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Abstract

High annotation costs are a substantial bottleneck in ap-
plying modern deep learning architectures to clinically rel-
evant medical use cases, substantiating the need for novel
algorithms to learn from unlabeled data. In this work, we
propose ContlG, a self-supervised method that can learn
from large datasets of unlabeled medical images and ge-
netic data. Our approach aligns images and several ge-
netic modalities in the feature space using a contrastive
loss. We design our method to integrate multiple modal-
ities of each individual person in the same model end-to-
end, even when the available modalities vary across indi-
viduals. Our procedure outperforms state-of-the-art self-
supervised methods on all evaluated downstream bench-
mark tasks. We also adapt gradient-based explainability
algorithms to better understand the learned cross-modal as-
sociations between the images and genetic modalities. Fi-
nally, we perform genome-wide association studies on the
features learned by our models, uncovering interesting re-
lationships between images and genetic data.

1. Introduction

Medical imaging plays a vital role in patient healthcare.
It aids in disease prevention, early detection, diagnosis, and
treatment. However, efforts to employ machine learning al-
gorithms to support in clinical settings are often hampered
by the high costs of required expert annotations [41]. At the
same time, large-scale biobank studies have recently started
to aggregate unprecedented scales of multimodal data on
human health. For example, the UK Biobank (UKB) [105]
contains data on 500,000 individuals, including a wide
range of imaging modalities such as retinal fundus images
and cardiac, abdominal, and brain MRI. Similar studies are
currently underway in other countries, such as the Nationale
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Figure 1. Overview of our contrastive learning method from imag-
ing and genomic data. It learns representations by bringing the
modalities of each individual closer in the embedding space, and
apart from different individuals’. In this example, the modalities
are retinal fundus images (in brown), SNP data (in green), and
polygenic risk scores (PGS) (in purple). Our method handles miss-
ing modalities (e.g. missing PGS for the person in the upper right).

Kohorte (NaKo) [15], BioMe [13], FinnGen [34], Estonia
Biobank [14], and others. While some of these studies also
include phenotypic descriptions, e.g. a person’s medical his-
tory, such data tend to be both highly incomplete and biased
due to clinical practices and assessment methods [83], mak-
ing learning from them challenging and error-prone. On the
other hand, genetic data is increasingly abundant. While
chip-based genotyping technology has enabled the study of
common genetic variation at scale [1 18], the exponentially
decreasing costs of genomic sequencing is driving progress
for rare genetic variation [87]. Due to these advances, the
UKB and other biobanks often contain a rich array of ge-
netic and genomic measurements. Genetic data is gener-



ally less susceptible to bias factors, and most diseases have
at least a partially genetic cause, with some genetic disor-
ders being exclusively attributed to genetic mutations [120].
Similarly, most other traits — not directly related to diseases
—, e.g. height and human personality, are also strongly in-
fluenced by genetics [69, 140]. Complementary imaging-
genetics datasets are increasingly also available in other ap-
plication settings, e.g. plant breeding [126].

Unlabelled medical images carry valuable information
about organ structures, and an organism’s genome is the
blueprint for biological functions in the individual’s body.
Clearly, integrating these distinct yet complementary data
modalities can help create a more holistic picture of phys-
ical and disease traits. Integrating these data types, how-
ever, is non-trivial and challenging. The human genome
consists of three billion base pairs, yet most genetic dif-
ferences between individuals have little effect. This leads
to challenges both in terms of computational aspects, and
in terms of statistical efficiency. Unfortunately, it is not
clear a priori which parts of the genome are relevant and
which are not. Typically, genome-wide association stud-
ies (GWAS) [51,75] use statistical inference techniques to
discover relationships between genetic variations and par-
ticular physical or disease traits. To date, thousands of
scientific works have found more than 300,000 genetic-
phenotype associations [52]. However, even now a large
portion of known or presumed heritability of traits is not yet
accounted for by the individual genome-trait associations, a
phenomenon known as “missing heritability” [76]. Better
methods to find — and explain — the relationships between
genetic and imaging modalities may help close this gap.

Therefore, the growing number of biobanks of unlabeled
multimodal (i.e. imaging-genetics) data, calls for solutions
that can: (i) learn semantic data representations without
requiring expensive expert annotations, (ii) integrate these
data modalities end-to-end in an efficient manner, and (iii)
explain discovered cross-modal correspondences (associa-
tions). Self-supervised (unsupervised) representation learn-
ing offers a viable solution when unlabeled data is abundant
and labels are scarce. These methods witnessed a surge
of interest after proving successful in several application
domains [55]. The representations learned by these meth-
ods facilitate data-efficient fine-tuning on supervised down-
stream tasks, reducing significantly the burden of manual
annotation. Furthermore, such methods allow for integrat-
ing multiple data modalities as distinct views, which can
lead to considerable performance gains. Despite the recent
advancements in self-supervised methods, e.g. contrastive
learning, only little work has been done to adopt these meth-
ods in the medical domain. In fact, we are not aware of
any prior work that leverages self-supervised representation
learning on combined imaging and genetic modalities. We
believe self-supervised learning has the potential to address

the above challenges inherent to the medical domain.
Contributions. (i) We propose a self-supervised method,
called ContIG, that can learn from multimodal datasets of
unlabeled medical images and genetic data. ContIG aligns
these modalities in the representation space using a con-
trastive loss, which enables learning semantic representa-
tions in the same model end-to-end. Our approach handles
the case of multiple genetic modalities, in conjunction with
images, even when the available modalities vary across in-
dividuals. (ii) We adapt gradient-based explainability al-
gorithms to better understand the learned cross-modal cor-
respondences (associations) between the images and ge-
netic modalities. Our method discovers interesting associ-
ations, and we confirm their relevance by cross-referencing
biomedical literature.

Our work presents a framework on how to exploit in-
expensive self-supervised solutions on large corpora (e.g.
Biobanks) of (medical) images and genetic data.

2. Related Work

Self-supervised learning with pretext tasks. These
methods learn an embedding (representation) space by de-
riving a proxy (pretext) task from the data itself, requiring
no human labels. The learned embeddings will also be use-
ful for real-world downstream tasks, afterwards. A large
body of works relied on such proxy tasks [17,30,39,77,82,

]. A comprehensive review of similar works is provided
in [55]. The limitation of such methods is the need to design
handcrafted proxy tasks to learn representations.

Contrastive learning approaches [18,23-25,32,40,44,

, 47,78, , s ] circumvent the above challenge
by maximizing mutual information between related signals
in contrast to others, by employing Noise Contrastive Esti-
mation [43]. Contrastive methods advanced the results of
unsupervised learning on ImageNet [29]. However, unlike
our method, these methods process uni-modal images only.

Multimodal learning. Learning from multimodal data
poses several inherent challenges, such as: multimodal fu-
sion, alignment, and representation [12, 80]. Prior works,
some of which are self-supervised, learn from a variety
of modalities, such as: image and text (vision and lan-
guage) [8, 56, 65, 73, s s s ], image and au-
dio [3,5,6,9,84,85], audio and text [1, 128], and multi-view
(multimodal) images [91, 98, R ]. More recent works
employed contrastive learning for multimodal inputs (im-
age and text captions) [2, 88,92, s , 1. We follow
this line of work, and we extend contrastive pretraining to
novel modalities, i.e. images and genetics, for the first time.

