
EyePAD++: A Distillation-based approach for joint Eye Authentication and
Presentation Attack Detection using Periocular Images

Prithviraj Dhar1, Amit Kumar2, Kirsten Kaplan 2, Khushi Gupta2, Rakesh Ranjan2, Rama Chellappa1

1Johns Hopkins University, 2Reality Labs, Meta
{pdhar1,rchella4}@jhu.edu, {akumar14,kkaplan,khushigupa,rakeshr}@fb.com

Abstract

A practical eye authentication (EA) system targeted for
edge devices needs to perform authentication and be ro-
bust to presentation attacks, all while remaining compute
and latency efficient. However, existing eye-based frame-
works a) perform authentication and Presentation Attack
Detection (PAD) independently and b) involve significant
pre-processing steps to extract the iris region. Here, we in-
troduce a joint framework for EA and PAD using periocular
images. While a deep Multitask Learning (MTL) network
can perform both the tasks, MTL suffers from the forget-
ting effect since the training datasets for EA and PAD are
disjoint. To overcome this, we propose Eye Authentication
with PAD (EyePAD), a distillation-based method that trains
a single network for EA and PAD while reducing the effect
of forgetting. To further improve the EA performance, we
introduce a novel approach called EyePAD++ that includes
training an MTL network on both EA and PAD data, while
distilling the ‘versatility’ of the EyePAD network through an
additional distillation step. Our proposed methods outper-
form the SOTA in PAD and obtain near-SOTA performance
in eye-to-eye verification, without any pre-processing. We
also demonstrate the efficacy of EyePAD and EyePAD++
in user-to-user verification with PAD across network back-
bones and image quality.

1. Introduction

Eye Authentication (EA) using irises has been widely
used for biometric authentication. With the current ad-
vancements in head-mounted technology, eye-based au-
thentication is likely to become an essential part of authen-
ticating users against their wearable devices. While highly
accurate, EA systems are also vulnerable to ’Presentation
Attacks’ (PA) [14, 47]. These attacks seek to fool the au-
thentication system by presenting artificial eye images, such
as printed iris images of an individual [5, 16], or cosmetic
contacts [21]. While researchers have proposed methods
to train networks that achieve SOTA performance in either

Iris segmentation

Normalization and enhancement

Iris segmentation/detection No
segmentation/

detection

Same image
modality

for EA/PAD

Live Print Pattern lens

Spoof

ID? Live or Spoof?

Live or Spoof?

If Live, ID?

PAD dataEye Authentication data Eye Authentication/PAD data

Eye Authentication
using iris region Iris PAD

A single network for
Eye Authentication and PAD

Figure 1. EA pipelines segment out the iris region from the pe-
riocular image and normalize the iris image before feeding it to
the network. Segmentation/detection is also used in most PAD
pipelines. We train a single network for both EA and PAD without
any pre-processing steps, using the entire periocular image.

EA or PAD, a practical eye-based biometric system that can
be used on edge devices must be able to perform both of
these tasks accurately and simultaneously, with low latency
and in an energy efficient manner. Therefore, in this work
we propose strategies to develop a single deep network for
both EA and PAD using periocular images.

One of the key steps in EA is pre-processing. Most EA
frameworks [45, 53] use an auxiliary segmentation network
to extract the iris region from the periocular image. The
iris is then unwrapped into a rectangular image and is fed
to the eye authentication system. This geometric normal-
ization step was first proposed in [7]. Pre-processing is also
an important step in iris PAD pipelines that requires another
segmentation network [14, 47], or a third party iris detection
software [38, 41]. Such pre-processing steps potentially
make the EA and PAD pipelines computationally expen-
sive, making it impractical to embed these biometric sys-
tems on edge devices with limited computational resources.
We investigate and propose techniques to perform EA and
PAD using the entire periocular image without any active
pre-processing. In doing so, we adhere to our goal of using
a single network in a truer sense.

1

ar
X

iv
:2

11
2.

11
61

0v
2

 [
cs

.C
V

]
 2

9
D

ec
 2

02
1

For a given subject, irises of left and right eyes demon-
strate different textural patterns. In most of the existing
works in EA [45, 53], the CNN models are trained on the
left irises for classification. During evaluation, a right iris
is verified against the right irises of the same or other sub-
jects. We refer to this evaluation method as ‘eye-to-eye ver-
ification’. However, a more practical protocol would be to
perform user-to-user verification, i.e. consider both left and
right eyes of a given test subject (query user) and verify it
against one or more pairs of left-right irises of same or dif-
ferent user (i.e. gallery user). To this end, we propose a
new evaluation protocol to match the the left-right pair of a
query user with that of a gallery user.

We consider the problem of EA and PAD as a disjoint
multitask learning problem because the authentication task
presumes real images, which is why the current datasets for
EA do not include PAD labels. A possible single-network
solution is to train a deep multitask network for both tasks,
alternately training the EA and PAD branches with their
respective dataset each iteration (as done in [37]). How-
ever, several works [18, 22, 27] have shown that Multitask
Learning (MTL) frameworks for disjoint tasks demonstrate
forgetting effect (see Sec. 3). Hence, we propose two
novel knowledge distillation-based techniques called Eye-
PAD and EyePAD++ to incrementally learn EA and PAD
tasks, while minimizing the forgetting effect. In summary,
we make the following contributions in this work:

1. We propose a user-to-user verification protocol that can
be used to authenticate one query user against one or
many samples of a gallery user. This is more practical
than the existing protocol for eye-to-eye verification.

2. To the best of our knowledge, we are the first to explore
the problem of EA and PAD using a single network. We
introduce a new metric called Overall False Rejection
Rate (OFRR) to evaluate the performance of the entire
system (EA and PAD), using only authentication data.

3. We propose a distillation-based method called Eye Au-
thentication with Presentation Attack Detection (Eye-
PAD) for jointly performing EA and PAD. To further
improve the verification performance, we propose Eye-
PAD++. EyePAD++ inherits the versatility of the Eye-
PAD network through distillation and combines it with
the specificity of multitask learning. EyePAD++ con-
sistently outperforms the existing baselines for MTL,
in terms of OFRR. We show the efficacy of Eye-
PAD and EyePAD++ across different network back-
bones (Densenet121 [20], MobilenetV3 [19] and HR-
net64 [44]), and image quality degradation (blur and
noise). Additionally, we apply our methods to jointly
perform eye-to-eye verification and PAD, following the
commonly used train-test protocols. Although the cur-
rent SOTA approaches use pre-processing, our proposed

Method EA PAD Pre-processing

IrisCode [29] 3 7 Segmentation, geometric normalization
Ordinal [42] 3 7 Segmentation, geometric normalization
UniNet [53] 3 7 Segmentation, geometric normalization
DRFnet [45] 3 7 Segmentation, geometric normalization

[35] 7 3 Segmentation, geometric normalization
[14] 7 3 Segmentation, geometric normalization
[33] 7 3 Cropping

DensePAD [47] 7 3 Segmentation, geometric normalization
[17] 7 3 Segmentation with UIST [38]

D-net-PAD [41] 7 3 Detection with VeriEye
[3] 7 3 Detection with [2]

PBS, A-PBS [11] 7 3 None

EyePAD (ours) 3 3 None
EyePAD++ (ours) 3 3 None

Table 1. Pre-processing steps in recent EA/PAD frameworks

methods outperform the existing SOTA in PAD task, and
obtain comparable user-to-user verification performance
without any pre-processing.

2. Related work
Eye authentication using irises: Daugman [6, 7] in-

troduced the first automated system for EA by applying
Gabor Filters to the normalized image for generating spa-
tial barcode-like features (IrisCode). More recently, sev-
eral works have proposed using deep features for EA. [12]
proposed DeepIrisNet, the first deep learning-based frame-
work for generalized EA, followed by [13, 32, 43]. [53]
presents UniNet, that consists of two components: one for
generating discriminative features (FeatNet) and the other
for segmenting the iris and non-iris region (MaskNet). Both
of these components accept the normalized iris images that
also requires segmentation. [45] uses dilated convolution
kernels for training CNNs for EA. [51] presents an encoder-
decoder pipeline to extract multi-level iris features and use
an attention module to combine the multi-level features.

Eye-based Presentation Attack Detection: PAD in pe-
riocular images has received significant attention from the
deep learning community in the past few years [3, 11, 31,
33, 41, 47]. [25, 46] propose fusing handcrafted and CNN
features to detect PA. [10] fuses the features from differ-
ent layers in a deep network extracted for normalized iris
images for PAD. [41, 47] show that DenseNet architec-
ture helps to achieve high PAD accuracy. [17] proposes
dividing the iris region into overlapping patches and train-
ing CNNs using these patches. [3] introduces an attention
guided mechanism to improve PAD accuracy. [11] intro-
duces a binary pixel-wise supervision with self attention to
help the network to find patch-based cues and achieve high
performance in PAD.
All of the EA algorithms use the normalization process pro-
posed in [7] that requires iris segmentation. Similarly, most
PAD algorithms also use auxiliary pre-processing steps
such as iris detection/segmentation. A brief summary of

2

Lpad

Authentication
dataset PAD dataset

Lid

fauth
Ldis(fauth , fM) Ldis(fpad , fM)

+ +

fpadfM

Mauth MpadM

Dataflow for PAD dataDataflow for Authentication data

Authentication
Teacher
(Frozen)

PAD
Teacher
(Frozen)

(a)

Authentication
dataset

Step 1 Step 2 Step 3

Lid
Lpad Lpad

EyePAD

EyePAD++

PAD dataset

Mt
<latexit sha1_base64="ZWiFut6L3Pu/kKlbg/31U8s/E8E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrRxwn3I/oQIlQMIpWerjrYa9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdKsVrzzSvX+oly7zuMowDGcwBl4cAk1uIU6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx8xCI28</latexit>

