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Abstract

Humans have the remarkable ability to perceive objects
as a whole, even when parts of them are occluded. This abil-
ity of amodal perception forms the basis of our perceptual
and cognitive understanding of our world. To enable robots
to reason with this capability, we formulate and propose
a novel task that we name amodal panoptic segmentation.
The goal of this task is to simultaneously predict the pixel-
wise semantic segmentation labels of the visible regions of
stuff classes and the instance segmentation labels of both
the visible and occluded regions of thing classes. To facil-
itate research on this new task, we extend two established
benchmark datasets with pixel-level amodal panoptic seg-
mentation labels that we make publicly available as KITTI-
360-APS and BDD100K-APS. We present several strong
baselines, along with the amodal panoptic quality (APQ)
and amodal parsing coverage (APC) metrics to quantify the
performance in an interpretable manner. Furthermore, we
propose the novel amodal panoptic segmentation network
(APSNet), as a first step towards addressing this task by
explicitly modeling the complex relationships between the
occluders and occludes. Extensive experimental evaluations
demonstrate that APSNet achieves state-of-the-art perfor-
mance on both benchmarks and more importantly exempli-
fies the utility of amodal recognition. The benchmarks are
available at http://amodal-panoptic.cs.uni-
freiburg.de.

1. Introduction

Humans rely on their ability to perceive complete physical
structures of objects even when they are only partially visible,
to navigate through their daily lives [21]. This ability, known
as amodal perception, serves as the link that connects our per-
ception of the world to its cognitive understanding. However,
unlike humans, robots are limited to modal perception [19,
31, 41], which restricts their ability to emulate the visual
experience that humans have. In this work, we bridge this
gap by proposing the amodal panoptic segmentation task.

Any given scene can broadly be categorized into two

(a) Panoptic Segmentation

(b) Amodal Panoptic Segmentation

Figure 1. Illustration of (a) panoptic segmentation and (b) amodal panoptic
segmentation that encompasses visible regions of stuff classes, and both
visible and occluded regions of thing classes as amodal masks.

components: stuff and thing. Regions that are amorphous or
uncountable belong to stuff classes (e.g., sky, road, sidewalk,
etc.), and the countable objects of the scene belong to thing
classes (e.g., cars, trucks, pedestrians, etc.). The amodal
panoptic segmentation task illustrated in Fig. 1 (b) aims to
concurrently predict the pixel-wise semantic segmentation
labels of visible regions of stuff classes, and instance segmen-
tation labels of both the visible and occluded regions of thing
classes. We believe this task is the ultimate frontier of visual
recognition and will immensely benefit the robotics com-
munity. For example, in automated driving, perceiving the
whole structure of traffic participants at all times, irrespective
of partial occlusions [32], will minimize the risk of accidents.
Moreover, by inferring the relative depth ordering of objects
in a scene, robots can make complex decisions such as in
which direction to move relative to the object of interest [11]
to obtain a clearer view without additional sensor feedback.

Amodal panoptic segmentation is substantially more chal-
lenging as it entails all the challenges of its modal counter-
part (scale variations, illumination changes, cluttered back-
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ground, etc.) while simultaneously requiring more complex
occlusion reasoning. This becomes even more complex for
non-rigid classes such as pedestrians. These aspects also re-
flect on the groundtruth annotation effort that it necessitates.
In essence, this task requires an approach to fully grasp the
structure of objects and how they interact with other objects
in the scene to be able to segment occluded regions even for
cases that seem ambiguous.

Our contributions in this paper are twofold. First, we
propose the novel task of amodal panoptic segmentation, a
comprehensive scene recognition problem. To fully establish
the task as well as to encourage future research, we extend
two challenging urban driving datasets with amodal panop-
tic segmentation labels to create the KITTI-360-APS and
BDD100K-APS benchmarks. We present several baselines
for this task by combining state-of-the-art amodal instance
segmentation methods with top-down panoptic segmenta-
tion networks. Further, we introduce two evaluation metrics
referred to as amodal panoptic quality (APQ) and amodal
parsing coverage (APC), to coherently quantify the perfor-
mance of segmentation of stuff classes in visible regions
and thing classes in both visible and occluded object regions.
The APQ metric measures the performance independent of
the size of instances and the APC metric considers the size of
instances while giving more importance to the segmentation
quality of larger objects than smaller objects. We introduce
the size-dependent metric since a variety of applications seek
high-quality segmentation of objects closer to the camera
than far away objects, such as in autonomous driving.