Self-supervision on medical images. Early works of
self-supervision in the medical context [11, 53, 64,71, 96,

, s , ] made assumptions about input data, lim-
iting their generalization to other target tasks. Then, many
works proposed employing proxy tasks for self-supervision



from medical scans [16,22, 54, 54, s s , R ].
A review of similar works is in [| | 1]. Recently, contrastive
learning [19,48,70, ] has been applied to medical scans,
where it also showed promising results. Our work, as op-
posed to these works, utilizes multiple modalities (images
and one or more genetic modalities) to improve the learned
representations by capturing imaging-genetic relationships.
Deep learning from both genetics and images. In addi-
tion to its successful applications to medical imaging [74],
deep learning also found success in applications on ge-
nomics [33, 60, s s ]. There is a growing number
of recent works that utilize deep neural networks to jointly
learn from both modalities, such as [7,10,21,28,37,42,59,
, 117, 135]. However, these methods are all either highly
application specific or fully supervised. Notably, we are
not aware of any prior work leveraging the self-supervised
framework (with contrastive loss functions) to improve rep-
resentation learning from both imaging and genetic data.

3. Method

In Sec. 3.1 we first review some biomedical foundations
and motivate the genetic modalities chosen in this work.
Then, we describe our contrastive method in Sec. 3.2, and
different modality aggregation types. Finally, we detail the
explanation methods for genetic features in Sec. 3.3.

3.1. Modalities of Genetic Data

The basic building blocks of DNA, which encodes the
biological functions needed for the development of an or-
ganism, are called nucleotides. A long sequence of the four
nucleotides Adenine (A), Thymine (T), cytosine (C), and
Guanine (G) make up the genome - the “recipe” needed
to build an organism [50]. A relatively small fraction of
the genome codes for proteins, while the remaining parts
have regulatory or structural functions. However, over gen-
erations, genetic mutations occur, for example substituting
one nucleotide for another, e.g. A to C. Some of these ge-
netic changes can alter physical traits (e.g. eye color), or
cause disease (e.g. Alzheimer’s). ”Genotyping” is the pro-
cess of measuring these genetic changes [93]. The most
frequently measured type of changes are single-nucleotide-
polymorphisms (SNPs), where a single pair of nucleotides
is altered at a specific position in the genome.

There are three billion base pairs in the human genome,
but typically only a small fraction of them is measured, due
to cost and technological restraints. Even if large parts of
the sequence are available, as is the case for whole-genome
sequencing studies, working with the raw data is not fea-
sible, both in terms of statistical efficiency — most of those
base pairs carry no causal signal and only add noise to the
estimation process — and in terms of computational effi-
ciency. For these reasons, most studies record only a small
subset of all nucleotides, usually on the order of several

hundred thousand to several million SNPs. Furthermore,
human traits of interest are constructed by a spectrum of dif-
ferent genetic architectures. At the same time, due to evolu-
tionary dynamics, some SNPs exhibit their possible varia-
tions frequently in a population (“common” variants), while
other SNPs are identical for the overwhelming majority of
the population with only few individuals having mutations
(“rare” variants) — a form of class imbalance. Therefore, in
this work we consider three different ways to encode the ge-
netic modalities that emphasize different aspects of human
physiology.

Complex traits are traits that are influenced by a large
number of causal factors, including relatively common ge-
netic variations. One example is height, which is deter-
mined to a large degree by many SNPs all across the human
genome [125]. Many common diseases and impairments
are complex traits, which makes them especially relevant to
human health applications [35]. To best encode genetic ar-
chitectures associated with complex traits, we utilize poly-
genic risk scores (PGS) [31]. PGS aggregate many, mostly
common, SNPs into a single score that reflects a person’s
inherited susceptibility to a specific disease [57]. The indi-
vidual SNPs are weighted based on their strength of asso-
ciation with the disease. By using many different PGS for
different traits and diseases we can get a multi-faceted view
of an individual’s complex trait predisposition.

Recent advances in DNA sequencing have also enabled
assessing the contribution of rare genetic variants to herita-
ble traits [119]. Rare variants occur at low frequencies (e.g.
MAF! < 1% or MAF < 1%) in a population. Large genetic
effects often negatively affect an individual’s health and are
strongly selected against by evolution. Hence, in contrast to
common variants, many rare variants have a large effect size
and predispose for genetic diseases. Rare variants are usu-
ally not included in PGS, and due to their low frequencies
they pose a challenge for robust statistical models. In this
work, we use burden scores [63], which aggregate several
rare variants within a localized genetic region.

Finally, we also employ a uniformly sampled cross sec-
tion of the whole genome, by including every k-th SNP
that has been genotyped in the respective study. These raw
SNPs are mostly common variants (due to the biological
sampling procedure) and give a broad representation of an
individual’s genetic composition. This representation likely
carries population structure such as ancestry [68], but also
tags highly diverse functional information.

These three genetic modalities — polygenic risk scores,
burden scores, and raw SNPs — capture complementary as-
pects and together paint a broad description of an individ-
ual’s genetic predisposition. We employ them both individ-
ually and jointly as contrastive views to medical images.
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Figure 2. Schematic illustration for the steps of our proposed method. (a) Assuming one imaging modality (retinal fundus shown in brown),
and three genetic modalities (Single-nucleotide polymorphisms (SNP) in green, polygenic risk scores (PGS) in purple, burden scores in

). Note that different genetic modalities exhibit different variant frequencies (denoted by the histogram in blue): SNP and PGS use
common variants (high frequency), while burdens use rare variants (low frequency). (b) We extract features from each modality with deep
neural networks, i.e. Convolutional Networks for images and Fully Connected (MLP) networks from genomic data. We use a projection
head (MLP) for each modality, which produces equally-sized modality embeddings 2., 241, 2¢2, 2¢3. (€) We use these embeddings in the
contrastive loss computation. The embeddings of each individual are encouraged to come closer in the feature space (depicted by the
circle), and farther from other individuals’. The dotted gray lines demonstrate the contrasting mechanism between modalities.

3.2. Contrastive Learning from Images & Genetics

We assume a dataset of N multimodal samples, one for
each individual person. Each sample consists of a medi-
cal image paired with multiple genetic modalities. Here,
we denote each image by z¢, and the corresponding ge-
netic modalities by x;m, where ¢ € {1,.., N} is the in-
dividual and m € {1,.., M} is the genetic modality. We
group images and genetic modalities in batches of size
b > 1 by the individual modalities: v = {z!!,..., 2%} and
gm = {xlh,, ..., 2%, }. The number of available genetic
modalities may vary across individuals.

Our method, illustrated in Fig. 2, processes these input
modalities with a set of neural network encoders, one per
modality. We denote the image encoding by h! = f,(x?),
and the genetics encodings as hl,. = fom(z},,), with
M distinct genetics encoders. The resulting d-dimensional
vector representations h! hgm € R? are then processed
with projection heads z, = py(h), z.,, = Pgm(hl,,), re-
spectively, where z,,, 24, € R?. Following [23], each pro-
jection head is a non-linear MLP with one hidden-layer.

