60], action recognition has become a fundamen-
tal problem. In action recognition, there is a need to pay
more attention to the temporal structures of the video se-
quences. Indeed, emphasis on temporal modeling is a com-
mon strategy among most methods. It can be considered
as the main difference between video and images. These
works include long-short term dependencies [14, 16], tem-
poral structure, low-level motion, and action modeling as a
sequence of events or states.

The current methods in video action recognition utilize
3D or pseudo 3D convolution to extract the spatio-temporal
features [7, 50, 57, 70]. However, these 3D CNN-based
methods suffer from intensive computation with many pa-
rameters to be learned. Others attempt to adopt two-stream
structures [19, 20, 22, 53] for accurate action recognition,
since information from one branch could be fused to the
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other one. Some methods in this category require comput-
ing the optical flow first, which could be time-consuming
and requires a large amount of storage. Others apply 3D
convolution to avoid computing the optical flow. Nonethe-
less, this approach also requires a large amount of compu-
tational resources to implement.

Although prior methods [1, 43, 48, 63, 66] have achieved
remarkable performance, they have several limitations re-
lated to the robustness of the models. In this paper, we
therefore address two fundamental questions for current ac-
tion recognition models. In the first question, given a set of
video frames shuffled in a random order and different from
the original one, will it be classified as the same label as the
original recognition result? If it is the case, these models
have been clearly overfitted or biased to other factors (e.g.
scene background), rather than learned semantic informa-
tion of the actions. In the second question, we want to un-
derstand whether these action recognition models are able
to correct the incorrectly-ordered frames to the right ones
and provide an accurate prediction? Finally, we introduce a
new theory to improve the robustness and generalization of
the action recognition models.

1.1. Contributions of this Work

In this work, we present a new end-to-end Transformer-
based Directed Attention (DirecFormer) approach to ro-
bust action recognition. Our method takes a simple but
novel perspective of Transformer-based approach to learn
the right order of a sequence of actions. The contributions
of this work are three-fold. First, we introduce the problem
of ordered temporal learning in action recognition. Second,
a new Directed Attention mechanism is introduced to pro-
vide human action attentions in the right order. Third, we
introduce the conditional dependency in action sequence
modeling that includes orders and classes. The proposed
approach consistently achieves the State-of-the-Art results
compared to the recent methods [2,44,72] on three standard
action recognition benchmarks, i.e. Jester [45], Something-
in-Something V2 [23] and Kinetics-400 [31], as in Fig. 1.

2. Related Work
Video Action Classification. In recent years, video un-
derstanding has become a popular topic in Computer Vi-
sion due to its promising applications such as robotics, au-
tonomous driving, camera surveillance or human behavior
analysis. In the early days, many traditional approaches
used hand-crafted features as a method to encode informa-
tion of video sequences [11, 33, 36, 37, 52, 62, 67]. Among
these approaches, iDT [62] achieved very good perfor-
mance by utilizing dense trajectory features and became one
of the most popular hand-designed methods.

Later, with the success of deep learning architecture
[25, 34, 54–56] using computing hardware, i.e., GPU, TPU,

and the introduction of various large-scale datasets, e.g.
Sport1M [30], Kinetics [6, 31] and AVA [24], video under-
standing, especially video action recognition, has become
easier to approach in the research community, resulting in
an introduction of a series of deep learning frameworks.
These methods mainly focus on learning spatio-temporal
representations in an end-to-end classification manner. [12]
proposed to model the temporal relationship using LSTM
[26] to corporate 2D CNN features. [30] presented an ap-
proach that fuses the information from the temporal dimen-
sion while suggesting applying a single 2D CNN to each
frame of the video sequence. However, this method cannot
handle well the motion change and perform weaker than the
hand-crafted features methods.