Ms
<latexit sha1_base64="EzdVfp1GISKy5z16uYig2G0qavc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD3c93SuV3Yo7A1kmXk7KkKPeK311+zFLI5SGCap1x3MT42dUGc4ETordVGNC2YgOsGOppBFqP5udOiGnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHpFG0I3uLLy6RZrXjnler9Rbl2ncdRgGM4gTPw4BJqcAt1aACDATzDK7w5wnlx3p2PeeuKk88cwR84nz8vhI27</latexit>

M⇤
s

<latexit sha1_base64="uloDcSKHUSqSyJMivmQmlxdgtLU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMgHsJuFPQY9OJFiGAekKxhdjJJhszOLjO9QljyEV48KOLV7/Hm3zhJ9qCJBQ1FVTfdXUEshUHX/XZyK6tr6xv5zcLW9s7uXnH/oGGiRDNeZ5GMdCughkuheB0FSt6KNadhIHkzGN1M/eYT10ZE6gHHMfdDOlCiLxhFKzXvHtOzSdd0iyW37M5AlomXkRJkqHWLX51exJKQK2SSGtP23Bj9lGoUTPJJoZMYHlM2ogPetlTRkBs/nZ07ISdW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9Kz8VKk6QKzZf1E8kwYhMfyc9oTlDObaEMi3srYQNqaYMbUIFG4K3+PIyaVTK3nm5cn9Rql5nceThCI7hFDy4hCrcQg3qwGAEz/AKb07svDjvzse8NedkM4fwB87nDw/Lj2M=</latexit>

Authentication
dataset PAD dataset

Lid

Ldis(ft , fs)

+

Ldis(fs , fs
*)

+ +

(Frozen in Step 2) (Frozen in Step 3)

Teacher: Ms , Student: Ms
*Teacher: Mt , Student: Ms

ft fs fs*
Initialized with

Mt

Initialized with
Ms

(b)
Figure 2. (a) Baseline: Multitask Learning with multi-teacher distillation (MTMT) [26] (b) Proposed approach Step 1: We train Mt for
EA, Step 2 (EyePAD): We initializeMs usingMt and train it for PAD, while distilling EA information fromMt. (c) Step 3 (EyePAD++):
We initialize an MTL network M∗s with the trained Ms and train it to perform both EA and PAD, while distilling the ‘versatility’ of Ms.
EyePAD++ outperforms the MTMT [26] baseline in jointly performing EA and PAD in most of the problem settings.

the preprocessing steps in EA and PAD is given in Table 1.
Disjoint Multitask Learning and Knowledge Distilla-
tion: Disjoint multitask learning (MTL) is the process of
training a network to perform multiple tasks using data sam-
ples that have labels for either of the tasks, but not for all
the tasks. Training a single network for EA and PAD is
a disjoint MTL task because EA datasets do not include
PAD labels. One solution is to follow the existing dis-
joint multitask learning strategies [24, 28, 37] and update
each branch of the network alternately. However, it is well
known [22, 27] that alternating training suffers from the
forgetting effect [27] and degrades performance in multi-
task learning. Knowledge Distillation (KD) [15] has been
commonly used to reduce forgetting in continual learning
[9, 27, 39, 40, 52]. Inspired by this, [22, 26] employ feature-
level KD for multitasking. In [22], KD is used to distill the
information from the network from a previous iteration i−1
that was updated for task A (teacher), while training it to
perform task B in the current iteration i (student). However,
in this scenario, the teacher network is not fully trained in
the initial few iterations and thus the distillation step may
not help preserve task A information. Similar to [22], we
propose strategies employing feature-level KD for disjoint
multitasking (EA and PAD). But, unlike [22], we ensure
that the teacher network in our proposed methods is fully
trained in one or more tasks.

3. Proposed approach
Our objective is to build a single network that is profi-

cient in performing two disjoint tasks: EA and PAD. We in-
tend to build this framework for edge devices with limited
on-device compute. Thus, we exclude any pre-processing
step for detecting or segmenting the iris region and use the
entire periocular image as input. Mutitask Learning (MTL)
is a possible approach in this scenario. Most of the MTL
methods for disjoint tasks [37] alternately feed the data from
different tasks. However, as shown in [22], MTL demon-
strates the forgetting effect. Consider an MTL network with

shared backbone and different heads designed to perform
two tasks A and B. Suppose that the training batches for
task A and B are fed to this MTL network alternately. Here,
the weights of the shared backbone modified by the gradi-
ents corresponding to the loss for task A in iteration i, may
be rewritten in the next iteration (i+1) by the gradients cor-
responding to the loss for task B. This may lead to forget-
ting of task A.Therefore, instead of MTL, we propose to use
knowledge distillation to learn both tasks through a single
network. Here, we intend to first train a teacher networkMt

for EA, following which we train a student network Ms for
PAD, while distilling the authentication information from
Mt to Ms to minimize the forgetting effect.

3.1. Eye Authentication with Presentation Attack
Detection (EyePAD) and EyePAD++

We now explain the steps in our proposed methods: Eye-
PAD and EyePAD++ (Fig. 2b):
Step 1: We train the teacher network Mt using periocular
images from the EA dataset to perform EA. Similar to [45],
we use triplet loss to train Mt. We first extract features fi
for all the images using the penultimate layer of Mt. To
select the nth triplet in a given batch, we randomly select
an anchor feature f (n)a belonging to category C . After that,
we select the hardest positive feature f (n)pos and the hardest
negative feature f (n)neg as follows:

f (n)pos = argmax
i∈C,i6=a

(‖f (n)i −f
(n)
a ‖2), f (n)neg = argmin

i 6∈C
(‖f (n)i −f

(n)
a ‖2)

Then we compute the triplet loss Lid for the entire batch (of
size N) as:

Lid =
1

N

n=N∑
n=1

max(‖f (n)pos−f (n)a ‖2−‖f (n)neg−f (n)a ‖2+α, 0)

(1)where α denotes the distance margin.
Step 2 (Feature-level knowledge distillation - EyePAD):
We initialize a student networkMs usingMt, and train it for
PAD. Let I be an image from the PAD dataset. I is fed to

3

both Mt and Ms, to obtain features ft and fs, extracted us-
ing the penultimate layer of the corresponding networks. To
constrain Ms to process an eye image like Mt, we employ
feature-level KD and minimize the cosine distance between
ft and fs using the proposed distillation loss Ldis.

Ldis(fs, ft) = 1− fs · ft
‖fs‖‖ft‖

. (2)

Our application of feature-level KD is inspired by [40].
Note that we do not apply KD on the output scores as done
in [27], since eye-based matching protocols like [45] use
the features from the penultimate layer (and not the output
score vector). Additionally, we would like Ms to classify a
given image as live (also referred to as ‘real’ or ‘bona-fide’)
or spoof using Lpad, which is a standard cross-entropy clas-
sification loss. Combining these constraints, we train Ms

using the multitask classification loss Lmulti as
Lmulti = Lpad + λ1Ldis, (3)

where λ1 is used to weight Ldis. In this step, the teacherMt

remains frozen. To evaluate the verification performance,
we use features extracted from the penultimate layer of the
trained Ms for the test EA data and perform user-to-user
verification. We feed the test PAD data to Ms and evaluate
its performance in live/spoof classification. We find that the
student network Ms obtained from EyePAD is a versatile
network that is effective for both EA and PAD. However,
compared to Mt (that was only trained for EA), Ms ob-
tains slightly lower verification performance. We hypothe-
size thatMs demonstrates this drop in performance because
it was never trained for EA. Therefore, we introduce an ad-
ditional step to train an MTL network (initialized with Ms)
while distilling the versatility of the EyePAD student to this
network (Fig. 2b).
Step 3 (EyePAD++): We initialize a new student network
M∗s using Ms. M∗s is trained for both EA and PAD in an
MTL fashion. Following the commonly used strategies for
disjoint multitasking [37], the batches from EA and PAD
data are alternated after every iteration. To reduce forget-
ting, we additionally constrainM∗s to mimicMs, which acts
as its teacher, using the same knowledge distillation used in
step 2. We feed the training image to both Ms and M∗s and
obtain features fs and f∗s respectively. Ms remains frozen
in this step. We use them to compute Ldis as:

Ldis(fs, f
∗
s) = 1− fs · f∗s

‖fs‖‖f∗s ‖
. (4)

When authentication data is fed toM∗s (say, during iteration
i), we compute Lid

multi as follows:
Lid
multi = Lid + λ2Ldis (5)

Here, Lid is the triplet loss from Eq. 1. When PAD data is
fed to M∗s (during iteration i+ 1), we compute Lpad

multi as:

Lpad
multi = Lpad + λ2Ldis (6)

(a) (b) (c)
Figure 3. We perform train and test our networks on (a) the origi-
nal (clean) datasets, (b) their blurred and (c) their noisy versions.

where Lpad is a standard classification loss used in step 2
of EyePAD. Thus, Lid

multi and Lpad
multi are alternately used

to optimize M∗s . For inference, we use the trained M∗s for
user-to-user verification and PAD. Hyperparameter details
for EyePAD and EyePAD++ are provided in the supplemen-
tary material.