Contrastive Loss with Two Modalities. We first define
the contrastive loss assuming N pairs of an image and one
genetic modality (3, ), with their respective representa-
tions (z},z}). Then, for the image sample in the i*" pair,

we consider the genetic sample xg as the positive (true)

sample among the negative genetic samples of other indi-
viduals :c’g“ in the same batch. Similarly, the image ¢ is the
positive sample of x;, amongst the negative image samples
x¥. Therefore, the contrastive loss is the sum of these two
parts: i) image-to-genetics L(v, g) (fix the image and con-
trast genetic samples), and ii) genetics-to-image L(g, v) (fix
the genetics and contrast images). Formally, in each step of
the training we select a random batch of size b > 1 with
indices {i1,...,%} and use the batch-wise loss function:

b exp(cos(zi, 2 )/7)
L(/Uag> = _Zlog b i ik
j=1 Zk:l,k;ﬁj exp(cos(z/, 24°)/T)

ﬁcont(vag) = )\L(v,g) + (1 - A)L(gav)a
(1)

where T is a temperature parameter, cos is the cosine simi-
larity, and X € [0, 1] is a loss weighting hyperparameter.

Generalizing to Multiple Genetic Modalities. We gen-
eralize here the above contrastive loss formulation to the
case when there are multiple available genetic modalities,
corresponding to the same image sample. Since we aim to
improve the learned visual representations mainly, the im-
age modality is used at the center of this training scheme
(we deem alternative contrasting schemes a future work). In
other words, we contrast the image with each one of the M
genetic modalities. Therefore, the generalized multimodal



contrastive loss becomes:

M
E(Uaglw"agM) = Z [’Cont(v7gm) (2)
m=1

This formulation ensures the learned visual representations
capture useful information from all available genetic modal-
ities. However, this assumes that every individual has all the
genetic modalities, which is not normally the case. Hence,
we define two aggregation schemes to handle the miss-
ing genetic modalities: i) the “inner” aggregation scheme,
which uses only those individuals for which all the modal-
ities exist, and ii) the “outer” aggregation scheme, which
covers all the individuals, even those with missing genetic
modalities. In particular, for each L.ont (v, grm) in Eq. (2),
the “outer” aggregation only includes individuals with non-
missing data for this specific modality. The “outer” scheme
can make better use of all available data. Both schemes al-
low for training on combinations of existing modalities.

3.3. Genetic Features Explanation

For a given multimodal tuple z := (zy,2g1,...,ZgMm)
of image and genetic representations, we perform feature
explanations to understand the contribution of each genetic
feature g,y ; for the model output. Standard deep learning
explainability approaches are not directly applicable in this
setting, as they require a simple one-to-one relation from in-
put to output, while the contrastive loss Eq. (2) is computed
over batches. Instead, we utilize a fixed reference batch of
b > 1 individuals with images v, and genetic modalities
gm,r (m = 1,..., M) and define the explainer function

E(z) == L(v, U{zy}, g1,r U {3391}’ ceeygme U {ng})

with £ defined as in Eq. (2), but v, g1, ..., ga,r fixed.
We can then use standard feature attribution methods such
as Integrated Gradients [108] or DeepLift [99] to explain
the contribution of all elements in = towards the full batch
loss. We can additionally also fix the input image z,, to only
consider the attribution of the genetic effects. Note that the
explanation will be sensitive to the choice of the reference
batch; to minimize this effect, we choose b to be relatively
large (b = 1,000 in our experiments).

In addition to these local instance-specific attributions,
we are especially interested in understanding the behavior
of our models globally. For this, we aggregate many indi-
vidual explanations, all using the same (independent) refer-
ence batch. Feature importance both in negative and posi-
tive direction is important in our setting, and therefore we
consider the mean absolute value for each feature dimen-
sion as a measure of global attribution.

The setting with missing values can be handled analo-
gously to the “outer” aggregation scheme in Sec. 3.2, by
just omitting the respective modalities.

4. Experimental Results

In this section, we present the evaluation results of our
method. First, we detail the datasets used for pretraining
and evaluation (Sec. 4.1). Then, we assess the quality of the
learned representations (Sec. 4.2), by: i) fine-tuning (i.e.
transfer learning) on four downstream tasks, and ii) per-
forming a genome-wide association study (GWAS) on the
model features. Finally, we present the genetic feature ex-
planation results (Sec. 4.3), and we analyze the findings to
check their relevance with medical literature resources.

4.1. Datasets

We pretrain our models (and the unsupervised base-
lines) on data obtained from the UK Biobank (UKB)
dataset [105]. This dataset contains multimodal data for
almost 500k individuals, although imaging data is only
available for a subset of those. The UKB consists to an
overwhelming majority of individuals of European descent;
we restrict our dataset to those European descent individ-
uals, as including more individuals would likely introduce
very large confounding effects [68]. For the purposes of
pretraining, we utilize the retinal fundus images, which
amount to 155, 238 imaging samples (left and right eyes).
The genetic modalities we employ (see Sec. 3.1), amount
to 155,238 Raw-SNP samples (all individuals have Raw-
SNPs), 145,206 PGS samples, and 93,216 burden scores.
In terms of feature dimensions, for the raw-SNPs, we uni-
formly sample every 100*" SNP from 22 Chromosomes
(excluding the X and Y chromosomes), resulting in 7, 854
SNPs per sample. For PGS, we used 481 scores for a wide
variety of different traits downloaded from the PGS Cat-
alog [61]. We created burden scores for 18,574 protein-
coding genes [79]. These binary scores indicate whether a
participant has at least one potentially damaging rare (MAF
< 1%) variant within a given gene. We holdout a test split
(20%) from the UKB dataset, and the remaining data are
for training (70%) and validation (10%). Each person only
appears in one split.

For the downstream tasks, we employ: i) APTOS 2019
Blindness Detection [4] dataset for Diabetic Retinopathy
detection in Sec. 4.2.1, which has 3,662 retinal fundus
training samples. ii) Retinal Fundus Multi-disease Image
Dataset (RFMiD) [86] for disease classification (Sec. 4.2.2),
which has 3, 200 training images. iii) 102, 219 images from
the UKB [105] training split, but now we predict cardiovas-
cular risk factors (Sec. 4.2.4). iv) Pathologic Myopia chal-
lenge dataset [36] for Pathological Myopia Segmentation
(Sec. 4.2.3), which has 400 image samples with segmenta-
tion masks. More datasets details in the appendix.

4.2. Transfer Learning Results

In this section, we evaluate the quality of representations
by fine-tuning to downstream tasks. However, we find that



a linear evaluation protocol [23, | 16] (encoder weights are
kept frozen) behaves similarly to fine-tuning, see appendix.