The remaining approaches for video action recognition
could be divided into two categories. The first group con-
tains models that adopt the conventional two-stream struc-
ture [53] to improve the temporal modeling capability. A
spatial 2D CNN is used to learn semantic features and a
temporal 2D CNN is applied in the other branch to analyze
the motion content of the video sequences using the optical
flow as input. Both streams are trained in parallel and the
scores are averaged to make the final predictions. [20–22]
studied different combinations to fuse spatio-temporal in-
formation between both streams. TSN [64] proposed sam-
pling sparse frames from evenly divided segments of the
video clip to capture long-range dependencies. These dual-
path methods require additional computation of the optical
flow, which is time-consuming and demand a considerable
amount of storage. However, our proposed method can op-
erate without the need of optical flow modality, thus, reduc-
ing the complexity of the network.

The second category for action recognition is 3D CNN
based methods and the (2+1)D CNN variants. C3D [57]
was the first work to apply 3D convolutions to model the
spatial and temporal features together. I3D [7] was pro-
posed to inflate 2D convolutional kernels into 3D to capture
spatio-temporal features. However, the major drawback of
3D CNNs is the large number of parameters involved. To
cope with the intensive computation of 3D CNN, various
methods adopted the 2D + 1D paradigm. P3D [50] de-
composes 3D convolution into a pseudo-3D convolutional
block. R(2+1)D [59] and S3D-G [70] factorize the 3D con-
volution to enhance accuracy and reduce the complexity.
TRN [76] introduced an interpretable relational module to
replace the average pooling operation. TSM [42] shifts part
of the features forward and backward along the temporal di-
mension, allowing the network to achieve the performance
of 3D CNN but maintains the complexity of 2D CNN. Non-
local neural network [65] proposed a special non-local op-
eration for better capturing the long-range temporal depen-
dencies between video frames. SlowFast [19] adopted a
dual-path network to model the spatio-temporal information



Figure 2. The Proposed Framework. (a) The Proposed DirecFormer. (b) Directed Temporal Attention. (c) Directed Spatial Attention.
The green arrows in (b) and (c) denotes for positive correlation and the red arrows denotes for negative correlation.

at two different temporal rates, with mid-level features be-
ing interactively fused. In general, our method also learns to
approximate the spatio-temporal representation at the fea-
ture level with the help of the knowledge distillation pro-
cess.

More recently, significant improvement in terms of effi-
ciency has been reported for action recognition in [8]; it was
found that 2D-CNN and 3DCNN models behave similarly
in terms of spatio-temporal representation ability and trans-
ferability. More efficient action recognition can be achieved
by focusing more on making the most of selected frames by
dynamic knowledge propagation [32] or exploiting spatio-
temporal self-similarity [35]. Most recent works such as
elastic semantic network (Else-Net) [40] and memory at-
tention network (MAN) [39] also reported promising im-
provement in terms of recognition accuracy.
Video Ordering Several prior works [27, 46, 71] have con-
sidered the frame orders into account. Although these prior
works have partially addressed some aspects of order pre-
diction, their losses only provide a weak supervision, i.e.
binary label for in- or out-of-order [27,46] or sub-clip based
order [71]. Moreover, there is no explicit mechanism to en-
force the model focus on the motion information rather than
particular background information of the scene.
Video Transformer Transformer approaches have filled
an important role by acquiring competitive accuracy while
maintaining computational resources compared with the
traditional convolution method. A pure-transformer based
model (ViViT) was demonstrated in [2] handling spatio-
temporal tokens from a long sequence of frames by fac-
torizing space-time dimension inputs efficiently on both
large and small datasets. The divided spatial and tempo-

ral attention within each block, TimeSformer [4] reduces
training time while achieving comparable test efficiency.
A Spatial-Temporal Transformer network (ST-TR) was de-
veloped in [49, 75] for skeleton-based action recognition.
A transformer-based RGB-D egocentric action recognition
framework called Trear was proposed in [41] showing dra-
matic improvement over the existing state-of-the-art results.
A multiscale pyramid network called MViT was proposed
in [17] to extract information from low-level to high levels
of attention. When compared with many other successful
applications of transformers, their potential in action recog-
nition has still largely remained unexplored.