4. Experiments
4.1. Baseline methods

Single task networks: To estimate the standard user-to-
user verification (EA) and PAD performance, we test the
‘EA only’ and ‘PAD only’ networks. The ‘EA only’ net-
work is the teacher network Mt used in Step 1 of EyePAD.
Multitask Learning (MTL): We train a multitask network
for EA and PAD by alternately feeding EA and PAD batches
(see step 3 of EyePAD++) and alternately optimizing using
Lpad (Sec. 3.1) and Lid (Eq. 1).
Multi-teacher Multitasking (MTMT) [26]: MTMT [26]
is a recently proposed multitask framework that combines
MTL with multi-teacher knowledge distillation. MTMT has
been shown to outperform MTL and other SOTA multitask
methods such as GradNorm [4]. Here, single task networks
are first trained in specific tasks. An MTL network M is
then trained for multiple tasks, while information from the
single task networks is distilled into M . A key difference
between MTMT and EyePAD++ is that MTMT enforces
distillation from multiple task-specific teachers whereas
EyePAD++ includes distillation from a single teacher that
is proficient in performing multiple tasks. We implement
MTMT as one of our baselines for joint EA and PAD (Fig.
2a). Firstly, we train two single task models: Mauth for
EA and Mpad for PAD, and then distill information from
them while training a student MTL network M . We use the
same feature-level distillation used in EyePAD (Step 2) and
EyePAD++. A given image is fed to Mauth, M , and Mpad,
generating features from the penultimate layers fauth, fM
and fpad, respectively. Ldis then constrains fM to be closer
to fauth and fpad. Mauth and Mpad remain frozen in this
step. We alternately feed the training batches for EA and
PAD. So, when EA data is forwarded to Mauth, Mpad, M ,
we optimize M using Lid

mtmt.
Lid
mtmt = Lid+λauthLdis(fauth, fM)+λpadLdis(fpad, fM)

(7)
Here Lid is the triplet loss defined in Eq.1. λauth, λpad de-
note the distillation weights from teacher Mauth and Mpad,

4

User-to-user verification (EA) PAD

Data # images Data # images

Train 206 users from
ND-Iris-0405 7949

Train split of
CU-LivDet (2013,2015,2017),
ND-LivDet (2013,2015,2017)

14600

Test 150 users from
ND-Iris-0405

4231
(2925 query,
1306 gallery)

Test split of CU-LivDet
(2013,2015,2017) 7532

Table 2. Statistics for datasets used for EA with PAD

respectively. Similarly, when PAD data is forwarded, we
optimize M using Lpad

mtmt.

Lpad
mtmt = Lpad+λauthLdis(fauth, fM)+λpadLdis(fpad, fM)

(8)
Here Lpad is standard classification loss for live/spoof clas-
sification. We provide the hyperparameter information for
MTMT [26] in the supplementary material.

4.2. Datasets and network architectures used

We summarize the datasets used in our work in Table 2.
EA dataset: We use the ND-Iris-0405 [1, 34] dataset, used
widely for eye authentication using irises. The dataset con-
sists of 356 users that are divided into two subsets: Utrain

(randomly selected 206 users) and Utest (remaining 150
users). Using the distinct left and right eye images for the
users in Utrain gives us 412 (206×2) categories, which we
use to train models for EA. For a given user u in Utest, we
select 10 left and 10 right eye images to build the query set
qu. Similarly, we select 5 left and 5 right eye images to build
the gallery set gu for user u. Repeating this for all the users
in Utest, we obtain the query set Q = {qu,∀u ∈ Utest}
and gallery set G = {gu,∀u ∈ Utest}. To enable other
researchers replicate our experiments, we provide the train
and test splits in the supplementary material.
PAD dataset: For PAD training data, we combine the offi-
cial training splits of CU-LivDet and ND-LivDet from the
LivDet challenges in 2013[49], 2015[50], and 2017[48].
We build the PAD test dataset by combining the official test
splits of the CU LivDet dataset from the 2013, 2015 and
2017 challenges. CU-LivDet consists of three categories:
Live, patterned lens and printed images. ND-LivDet con-
sists of two categories: Live and patterned lens.
Image quality degradation: The datasets we use in this
work are academic datasets [1, 48–50] with high quality im-
ages (Fig. 3a). However, real-world authentication on edge
devices rely on small sensors which capture low-resolution
images. Also, environmental conditions like lighting may
further degrade the image quality. Therefore, in addition to
using the original datasets, we also perform experiments by
degrading the datasets (separately): (i) Blur: We add Gaus-
sian blur with a random kernel size between 1 and 5 to the
training images, and add blur with kernel size of 5 to the test
images (Fig. 3b). (ii) Noise: We add Additive White Gaus-
sian Noise with a standard deviation σ = 3.0 (Fig. 3c).

Protocol 1 User to User verification (1 Query, K Gallery)
1: Required: Model M , Query dataset Q, Gallery dataset G
2: Initialize: Similarity dictionary S=[]
3: Initialize: Left and right Query dictionary QL, QR

4: for Query user qA in Q and Gallery user gB in G do
5: Left query q(L)

A ← RandomSelect(qA, 1,Left)
6: Right query q(R)

A ← RandomSelect(qA, 1,Right)
7: g

(L)
B,1, g

(L)
B,2 . . . g

(L)
B,K ← RandomSelect(gB ,K,Left)

8: g
(R)
B,1, g

(R)
B,2 . . . g

(R)
B,K ← RandomSelect(gB ,K,Right)

9: QL[qA] = q
(L)
A , QR[qA] = q

(R)
A

10: Left query feature f (L)
qA =M(q

(L)
A)

11: Right query feature f (R)
qA =M(q

(R)
A)

12: Left and right gallery features f
(L)
gB , f

(R)
gB =

1
K

∑k=K
k=1 M(g

(L)
B,k),

1
K

∑k=K
k=1 M(g

(R)
B,k)

13: Compute similarity s(qA, gB) =
1
2
(Similarity(f (L)

qA , f
(L)
gB) + Similarity(f (R)

qA , f
(R)
gB))

14: S[qA, gB]←− s(qA, gB)
15: end for
16: TAR, FAR, threshold = ROC(S, EA Ground Truth)
17: tauth = threshold at FAR=10−3

Networks used: We implement our proposed methods and
baselines using the Densenet121 backbone [20]. This is mo-
tivated by this architecture repeatedly demonstrating high
PAD performance [11, 41, 47]. To demonstrate the gener-
alizability of EyePAD and EyePAD++, we repeat our ex-
periments using the HRnet64 [44] and MobilenetV3 [19].

4.3. User to user verification protocol

Most experiments in EA [45, 53] train the model on the left
irises of all the users and evaluate them in terms of the eye-
to-eye verification accuracy for the right irises. However,
in a real-world authentication system, the gallery will most
likely have both left and right eye images (instead of only
right eye images) for an authorized user, and thus both left
and right query images can be used for verification. More-
over, it is more practical to authenticate a user using both
eyes, as opposed to only the right eye. Hence, we propose
matching one pair of left-right eyes (query) to K pairs of
left-right eyes (gallery). We provide the detailed user-to-
user verification protocol in Protocol 1. To match query
user A (qA) and gallery user B (gB), we first randomly se-
lect one left eye and one right eye image from qA. Then,
we select K left eye and K right eye images from gB . Af-
ter that, we feed the left and right query images to a model
M and compute their respective features f (L)

qA , f
(R)
qA . For

gallery user B, we compute the features for the K left eye
images using M and average them to compute a single fea-
ture f (L)

gB (Line 12 of Protocol 1). In the same way, we com-
pute the average feature f (R)

gB by for the right eye gallery

5

CNN

CNN

CNN

average
feature
vectors

similarity score
(left)

Left
eye

CNN

CNN

CNN

average
feature
vectors

similarity score
(right)

average
score

Match (A=B)

Non match (A≠B)

CNN

Gallery User B

Right
eye

Query User A (left)

CNN

Query User A (right)

K left eye images

K right eye images

Figure 4. User-to-user verification: Verifying query user A (qA)
against gallery user B (gB) with K pairs for gallery user B.

Protocol 2 Computing OFRR
1: Required: Model M , Query dataset Q, Gallery dataset G
2: Required: Similarity dictionary S from Protocol 1
3: Required: Query dictionaries QL, QR from Protocol 1
4: Required: Similarity threshold tauth from Protocol 1
5: Required: PAD threshold tpad for SAR=5%
6: Initialize: Spoof rejects Xspoof = 0, EA rejects Xauth = 0
7: for Query user qA, gallery user gA in Q,G do
8: q

(L)
A ← QL[qA], q

(R)
A ← QR[qA]

9: Left query PAD logit o(L)
qA =M(q

(L)
A)

10: Right query PAD logit o(R)
qA =M(q

(R)
A)

11: if o(L)
qA > tpad or o(R)

qA > tpad then
12: Xspoof = Xspoof + 1 // falsely rejected as spoof
13: else
14: if S[qA, gA] < tauth then
15: Xauth = Xauth + 1 // falsely rejected as non-match
16: end if
17: end if
18: end for
19: Overall false rejection rate OFRR = (Xspoof +Xauth)/|Q|

image. We then compute the similarity between query user
A and gallery user B as :

s(qA, gB) =
1

2

(
f
(L)
gB · f

(L)
qA

‖f (L)
gB ‖‖f

(L)
qA ‖

+
f
(R)
gB · f

(R)
qA

‖f (R)
gB ‖‖f

(R)
qA ‖

)
(9)

Based on the similarity threshold, a match/non-match is
predicted (Fig. 4).