Models & architectures. Across the following experi-
ments, we employ a Resnet50 [45] architecture as the en-
coder for image data (f, in Fig. 2). For the genetic en-
coders (fg4m), we vary the number of fully connected layers:
”None” hidden layers, one hidden layer "H1”, and two hid-
den layers "H12”. We also vary the combination of genetic
modalities (detailed in Sec. 3.1) used in pretraining, along
with modality aggregation schemes (explained in Sec. 3.2).

Baselines. We compare to the following baselines:

* Training from scratch (Baseline): we train the same
model on each downstream task, but initialized from
random weights. Comparing to this baseline provides
insights about the benefits of pretraining.

* State-of-the-art contrastive methods: we compare to
self-supervised (contrastive) methods from literature
by training on the same data splits, and using the same
experimental setup. Namely, we compare to models
pretrained with SimCLR [23], BYOL [40], Barlow
Twins [130], SimSiam [25], and NNCLR [32].

4.2.1 Diabetic Retinopathy Detection (APTOS)

Millions of people suffer from Diabetic Retinopathy, the
leading cause of blindness among working aged adults. The
APTOS dataset [4] contains 2D fundus images, which were
rated by a clinician on a severity scale of O to 4. These levels
define a five-way classification task. We fine-tune the im-
age encoder of our models and the baselines on this dataset,
and then we evaluate on a fixed test split (20% of the data).
The metric used in the task, as in the official Kaggle chal-
lenge, is the Quadratic Weighted Kappa (QwKappa [27]),
which measures the agreement between two ratings. Its val-
ues vary from random (0) to complete agreement (1), and if
there is less agreement than chance it may become negative.
The evaluation results in Tab. 1 support the effectiveness of
our proposed contrastive method (ContIG). Our pretrained
models outperform all baselines in this task, demonstrating
the quality of its learned representations.

4.2.2 Retinal Fundus Disease Classification (RFMiD)

The Retinal Fundus Multi-disease Image Dataset
(RFMiD) [86] also contains 2D fundus images, which
are captured using three different cameras. It has 46
class labels, which represent disease conditions annotated
through adjudicated consensus of two experts. Similarly, to
evaluate on this task, we fine-tune the image encoders on
this dataset, and we measure the performance on the test

set. We should note that this task is solved as a multi-label
classification task, since the patients may have multiple
conditions at the same time. As an evaluation metric,
we compute area under the ROC curve (ROC-AUC), and
we use a micro averaging scheme [62]. The results for
this task in Tab. 1 also demonstrate the gains in perfor-
mance obtained by training with ContIG. Our models also
outperform the self-supervised baselines in this task.

4.2.3 Pathological Myopia Segmentation (PALM)

Myopia has become a global burden of public health. Patho-
logic myopia causes irreversible visual impairment to pa-
tients, which can be detected by the changes it causes in the
optic disc, including peripapillary atrophy, tilting, etc. The
PALM dataset [36] contains segmentation masks for these
lesions, from which we evaluate on disc and atrophy seg-
mentation tasks. Similar to the above downstream tasks, we
fine-tune the image encoder on this dataset and evaluate on
the test split. To predict segmentation masks, we add a u-net
decoder [95] on top of the ResNet50 encoder. In terms of
evaluation metrics, we use the dice score [102]. The results
of this task in Tab. 1 demonstrate the quality of the learned
representations by ContIG on semantic segmentation.

4.2.4 Cardiovascular Risk Prediction

Previous work has shown that retinal fundus images can
predict a range of risk factors for cardiovascular dis-
eases [89]. Namely, retinal fundus images have been found
to carry information about age, sex, smoking status, sys-
tolic and diastolic blood pressure (SBP, DBP), and body
mass index (BMI). We predict these six risk factors using a
subset of the UK Biobank [105] dataset, by fine-tuning the
image encoder on these values. As evaluation metrics, we
use Mean Squared Error (MSE) for the numerical factors
(age, BMI, SBP, DBP), and we use the ROC-AUC value for
the categorical factors (sex and smoking status). As Tab. 1
shows, models pretrained with ContIG outperform the base-
line models in both classification and prediction tasks.

4.2.5 Genome-wide Association Study Results

A GWAS is a statistical analysis that correlates individual
genetic markers sampled along the full genome with a trait
of interest, such as a specific disease. GWASs usually re-
quire a low-dimensional, well-defined trait for association
analysis; there is only little work yet on leveraging full med-
ical imaging data in a GWAS setting [7,59]. Here, we fol-
low the transferGWAS [59] framework to evaluate the em-
beddings learned by ContIG. In this framework, images are
projected onto their latent space embeddings and then the
dimensionality is further reduced with a Principal Compo-
nent Analysis. These low dimensional image representa-



Model & Genetics Encoder APTOS RFMiD . PALM Cardio. Risk Pred.
QwKappa 1 ROC-AUC 1T  Dice-Score 1 MSE | ROC-AUC 1

Baseline - 80.47 91.64 77.25 3.440 56.29
SimCLR [23] - 81.83 91.88 70.41 3451 59.38
SimSiam [25] - 75.44 91.28 72.26 3.442 57.37
BYOL [40] - 71.09 89.88 66.32 3414 59.73
Barlow Twins [130] - 72.28 92.03 70.53 3.430 59.05
NNCLR [32] - 77.93 91.89 72.06 3.426 61.95
ContIG (Raw-SNP)  HI 84.01 93.22 76.98 3.254 70.10
ContIG (PGS) H1 85.93 93.31 78.47 3.176 72.72
ContIG (Burden) H1 83.22 93.03 76.49 3.160 72.37
ContIG (Inner RPB) HI1 81.52 92.95 77.34 3.202 70.80
ContIG (Outer RPB) HI1 84.22 93.62 76.97 3.187 71.80

Table 1. Downstream evaluation results by fine-tuning on each task. Bold indicates the best result, underlined is second best. RPB in our
method stand for the genetic modalities used: Raw-SNPs, PGS-scores, and Burden-scores. 1 means higher is better, and | lower is better.

tions can then be efficiently associated with SNPs using sta-
tistical association analysis tools such as PLINK [20, 90].
To compare different training methods, we count how many
independent genetic regions each method finds; a more ex-
pressive image representation is expected to find more asso-
ciated regions. We defer the analysis details to the appendix.
Tab. 2 shows the number of found independent regions
for each pretraining method. Genetic pretraining increases
the statistical power of the genetic association study consid-
erably. Only BYOL [40] achieves near-competitive results
and all other self-supervised methods are outperformed by
a large margin. We also looked up the found regions in the
GWAS catalog [52] of published association results. Many
of the regions were already known to be associated with
skin pigmentation. This is not surprising, as the retina is
known to be pigmented itself, which again is likely to be
correlated with actual skin pigmentation. Besides pigmen-
tation, the GWAS catalog records associations with an ar-
ray of cardiovascular traits (such as BMI, pulse pressure,
large artery stroke, and blood biomarkers), as well as eye-
specific associations (cataract and astigmatism). Similar re-
sults were found by [59], albeit with a larger sample size.