Second, we propose the novel APSNet architecture that
consists of a shared backbone and task-specific semantic
and amodal instance segmentation heads followed by a
parameter-free fusion module that yields the amodal panop-
tic segmentation output. In our approach, we split the amodal
bounding box contents into the visible region mask of the
target object, the occluded region mask of the target object
referred to as the occlusion mask, and the object masks that
occludes the target object referred to as the occluder. The oc-
cluder and occlusion features enable the amodal mask head
to identify occlusion regions, while the visual and occlusion
features enable the network to predict the amodal mask of the
object. Furthermore, we refine the visible mask with amodal
features in conjunction with visible features to impart oc-
clusion awareness. To prevent the loss of localization of
features in favor of semantic features, we increase the recep-
tive field for context aggregation with dilated convolutions
instead of downsampling in the semantic head. We make our
code and models publicly available at http://amodal-
panoptic.cs.uni-freiburg.de.

2. Related Work
Panoptic segmentation approaches can be categorized into

proposal-free and proposal-based methods. Proposal-free

methods [4, 7, 34] first perform semantic segmentation, fol-
lowed by applying various techniques to group thing pixels
such as instance center regression [30], Hough-voting [16],
or pixel affinity [14] to obtain instance segmentation. On the
other hand, in proposal-based methods [8, 20, 28], typically
a network head generates the object bounding boxes along
with their masks and a parallel head yields the semantic
segmentation output. In this work, we propose a top-down
amodal panoptic segmentation architecture. We choose the
top-down over the bottom-up approach due to its ability to
handle large-scale variation in instances which plays a vital
role in segmenting thing class objects.

Li et al. [17] introduce the amodal instance segmenta-
tion task for which their approach relies on the directions
of high heatmap values computed for each object to itera-
tively enlarge the corresponding object modal bounding box.
Follmann et. al [6] propose a class-specific amodal instance
segmentation approach called ORCNN which replaces the
single instance mask head of Mask R-CNN [9] with amodal
and inmodal instance mask heads. Further, they employ an
occlusion mask prediction head on top of the modal-specific
heads. Subsequently, Qi et al. [25] introduce the multi-level
coding module to explicitly impart global information for
better segmentation of the occluded area. VQ-VAE [12]
replaces the fully convolutional instance mask heads with
variational autoencoders. Their method first classifies the in-
put features into intermediate shape codes and then recovers
complete object shapes from the intermediate shape codes.
To learn the aforementioned discrete shape codes, they pre-
train a vector quantized variational autoencoder model on
the amodal groundtruth masks. Xiao et al. [36] use a shape-
prior memory codebook with an autoencoder to refine the
initial amodal mask prediction from Mask R-CNN. Similar
to [12], they pretrain the autoencoder on amodal groundtruth
masks. More recently, BCNet [13] employs two overlapping
GCN layers that detect the occluding objects and partially
occluded object instances to decouple the boundaries of both
the occluding and occluded object instances.

Lastly, Zhu et al. [40] propose amodal semantic segmenta-
tion with the COCO amodal dataset. Their task requires the
prediction of visible and invisible regions of thing classes in
a class-agnostic manner while allowing multiple detections
of the same objects. The COCO amodal dataset does not
provide any labels for amorphous regions (wall, floor, etc.).
In contrast, we introduce two benchmark datasets that treat
all prominent amorphous regions (road, sidewalk, etc.) and
non-traffic participants (pole, fence, etc.) in an urban scene
as stuff, similar to the standard convention followed in panop-
tic segmentation [15]. Consequently, our datasets consider
all the traffic participants (cars, pedestrians, etc.) as part of
thing classes. Furthermore, our amodal panoptic segmenta-
tion task allows at most one semantic label and instance-ID
assignment to the pixel of visible regions. This discourages
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overlaps and requires predictions to be class-specific.