4.4. Metrics for EA and PAD

Performing the similarity computation (Eq. 9) for ev-
ery possible pairs from (Q,G) and varying the similarity
threshold for deciding match/non-match, we compute the
ROC curve and report the True Acceptance Rates (TARs)
at FAR=10−4, 10−3, 10−2. In the biometrics literature
[8, 30, 36], it is common to use several gallery samples in
authentication. But, for authentication on edge devices, the
number of gallery samples that can be used depends on the
storage capacity of the edge device. Therefore, for evaluat-

ing the EA performance of a given model, we use one query
left-right pair and K = 1/2/5 gallery left-right pair(s) for
verification.
PAD performance is evaluated with four commonly used
metrics: (i) True Detection Rate (TDR) at a False Detection
Rate of 0.002, (ii) Attack Presentation Classifier Error Rate
(APCER), that is the fraction of spoof samples misclassi-
fied as Live, (iii) Bonafide Presentation Classifier Error Rate
(BPCER), that is the fraction of live samples misclassified
as spoof, (iv) Half Total Error Rate (HTER), the average of
APCER and BPCER. Following the protocol in [48], we use
a threshold of 0.5 for computing APCER and BPCER.
While these metrics gauge either the EA or PAD perfor-
mance, they cannot jointly evaluate PAD and EA. Hence,
we define a new metric in the next subsection.

4.4.1 Overall False Reject Rate (OFRR)

We evaluate EA performance on the test EA data (ND-Iris-
0405) and the PAD performance on the test subset of CU-
LivDet datasets from the 2013, 2015 and 2017 challenges.
An ideal metric must measure PAD and EA performance si-
multaneously on a single dataset. Such a metric must mea-
sure: How often does the model reject true users from ac-
cessing the system? A true user in the EA dataset can be
falsely rejected as: (1) ‘Spoof’ by the PAD pipeline, or (2)
‘Non-match’ by the user-to-user verification pipeline. In
this regard, we introduce a new metric called Overall False
Rejection Rate (OFRR) for true query users in the EA test
subset. The steps for computing the OFRR of true users are
summarized in Protocol 2. To determine OFRR, we must
first set thresholds for the rates at which PAD misclassifies
spoof as live (i.e. Spoof Acceptance Rate or SAR) and EA
falsely accepts non-match pairs (FAR). The PAD threshold
tpad is computed as the point where SAR=5% when PAD
test data is fed to the model. Similarly, when EA test data
is fed to the model, the similarity threshold tauth is com-
puted as the point where the user-to-user verification results
in FAR=10−3. After computing tpad and tauth, we feed the
EA test data to the model again. We then compute the num-
ber of query users falsely rejected as spoof (Xspoof) using
tpad. Here, we reject a query user if at least one of the asso-
ciated eye images is classified as spoof (Line 12 in Protocol
2). For those query users classified as live, we verify them
for EA against matching gallery users, using our user-to-
user verification protocol (Fig 4). We compute the number
of query users that are falsely rejected as non-match Xauth

using tauth. Finally, we compute the Overall False Reject
Rate (OFRR) as

OFRR =
Xspoof +Xauth

|Q|
(10)

|Q| = total number of query users in the EA test dataset,
which, in our case, is 150 (Sec. 4.2). Ideally, an authenti-
cation system for EA and PAD must have a lower OFRR.

6

User-to-user verification results on ND-Iris-0405 (EA) PAD results on CU-LivDet

1 Query 1 Gallery 1 Query 2 Gallery 1 Query 5 Gallery

Method OFRR(↓) 10−4 10−3 10−2 OFRR(↓) 10−4 10−3 10−2 OFRR(↓) 10−4 10−3 10−2 TDR(↑) APCER BPCER HTER(↓)
EA only - 0.886 0.958 0.996 - 0.891 0.954 0.994 - 0.921 0.979 0.997 - - - -

PAD only - - - - - - - - - - - - 0.971 0.026 0.003 0.015
MTL 0.100 0.693 0.905 0.988 0.074 0.803 0.943 0.986 0.052 0.850 0.956 0.990 0.950 0.036 0.004 0.020

MTMT [26] 0.087 0.919 0.963 0.992 0.068 0.872 0.950 0.989 0.052 0.816 0.923 0.986 0.945 0.051 0.003 0.027
EyePAD 0.079 0.843 0.926 0.993 0.046 0.887 0.961 0.997 0.060 0.922 0.952 0.995 0.947 0.036 0.014 0.025

EyePAD++ 0.072 0.901 0.952 0.990 0.055 0.906 0.966 0.997 0.043 0.929 0.983 0.996 0.951 0.034 0.012 0.023

EA only - 0.832 0.916 0.979 - 0.867 0.943 0.985 - 0.909 0.966 0.992 - - - -
PAD only - - - - - - - - - - - - 0.844 0.073 0.032 0.053

MTL 0.244 0.745 0.871 0.974 0.209 0.801 0.910 0.989 0.199 0.834 0.930 0.994 0.702 0.136 0.034 0.085
MTMT [26] 0.236 0.753 0.894 0.974 0.213 0.841 0.921 0.986 0.189 0.822 0.946 0.993 0.576 0.047 0.095 0.071

EyePAD 0.231 0.757 0.876 0.979 0.204 0.796 0.933 0.974 0.196 0.813 0.949 0.987 0.738 0.129 0.024 0.077
EyePAD++ 0.201 0.830 0.916 0.988 0.188 0.854 0.947 0.986 0.192 0.889 0.944 0.987 0.693 0.137 0.029 0.083

EA only - 0.760 0.901 0.980 - 0.860 0.929 0.984 - 0.897 0.958 0.992 - - - -
PAD only - - - - - - - - - - - - 0.918 0.063 0.004 0.034

MTL 0.184 0.768 0.891 0.981 0.170 0.819 0.927 0.993 0.152 0.865 0.956 0.993 0.879 0.082 0.011 0.046
MTMT [26] 0.168 0.777 0.891 0.979 0.144 0.851 0.927 0.990 0.105 0.869 0.961 0.993 0.883 0.104 0.009 0.057

EyePAD 0.162 0.718 0.852 0.976 0.128 0.757 0.891 0.984 0.094 0.824 0.922 0.991 0.931 0.058 0.005 0.032
EyePAD++ 0.144 0.777 0.882 0.979 0.111 0.797 0.919 0.983 0.082 0.878 0.948 0.991 0.926 0.065 0.007 0.036

Table 3. EA and PAD with Densenet121 trained and evaluated on (top) original, (middle) blurred, (bottom) Noisy data: For user-to-
user verification, we report TAR@FAR=10−4, 10−3, 10−2. For PAD, we report TDR@FDR=0.002 and APCER, BPCER, HTER. OFRR
jointly measures EA and PAD performance on ND-Iris-0405. EyePAD++ obtains the lowest OFRR. Bold: Best, Underlined: Second best

EA PAD

1 Query 5 Gallery

Method OFRR(↓) 10−4 10−3 10−2 TDR(↑) HTER(↓)
EA only - 0.919 0.983 0.996 - -

PAD only - - - - 0.962 0.026
MTL 0.113 0.815 0.930 0.977 0.921 0.029

MTMT [26] 0.068 0.891 0.945 0.984 0.959 0.017
EyePAD 0.034 0.898 0.968 0.995 0.934 0.029

EyePAD++ 0.031 0.926 0.976 0.997 0.915 0.031

EA only - 0.911 0.968 0.992 - -
PAD only - - - - 0.801 0.058

MTL 0.293 0.638 0.801 0.924 0.737 0.186
MTMT [26] 0.129 0.904 0.963 0.994 0.646 0.086

EyePAD 0.132 0.902 0.960 0.993 0.766 0.062
EyePAD++ 0.118 0.915 0.971 0.989 0.655 0.067

EA only - 0.837 0.952 0.992 - -
PAD only - - - - 0.942 0.029

MTL 0.236 0.587 0.787 0.940 0.899 0.045
MTMT [26] 0.114 0.824 0.916 0.975 0.894 0.034

EyePAD 0.091 0.800 0.916 0.986 0.914 0.033
EyePAD++ 0.093 0.840 0.937 0.989 0.887 0.036

Table 4. EA and PAD with HRnet64, trained and evalu-
ated on the (top) original, (middle) blurred, (bottom) noisy
(AWGN σ=3.0) data: For user-to-user verification, we re-
port TAR@FAR=10−4, 10−3, 10−2. For PAD, we report
TDR@FDR=0.002 and HTER. EyePAD++ generally obtains the
lowest OFRR. Bold: Best, Underlined: Second best. Results with
1 and 2 gallery pairs are provided in the supplementary material.

The user-to user verification and OFRR protocols are run
consecutively, and depend on random samples of left and
right images of query and gallery users as shown in Proto-
cols 1 (Lines 5,6,7,8) and 2 (Lines 2, 3). Hence, we compute
these metrics ten times and report the average.

EA PAD

1 Query 5 Gallery

Method OFRR(↓) 10−4 10−3 10−2 TDR(↑) HTER(↓)
EA only - 0.898 0.952 0.995 - -

PAD only - - - - 0.925 0.029
MTL 0.110 0.872 0.933 0.985 0.884 0.039

MTMT [26] 0.126 0.859 0.933 0.987 0.793 0.042
EyePAD 0.114 0.887 0.947 0.991 0.859 0.040

EyePAD++ 0.085 0.901 0.962 0.990 0.883 0.032

EA only - 0.846 0.921 0.989 - -
PAD only - - - - 0.581 0.117

MTL 0.483 0.744 0.855 0.942 0.556 0.128
MTMT [26] 0.464 0.769 0.913 0.963 0.502 0.137

EyePAD 0.447 0.711 0.866 0.956 0.589 0.121
EyePAD++ 0.332 0.861 0.938 0.983 0.552 0.133

EA only - 0.817 0.944 0.985 - -
PAD only - - - - 0.831 0.041

MTL 0.173 0.761 0.908 0.974 0.762 0.064
MTMT [26] 0.162 0.777 0.906 0.977 0.730 0.059

EyePAD 0.209 0.801 0.927 0.980 0.712 0.065
EyePAD++ 0.137 0.811 0.912 0.990 0.730 0.080

Table 5. EA and PAD with MobilenetV3, trained and eval-
uated on the (top) original, (middle) blurred, (bottom) noisy
(AWGN σ=3.0) data: For user-to-user verification, we re-
port TAR@FAR=10−4, 10−3, 10−2. For PAD, we report
TDR@FDR=0.002 and HTER. EyePAD++ generally obtains the
lowest OFRR. Bold: Best, Underlined: Second best. Results with
1 and 2 gallery pairs are provided in the supplementary material.