4.3. Genetic Feature Explanation Results

In this section, we investigate the representations learned
by ContlG, using the explanation methods developed in
Sec. 3.3. We first validate that our explanation approach
can distinguish meaningful features from noise features, see
appendix. Next, we analyze the models trained with a sin-
gle genetic modality. Fig. 3 shows the 30 PGS with the
strongest attributions, aggregated over 1,000 examples with
a reference batch of size 1,000. The most important fea-
tures are different kinds of skin cancers (basal & squamous
cell carcinoma, cutaneous melanoma and melanoma). This
can be explained by the fact that the retina is pigmented and

Model Found Regions 1
SimCLR [23] 4
SimSiam [25] 2
BYOL [40] 17
Barlow Twins [130] 8
NNCLR [32] 3
ContIG (Raw-SNP) 16
ContIlG (PGS) 20
ContIG (Burden) 19
ContIG (Inner RPB) 22
ContIG (Outer RPB) 18

Table 2. GWAS results. Indicated is the number of independent
regions associated with the image embeddings for each model

skin pigmentation is highly correlated to skin cancer.

Besides that, glaucoma, which is a disease of the optic
nerve, is a highly relevant PGS, and many of the other traits
are linked to cardiovascular functions (abnormal EKG,
HDL cholesterol, blood protein measurements, QT inter-
val), smoking status (lung adenocarcinoma, FEV/FEC ratio,
response to bronchodilator) and liver and kidney function
(triglyceride & serum urea measurements). This is in line
with previous studies which found strong signals with sim-
ilar biomarkers in retinal fundus images [89]. Interestingly,
ContlIG also finds correlations with neurological conditions
such as Parkinson’s disease and autism, which have previ-
ously been linked to retinal changes as well [38, 97].

Similarly, among the 15 strongest associations for
raw SNPs, these SNPs were previously associated with
cardiovascular traits (rs10807207, rs228416, rs1886785,
rs10415889, rs3851381), pigmentation (rs228416),
neurological and psychological conditions (rs1886785,
rs1738895, rs6533374), and smoking status (rs6533374).
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Figure 3. Global explanations for genetic features in ContIG (PGS
only). Recorded is the mean absolute attribution per feature, ag-
gregated over 1000 individuals, and the 30 PGS with highest as-
sociations are shown. Repeated traits (e.g. Melanoma) are due to
multiple different risk scores published in the PGS catalog.

In addition to the global attributions, Fig. 4 shows the
local attributions for one image/PGS pairing. The retinal
fundus image shows strong signs of vascular tortuosity, a
known and important biomarker for cardiovascular condi-
tions [26]. Analogously, for this instance there is a large
number of PGSs very strongly related to cardiovascular
health (insulin resistance, many blood biomarkers, type II
diabetes, Brugada syndrome, thromboembolism).

These local and global explanations together provide fur-
ther evidence that self-supervised pretraining with ContlG
is able to learn semantically meaningful image representa-
tions without the need for manual annotations. We provide
additional explanatory results in the appendix.

5. Discussion & Limitations

We presented ContlG, a self-supervised representation
learning algorithm for imaging-genetics datasets. Our eval-
uation results show that including genetic information in the
pretraining process can considerably boost performance of
image models in a variety of downstream tasks relevant for
clinical practice and genetic research. We additionally con-
jecture that the self-supervised baseline methods’ reliance
on image augmentations alone may be disadvantageous in
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Figure 4. Local explanation attributions (signed) of genetic fea-
tures for one image-PGS pair. Only the risk scores with highest
values in either positive direction are shown. Retinal fundus im-
age reproduced by kind permission of UK Biobank ©.

medical applications due to the more uniform nature (e.g.
color distributions) of medical images compared to in natu-
ral images. We also leveraged interpretability methods to
understand the relationship between imaging and genetic
modalities in more detail and find interesting associations.

Naturally, there are a number of limitations for our pro-
posed approach. First, ContlG requires datasets that capture
both imaging and genetics data, and is thus not applicable
to pure-imaging datasets. In recent years, however, an in-
creasing number of imaging-genetics studies have started,
and proprietary datasets of joint imaging and genetics data
are available in some large-scale health systems. With the
decreasing prices in both imaging and genotyping technol-
ogy, this trend is likely to continue further. A second limi-
tation lies in the potentially limited application fields of our
method. ContlG is not applicable to standard natural im-
ages, as there are no corresponding genetic features. On
the other hand, large-scale biobanks often include multiple
imaging modalities, such as different MRI and histopathol-
ogy images. Our method is also applicable to imaging-
genetics applications in live-stock and plant breeding, and
may also be useful in basic science studies.

Unfortunately, most large-scale imaging-genetics
datasets to date are conducted in European and Northern
American countries. Therefore, one limitation of the



presented results is that the UKB mostly consists of pop-
ulations with European ancestry, and may carry a biased
representation. We have shown that ContlG nevertheless
improves downstream tasks in other populations, e.g. in
APTOS (collected in India), RFMiD (collected in India),

and PALM (collected in China).

We deem extending

ContlG to other medical imaging datasets and genetic
populations a future work.
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Appendices

A. Training & Implementation Details
A.l. Imaging Preprocessing

A.1.1 Image Quality Control

The UK Biobank contains a relatively large number of reti-
nal fundus images with bad quality (e.g. completely black
or extremely overexposed). To filter out extreme outliers,
we performed two steps of quality control. First, we only
included images where a simple circle-detection algorithm
[49] could find a circle. In the second step, we filtered out
the top and bottom 0.5% brightest and darkest remaining
images.

A.1.2 Image transformations

We cropped images to the circles detected in Sec. A.1.1 and
rescaled to 448 x 448 pixels. During training, we randomly
transform images by a rotation of up to 20° and flip the im-
age horizontally with a 50% probability. We also follow the
common practice of normalizing (standardizing) all the im-
age intensities using the mean and standard deviation from
ImageNet [29].

A.2. Genetics Preprocessing

In all our experiments we used the genetic data provided
by the UK Biobank. The three different genetic modalities
require different preprocessing steps, which we detail in this
section.

A.2.1 Raw SNPs

The raw SNPs are a cross section of all SNPs collected
on microarray chips, collecting approximately 800k genetic
variants in total across all chromosomes. More information
on data collection can be found at https://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id=263.
The individual SNPs are coded in additive format, i.e. O
stands for no deviation from the reference genome, 1 means
that one of the two chromosome copies has a deviation and
the other not, and 2 means that both chromosome copies
show a deviation from the reference genome. We treated
SNPs as continuous variables (opposed to, e.g. separating
them into three classes each) and imputed missing values by
mode imputation. Since 800k feature dimensions are chal-
lenging to handle, and SNPs are highly spatially correlated
along the genome [94], we only sampled every 100-th SNP
from the full microarray. We also only included SNPs on
the 22 autosomal (=not sex-specific) chromosomes, as han-
dling sex chromosomes requires special statistical care and

leads to non-shared features between genetic males and fe-
males. Together, this means we include 7,854 SNPs in our
models.