3. The Proposed Method

Let x ∈ RT×H×W×3 be the input video and y be the
corresponding label of the video x. H,W and T are the
height, the width and the number of frames of a video, re-
spectively. Let o ∈ NT be the permutation representing the
reordering of video frames and i be the indexing associated
with the permutation. Our goal is to learn a deep network
to classify the actions and infer the permutation simultane-
ously as in Eqn. (1).

argmax
θ

Ex,y,o,i (log(p(y|x; θ)) + log(p(i|T (x,o); θ)))

(1)

where θ is the parameters of the deep neural network, and
T is the permutation function. Given a video x and the
permutation o, the goal is to learn the class label y of the
ordered video and learn the ordering i of the video after
permutation T (x,o).



To effectively predict the class label y and the indexing
of the permutation i, a Transformer with Directed Atten-
tion is introduced to learn the directed attention in both spa-
tial and temporal dimensions. The proposed DirecFormer is
therefore formulated as in Eqn. (2).

ŷ = ϕcls ⊙ G(x)
î = ϕord ⊙ G(T (x,o))

(2)

where G is the proposed DirecFormer; ϕcls and ϕord are the
projections that map the token outputted from DirecFormer
to the predicted class label ŷ and the predicted ordering in-
dex î, respectively; and ⊙ is the functional composition.
Fig. 2 illustrates our proposed framework. The proposed
DirecFormer method will be described in detail in the fol-
lowing section.

3.1. Patch Representation

Given a video frame, it is represented by N non-
overlapped patches of P × P (N = HW

P 2 ) as in [13]. Let
us denote xs,t ∈ R3P 2

as a vector representing the patch
s of the video frame t, where s (1 ≤ s ≤ N ) denotes
the spatial position and t represents the temporal dimension
(1 ≤ t ≤ T ). To embed the temporal information into the
representation, the raw patch representation is projected to
the latent space with additive temporal representation as in
Eqn. (3).

z
(0)
s,t = α(xs,t) + es,t (3)

where α is the embedding network and es,t is the spatial-
temporal embedding added into the patch representation.
The output sequences {z(0)s,t }

N,T
s=1,t=1 represent the input to-

kens fed to our DirecFormer network. We also add one
more learnable token z0,0 in the first position, as in BERT
[10] to represent the classification token.

3.2. Directed Attention Approach

The proposed DirecFormer consists of L encoding
blocks. In particular, the current block l takes the output
tokens of the previous block l − 1 as the input and decom-
poses the token into the key k

(l)
s,t, value v

(l)
s,t, and query q

(l)
s,t

vectors as in Eqn. (4).

k
(l)
s,t = β

(l)
k

(
τ
(l)
k

(
z
(l−1)
s,t

))
v
(l)
s,t = β(l)

v

(
τ (l)v

(
z
(l−1)
s,t

))
q
(l)
s,t = β(l)

q

(
τ (l)q

(
z
(l−1)
s,t

)) (4)

where β(l)
k , β(l)

v and β
(l)
q represent the key, value, and query

embedding, respectively; τ
(l)
k , τ

(l)
v and τ

(l)
q are the layer

normalization [3].
In the traditional self-attention approach, the attention

matrix is computed by the scaled dot multiplication between

key and query vectors. Although scaled dot attention has
shown its potential performance in video classification, this
attention is non-directed because it is unable to illustrate the
direction of attention. In particular, the scaled dot attention
simply indicates the correlations among tokens and ignores
the temporal or spatial ordering among tokens. It is noticed
that the ordering of frames in a video sequence does matter.
The recognition of actions in a video is highly dependent on
the ordering of video frames. For example, the same group
of video frames, if ordered differently in time, may result
in different actions, e.g. walking might become running.
However, traditional Softmax attention can not fully exploit
the ordering of video frames because it does not contain the
directional information of the correlation.

Therefore, we propose a new Directed Attention using
the cosine similarity. Formally, the attention weights a(l)(s,t)

for a query q
(l)
s,t can be formulated as in Eqn. (5).

a
(l)
(s,t)

=

cos
q

(l)
s,t√
D

,k
(l)
0,0

 cos

q
(l)
s,t√
D

,k
(l)
s′,t′


N,T

s′=1,t′=1


(5)

where D is the dimensional length of the query vector q(l)
s,t,

a
(l)
p,t ∈ RNT+1 denotes the directed attention weights. This

attention is computed over the spatial and temporal dimen-
sions. As a result, this operator suffers a heavy computa-
tional cost. We therefore divide and conquer the Directed
Attention in the spatial dimension and temporal dimension
sequentially as in [4].