3. The Amodal Panoptic Segmentation Task
For a given set of C semantic classes, the goal of the

amodal panoptic segmentation task is to map each pixel
i of a given input image to a set Ai comprising pairs of
(c, κ, v) ∈ C × N × V , where c represents the semantic
class for the pixel, κ represents the instance ID, and v ∈ V
represents the visibility of the prediction pair where V is
encoded as V ∈ {1, 2}. Here, κ of each pair in set Ai

associates a group of pixels that have the same semantic
class but belong to a different segment, and are unique for
each segment for the given image. v determines whether the
corresponding κ is the visible part (v = 1) of its segment or
the occluded part (v = 2). Moreover, in the set Ai, at most
one pair with v = 1 is feasible. Additionally, for c ∈ Cs the
corresponding κ is irrelevant, where Cs is the subset of C
that consists of stuff semantic classes.

For simplicity, we can define the amodal panoptic seg-
mentation task at the object segment level. Given an input
image, the task aims to predict all the visible stuff class seg-
ments where each stuff class can have at most one segment
associated with it. In contrast, for thing classes, each class
can have more than one visible segment associated with it.
Further, the segmentation of each thing class segment can
comprise both visible and occluded region segmentation.

4. Evaluation Metrics
In this section, we present the metrics that we use to

evaluate the performance of amodal panoptic segmentation.

4.1. Amodal Panoptic Quality

In order to facilitate quantitative evaluation, we adapt the
standard panoptic quality (PQ) [15] metric used for quan-
tifying the performance of panoptic segmentation by ac-
counting for the invisible or occluding regions in our new
metric that we name amodal panoptic quality (APQ). Con-
sider a set of groundtruth segments consisting of subset S
and subset T . S and T consist of segments corresponding
to stuff and thing classes respectively. Similarly, we have
predictions with subsets S′ and T ′. For a given stuff class
c, we obtain the corresponding matching stuff segments
MSc = {(s′, s) ∈ S′

c × Sc : IoU(s′, s) > 0} as each
image can have at most one predicted segment and at most
one groundtruth segment. Thus, APQsc corresponding to the
stuff class c is then computed as

APQsc =
1

|Sc|
∑

(s′,s)∈MSc

IoU(s′, s), (1)

where |Sc| is the total number of stuff groundtruth segments
corresponding to class c. The computed APQsc follows the
scheme suggested in [24].

Next, for a thing class c we obtain the matching segments
by solving a maximum weighted bipartite matching prob-
lem [35] for each pair (V, V ′) and (O,O′). Here, V and
O are the subsets of T corresponding to the visible and oc-
cluded region segments. V ′ and O′ are similar subsets of T ′.
This unique matching of segments splits the groundtruth and
predicted thing class segments (T and T ′) into three sets:
matched pairs of segments (TP), unmatched groundtruth seg-
ments (FN), and unmatched predicted segments (FP). Hence
APQtc corresponding to the thing class c is then defined as

APQtc =

∑
(t′,t)∈TPc

IoU(t′, t)

|TPc|+ |FPc|+ |FNc|
. (2)

Then, the overall APQ metric is the average over all the
classes and is given by

APQ =

∑
c∈Cs

APQsc +
∑

c∈Ct
APQtc

|Cs|+ |Ct|
, (3)

where Cs is the set of stuff semantic classes and Ct is the
set of thing semantic classes. Further, to explicitly analyze
the performance of the model for visible and invisible or
occluded regions, the APQtc is comprised of APQvtc and
APQotc which are computed with respect to the visible re-
gions and occluded regions, respectively as

APQvtc =

∑
(v′,v)∈TPc

IoU(v′, v)

|TPcv|+ |FPcv|+ |FNcv|
, (4)

APQotc =

∑
(o′,o)∈TPc

IoU(o′, o)

|TPco|+ |FPco|+ |FNco|
, (5)

where v′ and o′ are the visible and occluded regions of the
predicted instance segments, v and o are the visible and
occluded parts of the groundtruth instance segments.

4.2. Amodal Parsing Coverage

The amodal panoptic quality metric is based on matching
segments and as a consequence, it treats all the instances
equally irrespective of their sizes. However, in some appli-
cations, a relatively higher segmentation quality of larger
objects is more desirable than smaller objects such as in
portrait segmentation and autonomous driving. This factor
motivated Yang et al. [38] to formulate the parsing covering
(PC) metric for panoptic segmentation which accounts for
the size of instances. We adapt the PC metric for amodal
panoptic segmentation and propose the amodal parsing cov-
erage (APC) metric. Let Pc and P ′

c be the groundtruth and
prediction for a c semantic class respectively. If c is a stuff
class, the coverage of stuff class c (Covsc) is computed
similar to the coverage computation in PC, defined as