4.5. Results

EA and PAD with Densenet backbone: We perform
the EA and PAD experiments using the Densenet121
backbone for the original datasets and degraded datasets
(Table 3). EyePAD++ obtains the lowest OFRR in most

7

of the the problem settings. Moreover, EyePAD++ obtains
higher user-to-user verification performance than existing
multitasking baselines at most FARs. This demonstrates the
advantage of the additional distillation step combined with
MTL. The PAD performance demonstrated by EyePAD++
is also comparable to that of other multitasking baselines.

EA and PAD with HRnet64 and MobilenetV3 backbone:
To demonstrate the generalizability of our proposed meth-
ods, we repeat the same experiments with the HRnet64[44]
backbone (Table 4). However, training a Densenet or
HRnet64 model is computationally expensive. So, we also
perform the same experiment with the MobilenetV3 [19]
backbone, that is much more computationally efficient
than Densenet (Table 5). More detailed results with 1 or 2
gallery pairs are provided in the supplementary material.
Once again we find that EyePAD++ obtains lower OFRR
than MTL and MTMT[26]. The superiority of EyePAD++
with MobilenetV3 indicates that EyePAD++ can be used
for performing EA and PAD on compute engines with low
capacity that are available on edge devices.

Eye-to-eye verification with PAD: To compare our pro-
posed methods with current SOTA in PAD and EA, we per-
form eye-to-eye verification with PAD. Here, for EA, we
follow [45, 53] and use the first 25 left eye images of every
user in the ND-Iris-0405 dataset [1] for training. We use the
first 10 right eye images of the users for testing. For evaluat-
ing EA, we use the same eye-to-eye verification in [45, 53].
For PAD, we follow [11, 41] and only use the official train
and test split of the CU-LivDet-2017 dataset. We perform
this experiment with Densenet121. While training and test-
ing our methods and baselines (Sec. 4.1), we exclude pre-
processing. Fig. 5 shows the ROC curves for EA and PAD
obtained by all the methods. From Table 6, we infer that
EyePAD and EyePAD++ achieve better PAD performance
(i.e. TDR @ FDR=0.002) than the current SOTA PAD algo-
rithms, without any pre-processing. Moreover, EyePAD++
achieves higher EA performance (TAR at FAR=10−3) than
the comparable baselines (i.e. EA only network, MTL and
MTMT). The EA performance for EyePAD and EyePAD++
is comparable to but slightly lower than that of the SOTA
[45, 53], with a difference of less than 4%. We believe that
this is difference is due to excluding pre-processing steps
for limiting computational cost.

EyePAD++ v/s MTMT [26]: Both EyePAD++ and MTMT
combine MTL with feature-level KD. However, the student
MTL network in MTMT does not inherit the ‘versatility’
through distillation since its teachers are single-task models
that are not versatile. On the other hand, EyePAD++ uses
distillation from a single versatile teacher (Ms), that is pro-
ficient in both the tasks. As a result, the student network

EA PAD

Method TAR(↑) EER TDR(↑) APCER BPCER HTER

IrisCode† [29] 0.967 1.88 - - - -
Ordinal† [42] 0.968 1.74 - - - -
UniNet† [53] 0.971 1.40 - - - -
DRFnet† [45] 0.977 1.30 - - - -

Winner of [48] † - - - 13.39 0.89 7.10
SpoofNet† [23] - - - 33.00 0.00 16.50

Meta-fusion† [25] - - - 18.66 0.24 9.45
D-net-PAD† [41] - - 92.05 5.78 0.94 3.36

PBS [11] - - 94.02 8.97 0.0 4.48
A-PBS [11] - - 92.35 6.16 0.81 3.48

EA only 0.936 1.48 - - - -
PAD only - - 94.02 5.96 0.02 2.99

MTL 0.891 1.88 92.70 9.03 0.00 4.52
MTMT [26] 0.933 1.54 95.51 7.54 0.00 3.77

EyePAD 0.898 1.89 96.29 5.68 0.00 2.84
EyePAD++ 0.941 1.30 95.99 7.29 0.00 3.65

Table 6. Eye-to-eye verification (TAR@FAR=10−3 and Equal Er-
ror Rate) and PAD performance (TDR@FDR=0.002). †=Use pre-
processing (Segmentation/detection)

10 10 3 10 2 10 1 100

False Acceptance Rate

0.75 4

0.80

0.85

0.95

0.90

1.00
Tr

ue
A

cc
ep

ta
nc

e
Ra

te

EA only
MTL
EyePAD (ours)
EyePAD++ (ours)
MTMT

(a) Eye-to-eye verification

10 10 2 10 1 100

False Detection Rate

0.90 3

0.92

0.94

0.98

0.96

1.00

Tr
ue

D
et

ec
ti

on
Ra

te

PAD only
MTL
EyePAD (ours)
EyePAD++ (ours)
MTMT

(b) PAD
Figure 5. ROC curves for (a)EA performance on ND-Iris-0405 (b)
PAD performance on CU-LivDet

M∗s in EyePAD++ inherits the versatility of its teacher net-
work Ms through distillation. This enables EyePAD++ to
outperform [26] in almost all of problem settings (Tables
3,4,5,6). Thus, for training an MTL network with distilla-
tion, we show that using a single teacher proficient in both
the tasks is better than using two teachers proficient in sin-
gle tasks in our disjoint multitasking problem.

5. Conclusion

In this work, we propose two knowledge distillation-based
frameworks: EyePAD and EyePAD++ for joint EA and
PAD tasks. For evaluating EA, we present a new user-
to-user verification protocol and introduce a new metric to
jointly measure user-to-user verification and PAD. Our pro-
posed methods outperform the existing baselines (MTL and
MTMT) in most of the problem settings. We evaluate our
methods using different network backbones and multiple
image quality degradation. Additionally, we evaluate our
methods to perform eye-to-eye verification with PAD (fol-
lowing previous work). Although we do not use any pre-
processing, EyePAD and EyePAD++ outperform the SOTA
in PAD and obtain eye-to-eye verification performance that
is comparable to SOTA EA algorithms.

8

Acknowledgement
This work was done when the first author was an in-
tern at Meta. This research is partially supported by
a MURI from the Army Research Office under the
Grant No. W911NF-17-1-0304. This is part of the
collaboration between US DOD, UK MOD and UK
Engineering and Physical Research Council (EPSRC)
under the Multidisciplinary University Research Initiative.

References
[1] Kevin W Bowyer and Patrick J Flynn. The ND-IRIS-0405

iris image dataset. arXiv preprint arXiv:1606.04853, 2016.
5, 8, 11

[2] Cunjian Chen and Arun Ross. A multi-task convolutional
neural network for joint iris detection and presentation attack
detection. In 2018 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 44–51. IEEE, 2018. 2

[3] Cunjian Chen and Arun Ross. An explainable attention-
guided iris presentation attack detector. In WACV (Work-
shops), pages 97–106, 2021. 2

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In Inter-
national Conference on Machine Learning, pages 794–803.
PMLR, 2018. 4

[5] Adam Czajka. Database of iris printouts and its application:
Development of liveness detection method for iris recogni-
tion. In 2013 18th International Conference on Methods &
Models in Automation & Robotics (MMAR), pages 28–33.
IEEE, 2013. 1

[6] John Daugman. How iris recognition works. In The essential
guide to image processing, pages 715–739. Elsevier, 2009. 2

[7] John G Daugman. High confidence visual recognition of per-
sons by a test of statistical independence. IEEE transactions
on pattern analysis and machine intelligence, 15(11):1148–
1161, 1993. 1, 2

[8] P Dhar, C Castillo, and R Chellappa. On measuring the
iconicity of a face. In 2019 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 2137–2145.
IEEE, 2019. 6

[9] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,
Ziyan Wu, and Rama Chellappa. Learning without memoriz-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5138–5146,
2019. 3

[10] Meiling Fang, Naser Damer, Fadi Boutros, Florian Kirch-
buchner, and Arjan Kuijper. Deep learning multi-layer fusion
for an accurate iris presentation attack detection. In 2020
IEEE 23rd International Conference on Information Fusion
(FUSION), pages 1–8. IEEE, 2020. 2

[11] Meiling Fang, Naser Damer, Fadi Boutros, Florian Kirch-
buchner, and Arjan Kuijper. Iris presentation attack detec-
tion by attention-based and deep pixel-wise binary supervi-
sion network. In 2021 IEEE International Joint Conference
on Biometrics (IJCB), pages 1–8. IEEE, 2021. 2, 5, 8

[12] Abhishek Gangwar and Akanksha Joshi. Deepirisnet: Deep
iris representation with applications in iris recognition and

cross-sensor iris recognition. In 2016 IEEE international
conference on image processing (ICIP), pages 2301–2305.
IEEE, 2016. 2

[13] Fei He, Ye Han, Han Wang, Jinchao Ji, Yuanning Liu, and
Zhiqiang Ma. Deep learning architecture for iris recogni-
tion based on optimal gabor filters and deep belief network.
Journal of Electronic Imaging, 26(2):023005, 2017. 2

[14] Lingxiao He, Haiqing Li, Fei Liu, Nianfeng Liu, Zhenan
Sun, and Zhaofeng He. Multi-patch convolution neural net-
work for iris liveness detection. In 2016 IEEE 8th Interna-
tional Conference on Biometrics Theory, Applications and
Systems (BTAS), pages 1–7. IEEE, 2016. 1, 2