More specifically, we first implement the attention mech-
anism over the time dimension (a(l)−time

(s,t) ) as in Eqn. (6).

a
(l)−time
(s,t)

=

cos
q

(l)
s,t√
D

,k
(l)
0,0

 cos

q
(l)
s,t√
D

,k
(l)
s,t′


T

t′=1


(6)

Then, the directed temporal attention information is accu-
mulated to the current token representations as in Eqn. (7).

s
(l)−time
s,t = a

(l)−time
(s,t),(0,0)v

(l)
0,0 +

T∑
t′=1

a
(l)−time
(s,t),(s,t′)v

(l)
s,t′

z′
(l)−time
s,t = z

(l−1)
s,t + γ(l)−time

(
s
(l)−time
s,t

) (7)

where γ(l)−time denotes the temporal projection. Secondly,
the temporally attentive vector z′(l)−time

s,t is projected to the
new key, value, and query to drive Spatial Directed Atten-



tion as in Eqn. (8).

k′(l)
s,t = β

′(l)
k

(
τ
′(l)
k

(
z′

(l)−time
s,t

))
v′(l)

s,t = β′(l)
v

(
τ ′(l)v

(
z′

(l)−time
s,t

))
q′(l)

s,t = β′(l)
q

(
τ ′(l)q

(
z′

(l)−time
s,t

)) (8)

Next, the Directed Attention over the spatial dimension
(a(l)−space

(s,t) ) can be computed as in Eqn. (9).

a
(l)−space
(s,t)

=

cos
q′(l)

s,t√
D

,k′(l)
0,0

 cos

q′(l)
s,t√
D

,k′(l)
s,t′


T

t′=1


(9)

The Spatial Directed Attention is then embedded to the tem-
poral attentive features z′

(l)−time
s,t to obtain a new spatial

attentive feature z′
(l)−space
s,t as in Eqn. (10).

s
(l)−space
s,t = a

(l)−space
(s,t),(0,0)v

(l)
0,0 +

N∑
s′=1

a
(l)−space
(s,t),(s′,t)v

(l)
s′,t

z′
(l)−space
s,t = z′

(l)−times
s,t + γ(l)−space

(
s
(l)−space
s,t

) (10)

Finally, the Spatial-Temporal Attentive features z′(l)−space
s,t

are projected to the output token, getting ready for the next
transformer block.

Formally, the output of the current transformer block
(z(l)s,t) can be formed as in Eqn. (11).

z
(l)
s,t = φ(l)

(
τ (l)

(
z′

(l)−space
s,t

))
+ z′

(l)−space
s,t (11)

where φ(l) is a projection mapping implemented using a
multi-layer perception network, and τ (l) denotes the layer
normalization [3].

3.3. Classification Embedding

The final representation is obtained in the final block of
DirecFormer. Then, the class index and the order index of
the video are predicted using linear projections as follows:

ŷ = ϕcls

(
τcls

(
z
(L)
0,0

))
î = ϕodr

(
τodr

(
z
(L)
0,0

)) (12)

where ϕcls and ϕord are the classification projection and
order projection, respectively; τcls and τord are the layer
normalization [3].

3.4. Self-supervised Guided Loss For Directed Tem-
poral Attention Loss

In this stage, we are given the permutation of the cur-
rent input video. To further reduce the burden of the net-
work when learning the temporal attention, we propose a

Figure 3. The Video Samples of Three Datasets: (a) Jester, (b)
Something-Something V2, and (c) Kinetics-400.

new self-supervised guided loss to enforce the temporal at-
tention learning from the prior order knowledge. Formally,
the self-supervised loss can be formulated as in Eqn. (13).

Lself =
1

LNT 2

L∑
l=1

N,T∑
s=1,t=1

T∑
t′=1

(
1− a

(l)−time

(s,t),(s,t′)

)
ς(ot,ot′)

(13)
where ς(ot,ot′) = 1 if the index ot < ot′ , otherwise
ς(ot,ot′) = −1. The guided loss Lself helps to indicate
the attention learning the correct direction during the train-
ing process. Finally, the total loss function of DirecFormer
is defined as in Eqn. (14).