Covsc =
1

Nc

∑
X∈Pc

|X| · max
X′∈P ′

c

IoU(X ′, X), (6)
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whereNc is the total number of pixels corresponding to class
c in the groundtruth. For a thing class c, the groundtruth
segmentation Pc and the predicted segmentation P ′

c are di-
vided into visible segmentation Pvc and invisible or occluded
segmentation Poc. Then the coverage (Covtc) for the thing
class c is defined as

Covtc =
Nvc · Covvtc +Noc · Covotc

Nvc +Noc
, (7)

where Nvc and Noc are the total numbers of pixels corre-
sponding to class c in the groundtruth for visible and oc-
cluded regions respectively, and

Covvtc =
1

Nvc

∑
X∈Pvc

|X| · max
X′∈Pvc′

IoU(X ′, X), (8)

Covotc =
1

Noc

∑
X∈Poc

|X| · max
X′∈Poc′

IoU(X ′, X). (9)

Finally, APC is computed as the average over combined
stuff and thing class coverage over all semantic classes as

APC =

∑
c∈Cs

Covsc +
∑

c∈Ct
Covtc

|Cs|+ |Ct|
, (10)

whereCs andCt is the set of stuff and thing semantic classes
respectively. In summary, the proposed APC is devoid of any
segment matching and incorporates the area weighted IoU
to emphasize on the segmentation quality of large objects.
Consequently, this metric accentuates segmentation quality
of large occluded regions.

5. Datasets
In this section, we first give an overview of the annotation

protocol that we employ for curating the amodal panoptic
segmentation benchmark datasets followed by a brief descrip-
tion of each of the datasets. We choose the aforementioned
datasets as they provide large-scale instance annotations that
are consistent in time.

5.1. Anotation Protocol

We annotate two large-scale urban scene understanding
datasets, KITTI-360 and BDD100K. We follow a semi-
automatic annotation pipeline similar to [33]. Specifically,
we use the state-of-the-art EfficientPS [20] model pretrained
on the Mapillary Vistas [22] and Cityscapes [5] datasets. We
annotate images with pixel-level labels for amodal instance
segmentation of thing classes and semantic segmentation of
stuff classes. For amodal instance annotations, we fine-tune
the pretrained EfficientPS model on the KINS dataset [25]
which consists of amodal instance segmentation labels for ur-
ban road scenes. We generate pseudo amodal instance masks
for a subset of the target dataset (BDD100K and KITTI-360).

Subsequently, a human annotator manually corrects and re-
fines these resulting pseudo labels. We then again fine-tune
the EfficientPS model on the refined annotations and gener-
ate a new set of pseudo amodal instance masks for the next
subset of the target dataset. We reiterate the aforementioned
process until the entire dataset is fully annotated. Simi-
larly, for semantic segmentation annotations, we fine-tune
the pretrained EfficientPS model on the semantic segmenta-
tion labels of BDD100K. We then use this fine-tuned model
to generate pseudo semantic segmentation labels of stuff
classes and follow the iterative semi-automatic annotation
procedure. We adapt the publicly available labeling tool
from [5] for our manual annotations.

5.2. KITTI-360-APS

We extend the KITTI-360 [18] dataset which has seman-
tic and instance labels with amodal panoptic annotations
and name it the KITTI-360-APS dataset. It consists of nine
sequences of urban street scenes with annotations for 61,168
images of resolution 1408 × 376 pixels. Our dataset com-
prises 10 stuff classes. We define a class as stuff if the class
has amorphous regions or is incapable of movement at any
point in time. Road, sidewalk, building, wall, fence, pole,
traffic sign, vegetation, terrain, and sky are the stuff classes.
Further, the dataset consists of 7 thing classes, namely car,
pedestrians, cyclists, two-wheeler, van, truck, and other vehi-
cles. Please note that we merge the bicycle and motorcycle
class into a single class called two-wheelers. We use the
sequence 10 of the KITTI-360 dataset as the validation set
and the rest of the sequences as the training set.