[15] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling
the knowledge in a neural network. In NIPS Deep Learning
and Representation Learning Workshop, 2015. 3

[16] Steven Hoffman, Renu Sharma, and Arun Ross. Convo-
lutional neural networks for iris presentation attack detec-
tion: Toward cross-dataset and cross-sensor generalization.
In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, pages 1620–1628,
2018. 1

[17] Steven Hoffman, Renu Sharma, and Arun Ross. Iris+ ocular:
Generalized iris presentation attack detection using multiple
convolutional neural networks. In 2019 International Con-
ference on Biometrics (ICB), pages 1–8. IEEE, 2019. 2

[18] Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Beyond
without forgetting: Multi-task learning for classification with
disjoint datasets. In 2020 IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6. IEEE, 2020. 2

[19] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019. 2,
5, 8, 12

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2, 5

[21] Ken Hughes and Kevin W Bowyer. Detection of contact-
lens-based iris biometric spoofs using stereo imaging. In
2013 46th Hawaii International Conference on System Sci-
ences, pages 1763–1772. IEEE, 2013. 1

[22] Dong-Jin Kim, Jinsoo Choi, Tae-Hyun Oh, Youngjin Yoon,
and In So Kweon. Disjoint multi-task learning between het-
erogeneous human-centric tasks. In 2018 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
1699–1708. IEEE, 2018. 2, 3

[23] Gabriela Y Kimura, Diego R Lucio, Alceu S Britto Jr, and
David Menotti. Cnn hyperparameter tuning applied to iris
liveness detection. arXiv preprint arXiv:2003.00833, 2020.
8

[24] Iasonas Kokkinos. Ubernet: Training a universal convolu-
tional neural network for low-, mid-, and high-level vision
using diverse datasets and limited memory. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 6129–6138, 2017. 3

[25] Andrey Kuehlkamp, Allan Pinto, Anderson Rocha, Kevin W
Bowyer, and Adam Czajka. Ensemble of multi-view learning

9

classifiers for cross-domain iris presentation attack detection.
IEEE Transactions on Information Forensics and Security,
14(6):1419–1431, 2018. 2, 8

[26] Wei-Hong Li and Hakan Bilen. Knowledge distillation for
multi-task learning. In European Conference on Computer
Vision, pages 163–176. Springer, 2020. 3, 4, 5, 7, 8, 12, 13

[27] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017. 2, 3, 4

[28] An-An Liu, Yu-Ting Su, Wei-Zhi Nie, and Mohan Kankan-
halli. Hierarchical clustering multi-task learning for joint hu-
man action grouping and recognition. IEEE transactions on
pattern analysis and machine intelligence, 39(1):102–114,
2016. 3

[29] Libor Masek et al. Recognition of human iris patterns for
biometric identification. PhD thesis, Citeseer, 2003. 2, 8

[30] B Maze, J Adams, J A Duncan, N Kalka, T Miller, C Otto,
A K Jain, W T Niggel, J Anderson, J Cheney, et al. IARPA
janus benchmark-c: Face dataset and protocol. In 2018 In-
ternational Conference on Biometrics (ICB), pages 158–165.
IEEE, 2018. 6

[31] David Menotti, Giovani Chiachia, Allan Pinto, William Rob-
son Schwartz, Helio Pedrini, Alexandre Xavier Falcao, and
Anderson Rocha. Deep representations for iris, face, and
fingerprint spoofing detection. IEEE Transactions on Infor-
mation Forensics and Security, 10(4):864–879, 2015. 2

[32] Kien Nguyen, Clinton Fookes, Arun Ross, and Sridha Srid-
haran. Iris recognition with off-the-shelf cnn features: A
deep learning perspective. IEEE Access, 6:18848–18855,
2017. 2

[33] Federico Pala and Bir Bhanu. Iris liveness detection by rela-
tive distance comparisons. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 162–169, 2017. 2

[34] P Jonathon Phillips, W Todd Scruggs, Alice J O’Toole,
Patrick J Flynn, Kevin W Bowyer, Cathy L Schott, and
Matthew Sharpe. Frvt 2006 and ice 2006 large-scale exper-
imental results. IEEE transactions on pattern analysis and
machine intelligence, 32(5):831–846, 2009. 5

[35] Ramachandra Raghavendra, Kiran B Raja, and Christoph
Busch. Contlensnet: Robust iris contact lens detection us-
ing deep convolutional neural networks. In 2017 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
pages 1160–1167. IEEE, 2017. 2

[36] R Ranjan, A Bansal, J Zheng, H Xu, J Gleason, B Lu, A Nan-
duri, J-C Chen, C D Castillo, and R Chellappa. A fast and
accurate system for face detection, identification, and veri-
fication. IEEE Transactions on Biometrics, Behavior, and
Identity Science, 1(2):82–96, 2019. 6

[37] R Ranjan, S Sankaranarayanan, C D Castillo, and R Chel-
lappa. An all-in-one convolutional neural network for face
analysis. In 2017 12th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2017), pages
17–24. IEEE, 2017. 2, 3, 4

[38] Christian Rathgeb, Andreas Uhl, Peter Wild, and Heinz Hof-
bauer. Design decisions for an iris recognition sdk. In Hand-
book of iris recognition, pages 359–396. Springer, 2016. 1,
2

[39] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In Proc. CVPR, 2017. 3

[40] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. ICLR 2015, 2015. 3, 4

[41] Renu Sharma and Arun Ross. D-netpad: An explainable and
interpretable iris presentation attack detector. In 2020 IEEE
International Joint Conference on Biometrics (IJCB), pages
1–10. IEEE, 2020. 1, 2, 5, 8

[42] Zhenan Sun and Tieniu Tan. Ordinal measures for iris recog-
nition. IEEE Transactions on pattern analysis and machine
intelligence, 31(12):2211–2226, 2008. 2, 8

[43] Xingqiang Tang, Jiangtao Xie, and Peihua Li. Deep convo-
lutional features for iris recognition. In Chinese conference
on biometric recognition, pages 391–400. Springer, 2017. 2

[44] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE transactions on
pattern analysis and machine intelligence, 2020. 2, 5, 8, 11

[45] Kuo Wang and Ajay Kumar. Toward more accurate iris
recognition using dilated residual features. IEEE Transac-
tions on Information Forensics and Security, 14(12):3233–
3245, 2019. 1, 2, 3, 4, 5, 8

[46] Daksha Yadav, Naman Kohli, Akshay Agarwal, Mayank
Vatsa, Richa Singh, and Afzel Noore. Fusion of handcrafted
and deep learning features for large-scale multiple iris pre-
sentation attack detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 572–579, 2018. 2

[47] Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh,
and Afzel Noore. Detecting textured contact lens in un-
controlled environment using densepad. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 1, 2, 5

[48] David Yambay, Benedict Becker, Naman Kohli, Daksha Ya-
dav, Adam Czajka, Kevin W Bowyer, Stephanie Schuckers,
Richa Singh, Mayank Vatsa, Afzel Noore, et al. Livdet iris
2017—iris liveness detection competition 2017. In 2017
IEEE International Joint Conference on Biometrics (IJCB),
pages 733–741. IEEE, 2017. 5, 6, 8

[49] David Yambay, James S. Doyle, Kevin W. Bowyer, Adam
Czajka, and Stephanie Schuckers. Livdet-iris 2013 - iris live-
ness detection competition 2013. In IEEE International Joint
Conference on Biometrics, pages 1–8, 2014. 5

[50] David Yambay, Brian Walczak, Stephanie Schuckers, and
Adam Czajka. Livdet-iris 2015 - iris liveness detection com-
petition 2015. In 2017 IEEE International Conference on
Identity, Security and Behavior Analysis (ISBA), pages 1–6,
2017. 5

[51] Kai Yang, Zihao Xu, and Jingjing Fei. Dualsanet: Dual spa-
tial attention network for iris recognition. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 889–897, 2021. 2

[52] Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. In ICLR, 2017.
3

[53] Zijing Zhao and Ajay Kumar. Towards more accurate iris

10

recognition using deeply learned spatially corresponding
features. In Proceedings of the IEEE international confer-
ence on computer vision, pages 3809–3818, 2017. 1, 2, 5,
8

Supplementary material
In this supplementary material, we provide the following
information:
Section A1: Train and test split for user-to-user verification.
Section A2: Hyperparameters for EyePAD and EyePAD++.
Section A3: Detailed results with HRnet and MobilenetV3
backbones.
Section A4: Ablation experiments for λ1 (EyePAD).
Section A5: Hyperparameters for baseline methods.

A1. Train and test splits for ND-Iris-0405
dataset [1]

In section 4.2 of the main paper, we mention that we
randomly split the users into two subsets: Utrain (for
training) and Utest (for evaluation). All the images for
users in the training split are used for training. Here,
we provide the train and test split to enable researchers
reproduce our protocol.