L = λclsLcls + λordLord + λselfLself (14)

where Lcls and Lord are the cross-entropy losses of the clas-
sification projection (ϕcls) and order projection (ϕord), re-
spectively; {λcls, λord, λself} are the parameters control-
ling their relative importance.

4. Experiments
In this section, we present the evaluation results with Di-

recFormer on three popular action recognition benchmark-
ing datasets, i.e. Jester [45], Something-Something V2 [23],
and Kinetics 400 [31]. Firstly, we describe our implementa-
tion details and datasets used in our experiments. Secondly,
we analyze our results with different settings shown in the
ablation study on the Jester dataset. Lastly, we present our
results on Something-Something V2 and Kinetics compared
to prior state-of-the-art methods.

4.1. Implementation Details

The architecture of DirecFormer consists of L = 12
blocks. The input video consists of T = 8 frames sam-
pled at a rate of 1/32 and the resolution of each frame is



224×224 (H = W = 224). The patch size is set to 18×18;
therefore, there are N = 2242

162 = 196 patches in total for
each frame. The embedding network α is implemented by a
linear layer in which the output dimension is set to 768. All
values (β(l)

v , β
′(l)
v ), key (β(l)

k , β
′(l)
k ), query (β(l)

q , β
′(l)
q ) em-

bedding networks, and projections (γ(l)−time, γ(l)−space)
are also implemented by the linear layers. Similar to [4,13],
we adopt the multi-head attention in our implementation,
where the number of heads is set to 12. The network φ(l)

is implemented as the residual-style multi-layer perceptron
consisting of two fully connected layers followed by a nor-
malization layer. Finally, the classification projection (ϕcls)
and the order projection (ϕord) are implemented as the lin-
ear layer. We set the control parameters of loss to 1.0, i.e.
λcls = λord = λself = 1.0.

There will be a total of T ! permutations of the video
frames. Therefore, learning with all permutations is inef-
fective. Moreover, the permutation set plays an important
role. If these two permutations are very far from each other,
the network may easily predict the order since the two per-
mutations have significant differences. However, if all the
permutations are close to each other, learning the tempo-
ral attention is more challenging since the two permutations
have minor differences in order. Therefore, we select 1,000
random permutations from T ! = 8! permutations so that the
Hamming distance between permutations is as minimum as
possible. Similar to [5], we use a greedy algorithm to gen-
erate the set of permutations.

In the evaluation, following the protocol of other pa-
pers [4, 18, 19], the single clip is sampled in the middle of
the video. We use three spatial crops (top-left, center, and
bottom-right) from the temporal clip and obtain the final re-
sult by averaging the prediction scores for these three crops.

4.2. Datasets

Jester. [45] This dataset is a large-scale gesture recognition
real-world video dataset that includes 148, 092 videos of 27
actions. Each video is recorded for approximately 3 sec-
onds. Fig 3(a) illustrates the video samples of Jester.
Something-in-Something V2. [23] The dataset is a large-
scale dataset to show humans performing predefined basic
actions with everyday objects, which includes 174 classes.
It contains 220, 847 videos, with 168, 913 videos in the
training set, 24, 777 videos in the validation set, and 27, 157
videos in the testing set. Similar to other work [4,68,73,77],
we report the accuracy on the validation set. Fig. 3(b)
shows two examples of two different class of Something-
Something V2. The licenses of Something-Something V2
and Jester datasets are registered by the TwentyBN team
that are publicly available for academic research purposes.
Kinetics-400. [31] The dataset contains 400 human action
classes, with at least 400 videos for each action. In par-
ticular, Kinetics-400 contains 234, 619 training videos and

Table 1. Ablation Study On Jester. X − Y denotes for the atten-
tion types of temporal and spatial dimension, respectively. X (and
Y ) could be either S: Softmax or C: Cosine.