5.3. BDD100K-APS

The Berkeley Deep Drive (BDD100K) [39] instance seg-
mentation dataset comprises of 157 training sequence and 39
validation sequences. Each sequence contains 202 images
of resolution 1280× 720 pixels with instance segmentation
groundtruth labels. For our BDD100K-APS dataset, we se-
lect 12 sequences from the training set and 3 sequences from
the validation set. We provide amodal panoptic annotations
for 10 stuff classes and 6 thing classes. Road, sidewalk,
building, fence, pole, traffic sign, fence, terrain, vegetation,
and sky are the stuff classes. Whereas, pedestrian, car, truck,
rider, bicycle, and bus are the thing classes.

6. Baselines
We introduce a total of six baselines for our proposed

amodal panoptic segmentation task. We create the base-
lines by building upon the EfficientPS [20] model which is
a state-of-the-art top-down panoptic segmentation network
and replace its instance segmentation head with different ex-
isting amodal instance segmentation approaches. We choose
the baseline’s amodal head based on two aspects: the rele-
vance of existing architectures to our task and the complexity
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(a) APSNet Architecture (b) Amodal Instance Segmentation Head (c) Semantic Segmentation Head

Figure 2. (a) Illustration of our proposed APSNet architecture consisting of a shared backbone and parallel semantic and amodal instance segmentation heads
followed by a fusion module that fuses the outputs of both heads to yield the amodal panoptic segmentation output. (c) and (b) present the topologies of
architectural components of our proposed semantic segmentation head and amodal instance segmentation head respectively.

involved in adapting the approach for our purpose. Hence,
we adopt the following five state-of-the-art amodal instance
segmentation methods for the instance head of our baselines:
ORCNN [6], VQ-VAE [12], Shape Prior [36], ASN [25],
and BCNet [13]. We introduce an additional baseline called
Amodal-EfficientPS in which we add an extra amodal mask
prediction layer to the instance head of the EfficientPS archi-
tecture. We use the post-processing step described in [20] to
compute the panoptic segmentation output. We first obtain
the amodal mask for each instance in the panoptic segmenta-
tion output using the amodal mask logits channels associated
with the corresponding instance ID. We then employ the sig-
moid function on the selected amodal mask logits and thresh-
old it at 0.5 to obtain the final amodal binary mask. The set
of the amodal binary mask along with its class prediction and
instance ID is concatenated with the panoptic segmentation
output to yield the final amodal panoptic prediction. We
describe each of the architectures of the baselines and the
post-processing step in detail in the supplementary material.

7. APSNet Architecture

In this section, we present a brief overview of our pro-
posed APSNet architecture and then detail each of its con-
stituting components. Fig. 2 (a) depicts the topology of
APSNet that follows the top-down approach. It consists of a
shared backbone that comprises of an encoder and the 2-way
Feature Pyramid Network (FPN) [20], followed by the se-
mantic segmentation head and amodal instance segmentation
head. We employ the RegNet [26] architecture as the encoder
(depicted in red). It consists of a standard residual bottleneck
block with group convolutions. The overall architecture of
this encoder consists of repeating units of the same block
at a given stage and comprises a total of five stages. At the
same time, it has fewer parameters in comparison to other

encoders but with higher representational capacity. Subse-
quently, after the 2-way FPN, our network splits into two
parallel branches. One of the branches consists of the Re-
gion Proposal Network (RPN) and ROI align layers that take
the 2-way FPN output as input. The extracted ROI features
after the ROI layers are propagated to the amodal instance
segmentation head. The second parallel branch consists of
the semantic segmentation head that is connected from the
fourth stage of the encoder.

7.1. Amodal Instance Segmentation Head

Our proposed amodal instance segmentation comprises
three parts, each focusing on one of the critical requirements
for amodal reasoning. Fig. 2 (b) shows the architecture of our
amodal instance segmentation head. First, the visible mask
head learns to predict the visible region of the target object
in a class-specific manner. Simultaneously, an occluder head,
class-agnostically predicts the regions that occlude the target
object. Specifically, the visible mask head learns to segment
background objects for a given proposal and the occluder
head learns to segment foreground objects. The occluder
head provides a global initial guess estimate of where the
occluded region of the target object exists.