Train user IDs: ‘04200’ ‘04203’ ‘04214’ ‘04233’ ‘04239’
‘04261’ ‘04265’ ‘04267’ ‘04284’ ‘04286’ ‘04288’ ‘04302’
‘04309’ ‘04313’ ‘04320’ ‘04327’ ‘04336’ ‘04339’ ‘04349’
‘04351’ ‘04361’ ‘04370’ ‘04378’ ‘04379’ ‘04382’ ‘04387’
‘04394’ ‘04395’ ‘04397’ ‘04400’ ‘04407’ ‘04408’ ‘04409’
‘04418’ ‘04419’ ‘04429’ ‘04430’ ‘04434’ ‘04435’ ‘04436’
‘04440’ ‘04446’ ‘04447’ ‘04453’ ‘04460’ ‘04471’ ‘04472’
‘04475’ ‘04476’ ‘04477’ ‘04479’ ‘04481’ ‘04482’ ‘04485’
‘04495’ ‘04496’ ‘04502’ ‘04504’ ‘04505’ ‘04506’ ‘04511’
‘04512’ ‘04514’ ‘04530’ ‘04535’ ‘04542’ ‘04553’ ‘04560’
‘04575’ ‘04577’ ‘04578’ ‘04581’ ‘04587’ ‘04588’ ‘04589’
‘04593’ ‘04596’ ‘04597’ ‘04598’ ‘04603’ ‘04605’ ‘04609’
‘04613’ ‘04615’ ‘04622’ ‘04626’ ‘04628’ ‘04629’ ‘04632’
‘04633’ ‘04634’ ‘04644’ ‘04647’ ‘04653’ ‘04670’ ‘04684’
‘04687’ ‘04691’ ‘04692’ ‘04695’ ‘04699’ ‘04701’ ‘04702’
‘04703’ ‘04712’ ‘04715’ ‘04716’ ‘04720’ ‘04721’ ‘04725’
‘04729’ ‘04734’ ‘04736’ ‘04737’ ‘04738’ ‘04742’ ‘04744’
‘04745’ ‘04747’ ‘04748’ ‘04751’ ‘04756’ ‘04757’ ‘04758’
‘04763’ ‘04765’ ‘04768’ ‘04772’ ‘04773’ ‘04774’ ‘04776’
‘04777’ ‘04778’ ‘04782’ ‘04783’ ‘04785’ ‘04787’ ‘04790’
‘04792’ ‘04794’ ‘04797’ ‘04801’ ‘04802’ ‘04803’ ‘04813’
‘04815’ ‘04816’ ‘04818’ ‘04831’ ‘04832’ ‘04839’ ‘04840’
‘04841’ ‘04843’ ‘04846’ ‘04847’ ‘04850’ ‘04854’ ‘04857’
‘04858’ ‘04859’ ‘04861’ ‘04863’ ‘04864’ ‘04866’ ‘04867’
‘04869’ ‘04870’ ‘04871’ ‘04872’ ‘04873’ ‘04876’ ‘04877’
‘04878’ ‘04879’ ‘04880’ ‘04882’ ‘04883’ ‘04884’ ‘04886’
‘04888’ ‘04890’ ‘04891’ ‘04892’ ‘04894’ ‘04897’ ‘04898’
‘04899’ ‘04901’ ‘04905’ ‘04908’ ‘04909’ ‘04910’ ‘04911’

‘04912’ ‘04914’ ‘04915’ ‘04919’ ‘04920’ ‘04922’ ‘04923’
‘04928’ ‘04930’ ‘04931’ ‘04932’ ‘04934’

Test user IDs:‘02463’ ‘04201’ ‘04202’ ‘04213’ ‘04217’
‘04221’ ‘04225’ ‘04273’ ‘04285’ ‘04297’ ‘04300’ ‘04301’
‘04311’ ‘04312’ ‘04314’ ‘04319’ ‘04322’ ‘04324’ ‘04334’
‘04338’ ‘04341’ ‘04343’ ‘04344’ ‘04347’ ‘04350’ ‘04372’
‘04385’ ‘04388’ ‘04404’ ‘04423’ ‘04427’ ‘04444’ ‘04449’
‘04451’ ‘04456’ ‘04459’ ‘04461’ ‘04463’ ‘04470’ ‘04473’
‘04488’ ‘04493’ ‘04507’ ‘04509’ ‘04513’ ‘04519’ ‘04531’
‘04537’ ‘04556’ ‘04557’ ‘04569’ ‘04580’ ‘04585’ ‘04595’
‘04600’ ‘04612’ ‘04621’ ‘04631’ ‘04641’ ‘04662’ ‘04664’
‘04667’ ‘04673’ ‘04675’ ‘04681’ ‘04682’ ‘04683’ ‘04689’
‘04693’ ‘04697’ ‘04705’ ‘04708’ ‘04709’ ‘04711’ ‘04714’
‘04719’ ‘04722’ ‘04724’ ‘04726’ ‘04727’ ‘04728’ ‘04730’
‘04731’ ‘04732’ ‘04733’ ‘04743’ ‘04746’ ‘04749’ ‘04754’
‘04760’ ‘04762’ ‘04767’ ‘04770’ ‘04775’ ‘04784’ ‘04786’
‘04796’ ‘04798’ ‘04806’ ‘04810’ ‘04811’ ‘04812’ ‘04821’
‘04822’ ‘04823’ ‘04827’ ‘04829’ ‘04830’ ‘04833’ ‘04838’
‘04842’ ‘04848’ ‘04849’ ‘04851’ ‘04853’ ‘04855’ ‘04856’
‘04860’ ‘04862’ ‘04865’ ‘04868’ ‘04874’ ‘04875’ ‘04881’
‘04885’ ‘04887’ ‘04889’ ‘04893’ ‘04895’ ‘04896’ ‘04900’
‘04902’ ‘04903’ ‘04904’ ‘04906’ ‘04907’ ‘04913’ ‘04916’
‘04917’ ‘04918’ ‘04921’ ‘04924’ ‘04925’ ‘04926’ ‘04927’
‘04929’ ‘04933’ ‘04935’ ‘04936’

It is also mentioned in the main paper that the images for the
test users are then randomly divided into query and gallery
sets. We provide the images in the query and gallery sets in
query set.txt and gallery set.txt, respectively.
These files are provided here. We also provide a readme file
(README.txt) for the readers’ convenience, wherein we
provide information about the left/right labels.

A2. Training details for EyePAD, EyePAD++
We train all the models in our work with a batch size of 64
in our experiments, for 100 epochs. We use data augmen-
tation such as random horizontal flip, random rotation (30
degrees) and random jitter. The detailed hyperparameter in-
formation for training models for user-to-user verification
with PAD is provided in Table A3.
While training Densenet121 network for eye-to-eye veri-
fication with PAD, we use λ1 = 2.0 (for EyePAD) and
λ2 = 2.0 (for EyePAD++). All the other parameters used
in this experiment are same as those mentioned in the first
row of Table A3.

A3. Detailed results
A3.1. EA and PAD with HRnet64

In Table A1, we provide the full version of Table 4 from the
main paper, where we present results with HRnet64 [44].
Here, we report the user-to-user verification performance

11

https://drive.google.com/drive/folders/1iTPFq87MknAoQxPz4osmCKGKNGhZmX6V?usp=sharing

User-to-user verification results on ND-Iris-0405 (EA) PAD results on CU-LivDet

1 Query 1 Gallery 1 Query 2 Gallery 1 Query 5 Gallery

Method OFRR(↓) 10−4 10−3 10−2 OFRR(↓) 10−4 10−3 10−2 OFRR(↓) 10−4 10−3 10−2 TDR(↑) APCER BPCER HTER(↓)
EA only - 0.861 0.950 0.990 - 0.875 0.961 0.994 - 0.919 0.983 0.996 - - - -

PAD only - - - - - - - - - - - - 0.962 0.051 0.00 0.026
MTL 0.209 0.682 0.819 0.949 0.156 0.734 0.866 0.962 0.113 0.815 0.930 0.977 0.921 0.053 0.005 0.029

MTMT [26] 0.132 0.777 0.881 0.970 0.091 0.840 0.917 0.971 0.068 0.891 0.945 0.984 0.959 0.033 0.001 0.017
EyePAD 0.094 0.804 0.909 0.985 0.060 0.864 0.942 0.993 0.034 0.898 0.968 0.995 0.934 0.044 0.014 0.029

EyePAD++ 0.062 0.865 0.942 0.996 0.048 0.898 0.959 0.993 0.031 0.926 0.976 0.997 0.915 0.041 0.021 0.031

EA only - 0.829 0.913 0.978 - 0.838 0.944 0.988 - 0.911 0.968 0.992 - - - -
PAD only - - - - - - - - - - - - 0.801 0.089 0.026 0.058

MTL 0.430 0.503 0.650 0.851 0.377 0.509 0.719 0.868 0.293 0.638 0.801 0.924 0.737 0.040 0.331 0.186
MTMT [26] 0.188 0.768 0.898 0.973 0.165 0.846 0.932 0.990 0.129 0.904 0.963 0.994 0.646 0.125 0.046 0.086

EyePAD 0.180 0.805 0.897 0.970 0.137 0.877 0.932 0.989 0.132 0.902 0.960 0.993 0.766 0.115 0.008 0.062
EyePAD++ 0.174 0.830 0.911 0.983 0.158 0.869 0.950 0.988 0.118 0.915 0.971 0.989 0.655 0.109 0.025 0.067

EA only - 0.733 0.893 0.984 - 0.749 0.924 0.990 - 0.837 0.952 0.992 - - - -
PAD only - - - - - - - - - - - - 0.942 0.049 0.008 0.029

MTL 0.338 0.451 0.678 0.856 0.279 0.481 0.737 0.908 0.236 0.587 0.787 0.940 0.899 0.085 0.004 0.045
MTMT [26] 0.184 0.675 0.846 0.944 0.168 0.721 0.862 0.961 0.114 0.824 0.916 0.975 0.894 0.048 0.020 0.034

EyePAD 0.161 0.656 0.848 0.964 0.125 0.718 0.886 0.984 0.091 0.800 0.916 0.986 0.914 0.060 0.006 0.033
EyePAD++ 0.157 0.729 0.869 0.976 0.114 0.781 0.916 0.988 0.093 0.840 0.937 0.989 0.887 0.061 0.010 0.036

Table A1. EA and PAD with HRnet64 trained and evaluated on (top) original, (middle) blurred, (bottom) Noisy data: For user-to-user
verification, we report TAR@FAR=10−4, 10−3, 10−2. For PAD, we report TDR@FDR=0.002 and APCER, BPCER, HTER. OFRR jointly
measures EA and PAD performance on ND-Iris-0405. EyePAD++ obtains the lowest OFRR in most scenarios. Bold: Best, Underlined:
Second best.