A.2.2 Polygenic Risk Scores

For computing polygenic risk scores, we downloaded
all PGS weight files included in the PGS Catalog [01]
(https://ftp.ebi.ac.uk/pub/databases/
spot /pgs/, last accessed October 11, 2021; at the time
of writing, a large batch of new scores has been added to
the PGS catalog), a collection of published PGS. The PGS
files provide weights for a linear model to compute risk
scores from the raw genetic data. To have a large inter-
section of available SNPs for our UKB population and the
weights provided by the PGS catalog, instead of using the
raw microarray data from Sec. A.2.1, we used imputed data.
The imputed data uses prior knowledge about correlations
between SNPs collected and not collected on the respec-
tive microarray (“linkage disequilibrium”, LD) to infer the
missing features with high accuracy. Imputed data was pre-
computed by the UKB, and more information can be found
athttps://biobank.ctsu.ox.ac.uk/crystal/
label.cgi?id=100319. Using the imputed data, we
computed 481 polygenic scores for our cohort using the
PLINK software [90], ignoring scores that gave errors or
that only recorded genome positions in a different reference
genome build.

For some traits, there are multiple distinct risk scores
in the PGS catalog, as multiple independent studies have
been performed on the same trait. For example, the trait
“melanoma” appears 9 times in our subset of selected PGS
scores, while other traits, such as “insomnia” appear only
once. The scores contain partially overlapping genetic
markers, and the number of SNPs used for each individual
score vary from only 1 to several millions.

A.2.3 Burden Scores

We ran the Functional Annotation and Association Testing
Pipeline [79] to functionally annotate all the genetic vari-
ants present in the UK Biobank 200k exome sequencing re-
lease [109]. Protein loss of function and missense variants
that were predicted to be damaging were used to construct
burden scores across all protein coding genes. We consid-
ered only rare variants with minor allele frequencies below
1%. Of these variants 41% were “singletons”, i.e. only ob-
served once in our sample. Specifically, each participant
was assigned a binary vector of length 18,574 correspond-
ing to the number of protein coding genes. For every gene,
the entry in this vector is 1 if the participant harbored at
least one potentially damaging variant in that gene, or 0
if no potentially damaging variants were observed in that
gene for that participant. This coding has been applied in
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rare-variant association studies in order to aggregate the ef-
fects of many rare variants within genes, where it can boost
statistical power and reduce the burden of multiple test-
ing [63,79].

A.3. Downstream Datasets Preprocessing
A.3.1 Diabetic Retinopathy detection (APTOS)

In this task we use the APTOS 2019 Blindness Detec-
tion [4] dataset, which has 3,662 retinal fundus training
samples. As explained in the main paper, the labels in
this dataset have five levels of disease severity, defining
five classes. However, these classes are not mutually ex-
clusive, as a higher disease severity of e.g. four is also of
level three and below. Hence, we employ a multi-hot en-
coding scheme for the labels. For instance, class three is
encoded as [1,1,1,0,0] and two as [1,1,0,0,01,
and so on. We split the dataset into three different splits of
training (60%), validation (20%), and test (20%). There is
no overlap of patients across these splits.

A.3.2 Retinal Fundus Disease Classification (RFMiD)

For this task, we use the Retinal Fundus Multi-disease Im-
age Dataset (RFMiD) [86], which has 3,200 images. The
overall number of disease classes is 45. However, we found
that two classes ("HR” and "ODPM”) have no positive
cases, so we exclude these two classes and only work with
the remaining 43 classes. As mentioned before, we convert
these classes to multi-hot labels and solve the task as mul-
tilabel classification. We use this dataset’s official splits for
training, validation, and test.

A.3.3 Pathological Myopia Segmentation (PALM)

We use the Pathologic Myopia challenge dataset [36] for
this task, which has 400 image samples with segmentation
masks. As for segmentation labels, this dataset has three
annotated areas: i) peripapillary atrophy (available for 311
cases), ii) optic disc (available for all cases), and iii) detach-
ment (available for 12 cases only). Given that detachment is
rarely available, we omit it from this task and only predict
the atrophy and disc classes. We stratify the patients using
the atrophy labels, to ensure equal representation of classes
in train (60% of dataset size) / val (20%) / test (20%) splits.

A.3.4 Cardiovascular Risk Prediction (UKB)

To predict the cardiovascular risk factors of (sex, age, BMI,
SBP, DBP, smoking status) from retinal fundus scans, we
use 102, 219 images from the UKB [105]. This corresponds
to the training split (70% of UKB dataset size). We use the
remaining scans for validation (10% of dataset size) and for
the test split (20%). Each person only appears in one split.

The training for this task is performed using two models: 1)
one model to classify the categorical labels (sex to binary la-
bels {0,1}, smoking status to binary labels too), ii) a second
model to predict — solved as a regression task — the remain-
ing continuous variables (age, BMI, SBP, and DBP). We use
two models because the loss values of these two tasks have
different scales. We preprocess the values of the continuous
factors by standardization (removing the mean and scaling
to unit variance). Finally, we impute the missing values of
these factors by using the “mean” for continuous factors and
“median” for discrete factors.

A 4. Training Details

We provide the training details for all pretraining (self-
supervised) and downstream tasks in this section.

* Batch sizes: we use a unified batch size of 64 across
all pretraining and downstream tasks.

* Optimizers: we use Adam optimizer [58] in all pre-
training and downstream tasks.

¢ Schedulers: during self-supervised pretraining (with
ContIG and the baselines), we decay the learning rate
with the cosine decay schedule without restarts [72].

* Learning rates: we use an initial learning rate of
0.001 across all tasks. However, we reduce the learn-
ing rate during training in the PALM semantic segmen-
tation task to 1 x 10~# after 10 warum epochs.

* Weight decay: in pretraining tasks, we use a weight
decay factor of 1 x 10~%. In downstream tasks, we use
a weight decay factor of 1 x 1072,

e Number of epochs: in pretraining tasks, we train all
models for 100 epochs. In downstream tasks, we fine-
tune for:

— For the PALM, APTOS, and RFMiD tasks: we
train all models for 50 epochs.

— For Cardiovascular risk prediction tasks: we fine-
tune all models for 5 epochs (= 8000 steps).

* Network architectures: for the image encoder, as
mentioned before, we use a Resnet50 [45] architecture
across all pretraining and downstream tasks. For the
genetics encoders, we vary between following choices:

— None: here we do not have any hidden fully-
connected layer for the genetics, and we feed
them as inputs to the projection head directly.

— H1: we process the genetic inputs with one hid-
den layer of size 2048. (followed by a ReLU ac-
tivation and Bat chnormlD layers)

— HI12: we process the genetics with two hidden
layers, both of size 2048. (Each layer is followed
by a ReLU and BatchnormlD)

For the projection head, we follow [23] in using two
fully-connected layers. The first has a size of 2048 and



is followed by a ReLU. The second has size of 128,
which is the projection embedding size. Finally, for
classification and regression downstream tasks we add
one fully-connected Linear layer on top to perform
the task. But for the PALM segmentation task, we add
a U-Net [95] decoder on top of the Resnet50 encoder.
For upsampling layers in the decoder, we use trans-
posed convolutional layers ConvTranspose2d.
Loss functions: the used loss functions for each task
are as follows:

— ContlG: for training our method, we use a con-
trastive loss (NTXentLoss). This loss is im-
plemented using a cross-entropy loss, where the
model is trained to classify which sample is pos-
itive in each mini-batch. However, our version
of the NTXentLoss only does inter-modal con-
trasting, and not intra-modal. We set A = 0.75
in this loss (Eq. 1 in the main paper), and the
temperature 7 = 0.1. Note that a larger value of
A gives more importance to image features than
genetic features.