Models Attention
Time-Space Lord Lself Top 1 Top 5

I3D [7] − − − 91.46 98.67
3D SqueezeNet [28] − − − 90.77 −

ResNet 50 [25] − − − 93.70 −
ResNet 101 [25] − − − 94.10 −

ResNeXt [69] − − − 94.89 −
PAN [72] − − − 96.70 −
STM [29] − − − 96.70 −

ViViT-L/16x2 320 [2] − − − 81.70 93.80
TimeSFormer [4] S − S − − 94.14 99.19

DirecFormer S − C 94.52 99.26
DirecFormer S − C ✓ 94.65 99.25
DirecFormer C − S 95.52 99.20
DirecFormer C − S ✓ 96.28 99.45
DirecFormer C − S ✓ ✓ 97.55 97.54
DirecFormer C − C 96.15 99.38
DirecFormer C − C 97.48 99.48
DirecFormer C − C ✓ ✓ 98.15 99.57

19, 761 validation videos. The videos were downloaded
from youtube and each video lasts for 10 seconds. There
are different types of human actions: Person Actions (e.g.
singing, smoking, sneezing, etc.); Person-Person Actions
(e.g. wrestling, hugging, shaking hands, etc.); and Person-
Object Actions (e.g. opening a bottle, walking the dog, us-
ing a computer, etc.). Fig. 3(c) illustrates the video ex-
amples of Kinetics-400. In our experiment, following the
protocol of other papers [4, 18, 18, 19, 68], we report the
accuracy on the validation set. The license of Kinetics is
registered by Google Inc. under a Creative Commons Attri-
bution 4.0 International License.

4.3. Ablation Study

Effectiveness Of Directed Attention To show the effec-
tiveness of our proposed Directed Attention, we consider
three different types of the temporal-spatial attention: (i)
Softmax Temporal Attention followed by Cosine Spatial
Attention (DirecFormer S−C), (ii) Cosine Temporal Atten-
tion followed by Softmax Spatial Attention (DirecFormer
C − S), and (iii) Cosine Temporal Attention followed by
Cosine Spatial Attention (DirecFormer C−C). The method
is also compared with TimeSformer where the softmax at-
tention is applied for both time and space. Table 1 illustrates
the results of the DirecFormer with different settings com-
pared to TimeSFormer and other approaches. In all config-
urations, our proposed DirecFormer outperforms the prior
methods.

Considering the effectiveness of the directed attention in
time and space, the directions of the attention over the spa-
tial dimension are important in some cases. For example, if
A performs an action to B then B receives an action from
A. Considering the mentioned example, the spatial atten-
tion should involve directions so that the model can learn



Table 2. Order Correction By Hamilton Algorithm Perfor-
mance On Jester. X−Y denotes for the attention types of tempo-
ral and spatial dimension, respectively. X (and Y ) could be either
S: Softmax or C: Cosine.

Models Attention
Time-Space Lord Lself OrderAcc

TimeSFormer [4] S − S − − 52.84
TimeSFormer [4] S − S ✓ − 72.57

DirecFormer C − S 75.04
DirecFormer C − S ✓ 87.16
DirecFormer C − S ✓ ✓ 90.02
DirecFormer C − C 76.16
DirecFormer C − C ✓ 88.96
DirecFormer C − C ✓ ✓ 90.19

the actor(s) performing actions in a video. However, the or-
der of the temporal dimension plays a more important role
in a video compared to the spatial dimension, since the or-
der of the frames represents how the action is happening. As
in Table 1, the results of DirecFormer C −S are better than
DirecFormer S − C confirming our hypothesis about the
importance of time and space. When the Directed Attention
is deployed in both temporal and spatial dimensions, the re-
sults of DirecFormer C − C were significantly improved
and achieved the SOTA performance on the Jester dataset.
Effectiveness Of Losses With the order prediction loss
Lord, the performance of the DirecFormer in all settings
has been improved, since the prediction loss influences the
way that network learns the Directed Temporal Attention.
Moreover, the performance of DirecFormer is improved by
employing the self-supervised guided loss Lself . This self-
supervised loss further enhances the directed temporal at-
tention learning during the training. Consequently, the per-
formance of DirecFormer is consistently improved by using
our proposed losses, as in Table 1.
Order Correction To illustrate the ability of order learning
of DirecFormer, we conduct an experiment in which, given
a random temporal order video, we show our approaches
can retrieve back the correct order of the video from the di-
rected temporal attention. In this experiment, we use the
temporal attention of the last block and average this tempo-
ral attention over the spatial dimension. Then, we perform
a search algorithm to find the Hamiltonian path on the tem-
poral attention to find the correct order. In particular, we
consider the temporal attention as the adjacency matrix of
the graph, in which each frame is the node of the graph. The
Hamilton path is the path that goes through each node ex-
actly once (no revisit). Since our attention represents both
direction and correlation among the frames, the higher (pos-
itive) correlation is, the higher the possibility of correct or-
der should be between frames. Therefore, the Hamilton
path with maximum total weight is going to represent the
order of the video should be.