User-to-user verification results on ND-Iris-0405 (EA) PAD results on CU-LivDet

1 Query 1 Gallery 1 Query 2 Gallery 1 Query 5 Gallery

Method OFRR(↓) 10−4 10−3 10−2 OFRR(↓) 10−4 10−3 10−2 OFRR(↓) 10−4 10−3 10−2 TDR(↑) APCER BPCER HTER(↓)
EA only - 0.824 0.923 0.989 - 0.863 0.943 0.987 - 0.898 0.952 0.995 - - - -

PAD only - - - - - - - - - - - - 0.925 0.048 0.010 0.029
MTL 0.180 0.739 0.856 0.958 0.142 0.792 0.895 0.970 0.110 0.872 0.933 0.985 0.884 0.025 0.053 0.039

MTMT [26] 0.193 0.751 0.871 0.973 0.144 0.817 0.917 0.977 0.126 0.859 0.933 0.987 0.793 0.073 0.011 0.042
EyePAD 0.160 0.769 0.893 0.972 0.142 0.838 0.919 0.985 0.114 0.887 0.947 0.991 0.859 0.046 0.034 0.040

EyePAD++ 0.140 0.819 0.904 0.981 0.117 0.863 0.934 0.992 0.085 0.901 0.962 0.990 0.883 0.041 0.022 0.032

EA only - 0.889 0.953 0.993 - 0.853 0.929 0.992 - 0.846 0.921 0.989 - - - -
PAD only - - - - - - - - - - - - 0.581 0.155 0.078 0.117

MTL 0.564 0.585 0.734 0.871 0.533 0.619 0.798 0.927 0.483 0.744 0.855 0.942 0.556 0.133 0.122 0.128
MTMT [26] 0.524 0.642 0.819 0.939 0.477 0.726 0.905 0.965 0.464 0.769 0.913 0.963 0.502 0.227 0.046 0.137

EyePAD 0.562 0.537 0.715 0.915 0.486 0.618 0.810 0.952 0.447 0.711 0.866 0.956 0.589 0.144 0.097 0.121
EyePAD++ 0.385 0.768 0.874 0.956 0.372 0.792 0.913 0.970 0.332 0.861 0.938 0.983 0.552 0.092 0.173 0.133

EA only - 0.756 0.872 0.977 - 0.795 0.912 0.982 - 0.817 0.944 0.985 - - - -
PAD only - - - - - - - - - - - - 0.831 0.079 0.003 0.041

MTL 0.263 0.643 0.799 0.949 0.217 0.682 0.870 0.976 0.173 0.761 0.908 0.974 0.762 0.062 0.065 0.064
MTMT [26] 0.285 0.549 0.766 0.928 0.185 0.705 0.868 0.968 0.162 0.777 0.906 0.977 0.730 0.049 0.069 0.059

EyePAD 0.262 0.722 0.847 0.958 0.227 0.779 0.880 0.974 0.209 0.801 0.927 0.980 0.712 0.083 0.047 0.065
EyePAD++ 0.254 0.660 0.786 0.947 0.180 0.733 0.868 0.975 0.137 0.811 0.912 0.990 0.730 0.033 0.126 0.080

Table A2. EA and PAD with MobilenetV3 trained and evaluated on (top) original, (middle) blurred, (bottom) Noisy data: For user-to-
user verification, we report TAR@FAR=10−4, 10−3, 10−2. For PAD, we report TDR@FDR=0.002 and APCER, BPCER, HTER. OFRR
jointly measures EA and PAD performance on ND-Iris-0405. EyePAD++ obtains the lowest OFRR. Bold: Best, Underlined: Second best.

with K = 1, 2, 5 gallery pairs. In most of the scenarios,
EyePAD++ outperforms the existing baselines in terms of
the OFRR score.

A3.2. EA and PAD with MobilenetV3

In Table A2, we provide the full version of Table 5 from
the main paper, where we present results with MobilenetV3
[19]. Here, we report the user-to-user verification perfor-
mance with K = 1, 2, 5 gallery pairs. EyePAD++ outper-
forms the existing baselines in terms of the OFRR score, in

all the problem settings.

A4. Ablation study: Effect of λ1 in EyePAD

The hyperparameter λ1 is used to weight the feature-level
distillation loss Ldis (Eq 2 of the main paper). Ldis is
used to preserve the EA information, while studentMs (ini-
tialized with Mt) is trained for PAD. Using Densenet121
and the original (clean) EA and PAD datasets, we ana-
lyze the effect of λ1 on user-to-user verification perfor-

12

PA
D

TD
R

@
FD

R
=0

.0
02

0.75 0.8 0.85 0.9
TAR@FAR=10-3

0.95 1
0.88

0.96

0.94

0.92

0.9

0.98

λ1=0.1

λ1=2.0

λ1=10.0

λ1=5.0

λ1=1.0

λ1=0.5
λ1=0.75

PAD only (single task)

EA
only (single task)

(a) 1 query 1 gallery

PA
D

TD
R

@
FD

R
=0

.0
02

0.88 0.9 0.92 0.94
TAR@FAR=10-3

0.96 0.98
0.88

0.96

0.94

0.92

0.9

0.98

λ1=0.1 λ1=0.5 λ1=0.75

λ1=1.0
λ1=2.0

λ1=5.0

λ1=10.0

PAD only (single task)

EA
 only (single task)

(b) 1 query 2 gallery

PA
D

TD
R

@
FD

R
=0

.0
02

0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98
TAR@FAR=10-3

0.88

0.96

0.94

0.92

0.9

0.98

λ1=0.1

λ1=0.5

λ1=2.0

λ1=0.75 λ1=1.0

λ1=10.0

λ1=5.0

PAD only (single task)
EA

 only (single task)

(c) 1 query 5 gallery
Figure A1. PAD performance (TDR@FDR=0.002) v/s User-to-user verification performance (TAR@FAR=10−3) obtained by the EyePAD
student network, for different values of λ1.

Backbone Dataset λ1 λ2 Optimizer LR γ Decay after

Densenet121 Original 2.0 0.75 Adam 10−4 0.5 12
Densenet121 Blurred 1.0 2.0 Adam 10−4 0.5 12
Densenet121 Noisy 1.0 2.0 Adam 10−4 0.5 12

HRnet64 Original 2.0 2.0 Adam 10−4 0.5 12
HRnet64 Blurred 5.0 2.0 Adam 10−4 0.5 12
HRnet64 Noisy 2.0 5.0 Adam 10−4 0.5 12

MobilenetV3 Original 1.0 0.75 SGD 10−1 0.1 15
MobilenetV3 Blurred 1.0 0.75 SGD 10−1 0.1 15
MobilenetV3 Noisy 5.0 2.0 SGD 10−1 0.1 15

Table A3. Hyperparameter information for EyePAD and Eye-
PAD++.

Backbone Dataset λauth λpad Optimizer LR γ Decay after

Densenet121 Original 1.0 1.0 Adam 10−4 0.5 12
Densenet121 Blurred 0.75 0.75 Adam 10−4 0.5 12
Densenet121 Noisy 0.5 0.75 Adam 10−4 0.5 12

HRnet64 Original 1.0 1.0 Adam 10−4 0.5 12
HRnet64 Blurred 0.75 0.75 Adam 10−4 0.5 12
HRnet64 Noisy 2.0 2.0 Adam 10−4 0.5 12

MobilenetV3 Original 1.0 2.0 SGD 10−1 0.1 15
MobilenetV3 Blurred 1.0 1.0 SGD 10−1 0.1 15
MobilenetV3 Noisy 0.1 0.1 SGD 10−1 0.1 15

Table A4. Hyperparameter information for MTMT [26].

mance and PAD performance. We perform experiments
with λ1 = [0.1, 0.5, 0.75, 1.0, 2.0, 5.0, 10.0] and present the
corresponding results in Fig. A1. We find that in general,
when λ1 increases, the user to user verification performance
improves and the PAD performance gets degraded. This
is expected because a higher value for λ1 enforces Ms to
preserve authentication and restrics it from learning PAD-
specific features. However, we do not find any such trend
with respect to parameter λ2.

A5. Training details for baselines
For training the MTL baseline for user-to-user or eye-to-eye
verification with PAD, we use the same parameter values
mentioned in Table A3, except for λ1, λ2. The hyperparam-
eters used for training MTMT [26] are provided in Table
A4. While training MTMT [26] for eye-to-eye verification

with PAD (using Densenet121 and the original dataset), we
use λauth = 1.0 and λpad = 1.0. The rest of the hyper-
parameters are same as those mentioned in the first row of
Table A4.

13

	1 . Introduction
	2 . Related work
	3 . Proposed approach
	3.1 . Eye Authentication with Presentation Attack Detection (EyePAD) and EyePAD++
	4 . Experiments
	4.1 . Baseline methods
	4.2 . Datasets and network architectures used
	4.3 . User to user verification protocol
	4.4 . Metrics for EA and PAD
	4.4.1 Overall False Reject Rate (OFRR)

	4.5 . Results

	5 . Conclusion

	A1 . Train and test splits for ND-Iris-0405 dataset bowyer2016nd
	A2 . Training details for EyePAD, EyePAD++
	A3 . Detailed results
	A3.1 . EA and PAD with HRnet64
	A3.2 . EA and PAD with MobilenetV3
	A4 . Ablation study: Effect of 1 in EyePAD
	A5 . Training details for baselines