— APTOS & RFMiD: we use the binary cross-
entropy loss in both tasks.

— PALM: we use a weighted combined loss of
Dice-loss [102] (weight=0.8) and binary cross-
entropy (weight=0.2).

— Cardiovascular risk classification (sex & smok-
ing status): we use a binary cross-entropy loss.

— Cardiovascular risk prediction (age & BMI &
SBP & DBP): we use the Mean Square Error
(MSE) loss.

— SimCLR [23]: this method uses the contrastive
NTXentLoss too. We similarly set the temper-
ature 7 = 0.1.

— NNCLR [32]: this method uses the contrastive
NTXentLoss too. We similarly set the temper-
ature 7 = 0.1.

— Simsiam [25]: this method does not use negative
sampling, and instead uses a Siamese network to
minimize the similarity between two augmented
views of the same image. Hence, the loss func-
tion used is the negative cosine similarity loss.

— BYOL [40]: this method has the same loss used
in Simsiam, which is the negative cosine similar-
ity.

— Barlow Twins [130]: this method modifies the
contrastive loss to compute the cross-correlation
matrix between two sets of embeddings, which
are for the same batch of images but with differ-
ent image augmentations. Then, it tries to make
this matrix close to the identity matrix.

A.5. Implementation Details

We implement all of our methods using Python.
The libraries we rely on are PyTorch v1.9.1,
Pytorch-Lightning v1.4.8, torchvision
v0.10.0, torchmetrics v0.4.0, and
Lightly [66] (for baseline self-supervised imple-
mentations). We also follow the reproducibility instructions
for Pytorch-Lightning [67], i.e. by setting a unified
random seed of 42 for all scripts and workers, and by using
deterministic algorithms. We attach our source code
with this supplementary material submission.

B. Additional Downstream Results
B.1. Complete Finetuning Results

In this section, we present the full set of results for fine-
tuning our ContIG models versus the same baselines. These
extended evaluation results, in Tab. 3, show that ContIG
is advantageous to the baselines. The rows in Tab. 3 are
grouped in the following order: i) baseline trained from
scratch, ii) self-supervised baselines, iii) ContIG trained on
single genetic modalities with the images, and iv) ContlG
trained on multiple genetic modalities with images.

B.2. Linear Evaluation Results

In this section, we follow a linear evaluation proto-
col [23,116,132], meaning that the encoder weights are kept
frozen and we only train a linear classifier / regressor on top.
As shown in Tab. 4, models trained with our method “Con-
tIG” consistently outperform the baselines. Linear evalua-
tion aims to provide a good idea about the quality of seman-
tic representations stored in the model encoder.

B.3. Data-Efficiency Results

In this section, we assess the quality of semantic rep-
resentations in a semi-supervised experimental scheme. We
choose randomly 1% and 10% of the labels provided by UK
Biobank (UKB) [105], and perform the downstream tasks
of Cardiovascular Risk Factors prediction. Then, we eval-
uate using the same fixed test split of 20% of UKB dataset
size. We choose this particular downstream task as UKB’s
dataset size is large enough to allow a simulation for expert
annotation collection process, i.e. 1% of number of over-
all labels is approximately 1000 samples, and such number
may simulate an annotation process. The other benchmark
datasets (APTOS [4], REMID [86], and PALM [36]) are rel-
atively small in size. The evaluation results shown in Tab. 5
compare models trained with ContIG to models trained with
the self-supervised baselines. ContIG outperforms the base-
lines in this evaluation scheme too. Note that all models
are trained on the same exact subset of individuals and also
evaluated on the same test set. The results for this data-
efficient evaluation scheme especially confirm the advan-



Model & Genetics Encoder APTOS RFMiD PALM Cardio. Risk Pred.

QwKappa 1 ROC-AUC 1  Dice-Score 1 MSE | ROC-AUC 1
Baseline - 80.47 91.64 77.25 3.440 56.29
SimCLR [23] - 81.83 91.88 70.41 3.451 59.38
SimSiam [25] - 75.44 91.28 72.26 3.442 57.37
BYOL [40] - 71.09 89.88 66.32 3.414 59.73
Barlow Twins [130] - 72.28 92.03 70.53 3.430 59.05
NNCLR [32] - 77.93 91.89 72.06 3.426 61.95
ContIG (Raw-SNP)  None 81.99 92.27 74.96 3.366 64.71
ContlG (Raw-SNP)  HI1 84.01 93.22 76.98 3.254 70.10
ContlG (Raw-SNP)  HI12 82.56 93.09 77.02 3.201 69.58
ContIG (PGS) None 83.84 91.63 76.86 3.257 69.81
ContIG (PGS) H1 85.93 93.31 78.47 3.176 72.72
ContIG (PGS) HI12 86.44 93.04 77.04 3.216 70.69
ContIG (Burden) None 82.92 93.68 76.89 3.273 71.91
ContIG (Burden) H1 83.22 93.03 76.49 3.160 72.37
ContIG (Burden) H12 83.61 93.14 76.72 3.236 71.50
ContIG (Inner RPB)  None 83.49 93.31 77.11 3.195 71.68
ContIG (Inner RPB)  H1 81.52 92.95 77.34 3.202 70.80
ContIG (Inner RPB) H12 80.24 92.94 75.37 3.235 68.89
ContIG (Outer RPB) None 82.93 93.01 76.31 3.260 69.16
ContIG (Outer RPB) HI1 84.22 93.62 76.97 3.187 71.80
ContIG (Outer RPB) HI12 84.21 93.41 77.51 3.233 71.13

Table 3. Downstream evaluation results by fine-tuning on each task. Bold indicates the best result, underlined is second best. RPB in our
method stand for the genetic modalities used: Raw-SNPs, PGS-scores, and Burden-scores. T means higher is better, and | lower is better.