Let ô be the order obtained by the Hamilton algorithm,
the accuracy of the order retrieval can be defined as follows:

OrderAcc =
LCS(ô,o)

T
× 100 (15)

where LCS(ô,o) is the longest common subsequence be-
tween ô and o. In this evaluation, for each video, we ran-
domly select a permutation of {1, ..., N} as the order of
the input video. To be fair between benchmarks, we set
the same random seed value at the beginning of the test-
ing script so that every time we conduct the evaluation, we
obtain the same permutation for each video.

As shown in Table 2, we use the Softmax attention of
TimeSFomer to retrieve the order of the video. The order
accuracy of the TimeSFormer is only 52.84. In other words,
the Softmax attention of TimeSFormer can only predict the
correct order of approximately 4 frames over 8 frames. With
the support of order prediction loss, the order accuracy of
TimeSFormer is improved to 72.57%. However, without
the order prediction loss, our DirecFormer C − S and Di-
recFormer C − C have already correctly predicted the or-
der of approximately 6 frames over 8 frames (75.04% and
76.16%). When we further employ the order prediction
and self-supervised guided losses, the performance of Di-
recFormer is significantly improved. Particularly, with the
order prediction loss only, DirecFormer in all settings gains
more than 87.0% (which is approximately 7 frames over 8
frames). When both losses (Lord and Lself ) are employed,
the order accuracy of both DirecFormer C − S and Direc-
Former C −C is improved to 90.02% and 90.19%, respec-
tively. It should be noted that the performance of Direc-
Former C − C is only minorly greater than DirecFormer
C − S as the directed attention over the space does not
largely affect the temporal order predictions.

4.4. Comparison with State-of-the-Art Results

Something-Something V2 Table 3 illustrates the per-
formance of our proposed approaches evaluated on
Something-Something V2 compared to prior SOTA ap-
proaches. In this experiment, similar to other approaches
[4], we use the DirecFormer pretrained on ImageNet-1K
[9]. As in Table 3, our results in all settings outperform

Table 3. Comparison with the SOTA methods on Something-
Something V2. X−Y denotes for the attention types of temporal
and spatial dimension, respectively. X (and Y ) could be either S:
Softmax or C: Cosine.

Models Attention
Time-Space Top 1 Top 5

MSNet [77] − 63.00 88.40
SlowFast [19] − 63.00 88.50

SlowFast Multigrid [68] − 63.50 88.70
TRG [73] − 62.20 90.30

VidTr-L [74] − 60.20 −
TimeSFormer [4] S − S 59.10 85.60

TimeSFormer − HR [4] S − S 61.80 86.90
TimeSFormer − L [4] S − S 62.00 87.50

DirecFormer S − C 61.70 85.20
DirecFormer C − S 63.85 85.92
DirecFormer C − C 64.94 87.90



Table 4. Comparison with the SOTA methods on Kinetics 400.
X − Y denotes for the attention types of temporal and spatial di-
mension, respectively. X (and Y ) could be either S: Softmax or
C: Cosine.