Model & Genetics Encoder APTOS RFMiD PALM Cardio. Risk Pred.
QwKappa 1 ROC-AUC 1  Dice-Score 1 MSE | ROC-AUC 1

SimCLR [23] - 35.02 86.53 59.77 3.998 52.26
SimSiam [25] - 21.25 87.91 56.58 3.998 53.13
BYOL [40] - 17.39 87.84 54.04 4.009 52.29
Barlow Twins [130] - 44.75 87.65 59.52 3.952 54.28
NNCLR [32] - 24.76 85.80 66.25 3.870 54.17
ContIG (Raw-SNP)  None 59.14 89.24 72.82 3.683 59.07
ContIG (Raw-SNP)  H1 69.85 89.99 75.25 3.443 64.36
ContIG (Raw-SNP)  H12 68.72 90.47 74.39 3.439 69.58
ContIG (PGS) None 66.34 88.16 75.03 3.488 62.64
ContIG (PGS) H1 72.38 90.43 76.35 3.426 63.98
ContIG (PGS) HI12 70.20 90.01 77.13 3.481 63.27
ContIG (Burden) None 70.29 91.08 75.31 3.453 64.72
ContIG (Burden) H1 70.67 90.62 75.42 3421 64.70
ContIG (Burden) HI2 71.22 91.10 76.09 3.434 64.84
ContIG (Inner RPB)  None 70.26 89.94 75.27 3.439 63.84
ContIG (Inner RPB) H1 66.94 88.65 75.00 3.404 64.73
ContIG (Inner RPB) H12 68.41 90.56 73.08 3.457 63.45
ContIG (Outer RPB) None 66.94 90.38 75.29 3.448 65.20
ContIG (Outer RPB) HI 66.60 89.46 77.04 3.398 64.59
ContIG (Outer RPB) HI12 68.57 90.51 76.50 3.388 65.20

Table 4. Downstream evaluation results by linear evaluation on each task. Similarly, the results obtained by ContlG outperform all
baselines. Bold indicates the best result, underlined is second best. RPB in our method stand for the genetic modalities used: Raw-SNPs,
PGS-scores, and Burden-scores. T means higher is better, and | lower is better.



tages of pretraining with multiple genetic modalities using
the ”Outer” aggregation scheme. Notably, semi-supervised
pretraining of ContlG with only 1% labeled data still out-
performs the self-supervised baselines when they have 10x
as much labeled data available.

Label Fraction

Model 1% 10%
MSE| ROCt MSE| ROC*YT
SimCLR [23] 4.029 51.43 3.762 54.29
SimSiam [25] 3.861 53.35 3.564 57.45
BYOL [40] 3.894 51.68 3.505 56.71
Barlow Twins [130] 3.788 51.89 3.558 56.86
NNCLR [32] 3.913 52.20 3.643 55.99
ContIG (Raw-SNP) 3.541 60.11 3.414 64.81
ContIG (PGS) 3.521 59.23 3391  65.86
ContIG (Burden) 3.540 59.74 3.393 65.41

ContlG (Inner RPB)  3.511 59.95 3.397 65.71
ContIG (Outer RPB)  3.490 60.39 3.378 65.99

Table 5. Data-efficient evaluation results by fine-tuning on subsets
of UKB samples. All our ContlG models use the "H1” genetic en-
coder variant. Bold indicates the best result, underlined is second
best. T means higher is better, and | lower is better.

C. Additional Feature Explanation Results
C.1. Method Validation

We ran a baseline experiment to validate that our feature
explanation method properly attributes to meaningful fea-
tures. In this experiment, instead of genetic features, we
use phenotypic covariates such as age, sex, systolic and di-
astolic blood pressure (SBP and DBP), which can be pre-
dicted reliably from retinal fundus images. Additionally,
we include the first 40 principal components, which mostly
capture population structure information. As control vari-
ables, we also feed five random noise variables into the
training process, which have no association with the images
at all. Fig. 5 shows the aggregated feature explanations. As
expected, the noise variables (noise0, noised)
get assigned very low explanation scores, while all other
variables have considerable influence. This validates that
our feature explanation approach can distinguish between
variables that carry true information relevant to the network
and variables that are unrelated to the images.

C.2. Multimodal Explanation Results

Fig. 6 shows the aggregated attribution scores for each
of the three modalities, Raw-SNPs, PGS, and Burdens, for
ContIG with the “Outer” training scheme. Fig. 6a shows
that PGS scores on average have more influence than indi-
vidual SNPs or burden scores. However, Fig. 6b also shows
that that in aggregate, raw SNPs and burden scores have

more total influence on the model. This is likely due to PGS
only having 481 features, while raw SNPs and Burdens have
7,854 and 18,574 features, respectively. This may also ex-
plain the small but counterintuitive performance drop from
ContIG (PGS) to ContIG (Outer RPB): the strongest signal,
PGS, gets “drowned out” by the less important but over-
abundant signal in the raw SNPs and burden scores.

D. GWAS Analysis Details

We produced feature vectors by computing the hidden-
layer embedding for each image in the test-split of our
dataset (10% of the whole dataset, 7,079 individuals). In
contrast to the main training, we only used embeddings of
the left eye and only included each individual once. Feature
vectors were reduced to 10 dimensions using a PCA. Before
computing the association results, we also used an inverse-
normal transform [101] after conditioning on the potential
confounders “sex”, “age”, as well as the first 15 genetic
PCs. This ensures that the residuals of the marginal distri-
butions are approximately normally distributed and outlier
deviations from normality don’t artificially inflate the type-
1 error rate, leading to spurious correlations. We performed
the genetic association study with the PLINK?2 software
[20], using a linear model for each of the ten dimensions
individually. We again correct for the same confounders in
the linear model. Finally, we aggregate the summary statis-
tics of the ten individual features into a single p-value for
each SNP by using a Bonferroni-correction of the factor 10,
following [59].

Genetic variants are locally highly correlated. Therefore,
we group significantly associated SNPs that are spatially
close and in LD together using the PLINK [90] clumping
functionality (using parameters clump-pl = 5 - 1078,
clump-p2 = 1077, clump-r2 = 0.1, clump-kb =
150). We reported the number of independent associated
regions returned by this procedure in the main document.

Fig. 7 shows the manhattan plot of genome-wide associ-
ations from the GWAS with ContlG (Inner RPB) pretrain-
ing. A number of very strong signals, e.g. on chromosomes
15 and 5, are known to be associated with skin pigmenta-
tion and cardiovascular traits. Manhattan plots for the other
pretrained models look similar but with less signal. Almost
all models found the very strong signals on chromosome
15. Interestingly, the manhattan plots for both SimCLR
and BYOL (not displayed here) show clear signs of a ill-
fitted association model, with many (for BYOL) but small,
most likely spurious associations distributed over the whole
genome but no signal in the chromosome-15 pigmentation
region. This happens even after applying the inverse-normal
transformation to counteract outliers and is likely due to dif-
ferent forms of confounding. This finding also explains the
surprisingly large number of hits for BYOL — they are most
likely false-positives. A more careful analysis with mixed
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Figure 5. Explanation method validation. Shown is the mean absolute attribution for each feature aggregated over a batch-size of 1,000
individuals. noise0, ..., noise4 don’tcarry any information and also get downweighted by our attribution method.
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(a) Absolute attribution for each modality, aggregated by mean. (b) Absolute attribution for each modality, aggregated by sum.

Figure 6. Absolute attributions by modality for ContIG (Outer RPB).

effect models [68] and in-depth inspection of the image fea-
tures is beyond the scope of this article.
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Figure 7. Manhattan plot for the GWAS with ContIG (Inner RPB). The x-axis shows the position of each SNP on the genome, the y-axis
is the negative base-10 logarithm of the p-value for each SNP. Higher values correspond to lower p-values, correspond to stronger signal.
The red line corresponds to a significance threshold of 0.05 Bonferroni-adjusted for the number of SNPs; the green line corresponds to
“genome-wide significance” (5 - 10™3). P-values are clamped at 10~°° for clearer visualization (only relevant for the loci on chromosome
15 with a minimum p-value of 10~329),
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