Models Attention
Time-Space Top 1 Top 5

I3D NLN [7] − 74.00 91.10
ip-CSN-152 [58] − 77.80 92.80

LGD-3D-101 [51] − 79.40 94.40
SlowFast [19] − 77.00 92.60

SlowFast Multigrid [68] − 76.60 92.70
X3D-M [18] − 75.10 91.70
X3D-L [18] − 76.90 92.50

X3D-XXL [18] − 80.40 94.60
MViT [17] − 78.40 93.50

TimeSFormer [4] S − S 77.90 93.20
TimeSFormer − HR [4] S − S 79.70 94.40
TImeSFormer − L [4] S − S 80.70 94.70

DirecFormer S − C 80.16 94.55
DirecFormer C − S 81.69 94.62
DirecFormer C − C 82.75 94.86

other candidates. With the simple design of the Transformer
network with the directed attention mechanisms over time
and space, our approaches achieve SOTA performance com-
pared to traditional 3D CNN approaches [19, 77] and other
Transformer approaches [4, 74] by a competitive margin.
Kinetics 400 We conduct the experiments on Kinetics 400
and compare our results with prior SOTA methods. The pre-
trained model on ImageNet-21K [9] for our DirecFormer
is used, similar to [4]. It is noted that the prior meth-
ods [18, 19] use 10 temporal clips with 3 spatial crops of a
video in the evaluation phase. However, TimeSFormer and
our DirecFormer use only 3 spatial crops of a video with
a single clip to achieve the solid results. In particular, our
method achieves the SOTA performance compared to prior
methods as shown in Table 4. The Top 1 accuracy of the best
model is approximately 2% higher than TimeSFormer-L [4]
sitting at 82.75%. The effectiveness of the proposed di-
rected attention has been also proved in these experiments,
as the performance of DirecFormer is consistently improved
when we deploy the directed attention over time and space.
Network Size Comparison As shown in Table 5, although
the number of parameters and the GFLOPS of single view

Table 5. Network Size Comparison. We report the computational
cost of the inference phase with a single “view” (temporal clip
with spatial crop) × the numbers of such views used (GFLOPs ×
views). “NA” indicates the number is not available for us.

Model GFLOPS x Views Params
I3D [7] 108×NA 12.0M

SlowFast 8x8 R50 [19] 36.1× 30 34.4M
SlowFast 8x8 R101 [19] 106× 30 53.7M

Nonlocal R50 [65] 282× 30 35.3M
X3D-XL [18] 35.8× 30 11.0M

X3D-XXL [18] 143.5× 30 20.3M
ViViT-L/16x2 320 [2] 3980× 3 310.8M

TimeSformer [4] 196× 3 121.4M
DirecFormer 196× 3 121.4M

Figure 4. Visualization of Order Correction by Finding Hamilton
Path On Directed Temporal Attention Map.

used in our DirecFormer are higher than the traditional 3D-
CNN approaches [7,18,19], we only use 3 views compared
to 30 views of prior approaches and maintain competitive
performance. In comparison with TimeSFormer, we gain
the same performance in terms of network size and infer-
ence flops; however, we achieve better accuracy on three
large-scale benchmarks as shown in Tables 1, 3, and 4.
Qualitative Results Fig. 4 illustrates the Directed Atten-
tion of our proposed DirecFormer. We use a video on the
validation set of Kinetics-400 and extract the attention map.
We randomly permute the frames of video along the tem-
poral dimension and correct the order of frames using the
Hamilton algorithm. As in Fig. 4, we can successfully cor-
rect the frame order of the Parkour action video.

5. Conclusions
In this paper, we have presented a new and simple Di-

recFormer method with Directed Attention mechanism in
Transformer over the temporal and spatial dimensions. The
presented Directed Temporal-Spatial Attention not only
learns the magnitude of the correlation between frames and
tokens, but also exploits the direction of attention. More-
over, the self-supervised guided loss further enhances the
directed learning capability of the Directed Temporal Atten-
tion. The intensive ablation study on the Jester dataset has
shown the effectiveness of our proposed Directed Attention
in both time and space. Furthermore, it has illustrated the
impact of the proposed losses used in Directed Temporal
Attention learning. The experiments on two other large-
scale datasets, i.e. Something-Something V2 and Kinetics
400, have further confirmed the high accuracy performance
of our proposed method.
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