With the features from both visible and occluder mask
heads, the amodal instance segmentation head can reason
about the presence of the occluded region as well as its shape.
This is achieved by employing an occlusion mask head that
predicts the occluded region of the target object given the vis-
ible and occluder features. Specifically, the occlusion mask
head takes the concatenated visible and occluder features
along with MaskROI features as input. We use the MaskROI
features as part of the input to the occlusion mask head to
enable reasoning about the given proposal as a whole and
not individual visible and occluder regions. Additionally, the
occlusion mask head learns to predict the occluded region
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of the target object in a spatially independent manner. This
allows the head to focus only on learning the underlying
general shape relationship for a given visible and occluder
region that completes the visible region to attain amodal
perception. By focusing on the what aspect of the occluded
region (what should be the segmentation mask of the oc-
cluded region), we ease the learning of the occlusion mask
head. Our method allows this ease in training due to denser
feedback in contrast to sparser feedback in partial occlu-
sion cases and hence enables capturing of the underlying
shape of the occluded region effectively. We present the
spatially dependent and independent groundtruth examples
in the supplementary material.

Subsequently, the concatenated visible, occluder, and oc-
clusion mask head features are further processed by a series
of convolutions followed by a spatio-channel attention block.
The spatio-channel attention block consists of two parallel
branches. In one of the parallel branches, global pooling is
applied spatially, we refer to this as the channel attention
branch. The channel attention branch further consists of
two 1 × 1 convolutions with 64 and 256 output channels
respectively. The first 1 × 1 convolution has a ReLU acti-
vation and the second convolution has a sigmoid activation.
The output of the channel attention branch is then multiplied
with the output of the other parallel branch called the spa-
tial branch. The spatial branch consists of a channel-wise
global pooling layer, followed by reshaping the tensor from
1× 14× 14 to 196× 1× 1. Subsequently, two 1× 1 con-
volutions are employed with 49 and 196 output channels
respectively. The output is then reshaped to a 1× 14× 14
tensor. Lastly, the output of the two branches is multiplied
to compute the final output of the spatio-channel attention
block. The aforementioned network layers aim to model
the inherent relationship between the visible, occluder and
occlusion features. Subsequently, these features are concate-
nated with the MaskROI features to act as input to the amodal
mask head. This amodal mask head then predicts the final
amodal mask for the target object. Additionally, the visible
mask is further refined using a second visible mask head that
takes the concatenated amodal features and visible features
to predict the final inmodal mask.

Lastly, our amodal instance segmentation head employs
the Mask R-CNN bounding box head with two output heads:
object classification and amodal bounding box. We use the
binary cross-entropy loss for training each of the mask heads
in our amodal instance segmentation head. The loss func-
tions are described in detail in the supplementary material.

7.2. Semantic Segmentation Head

The architecture of our semantic segmentation head is
illustrated in Fig. 2 (c). The semantic head takes the ×16
downsampled feature maps from the stage 4 of the RegNet
encoder as input. We employ an identical stage 5 RegNet

block with the dilation factor of the 3× 3 convolutions set
to 2. We refer to this block as the dilated RegNet block.
Subsequently, we employ a DPC [3] module to process the
output of the dilated block. We then upsample the output to
×8 and ×4 downsampled factor using bilinear interpolation.
After each upsampling stage, we concatenate the output with
the corresponding features from the 2-way FPN having the
same resolution and employ two 3× 3 depth-wise separable
convolutions to fuse the concatenated features. Finally, we
use a 1 × 1 convolution to reduce the number of output
channels to the number of semantic classes followed by a
bilinear interpolation to upsample the output to the input
image resolution. We employ the weighted per-pixel log-
loss [1] for training similar to [20].

8. Experimental Evaluation
In this section, we describe the training protocol that we

use for the baselines and our proposed APSNet architecture.
We then present extensive benchmarking results on KITTI-
360-APS and BDD100K-APS in Sec. 8.1. Subsequently, we
present a detailed ablation study on the proposed amodal
instance head in Sec. 8.2, followed by results for amodal
instance segmentation on the KINS [25] dataset in Sec. 8.3.
Finally, we present qualitative comparisons in Sec. 8.4.

We use PyTorch [23] for implementing all our architec-
tures and we trained our models on a system with an In-
tel Xenon (2.20GHz) processor and NVIDIA TITAN RTX
GPUs. We train our network on two crop resolutions of
the input image according to the dataset. We use crops of
376 × 1408 pixels and 448 × 1280 pixels for the KITTI-
360-APS and BDD100K-APS dataset respectively. We use
a multi-step learning rate schedule with a drop factor of 10.
We use a base learning rate of 0.04 and 0.01 for KITTI-360-
APS and BDD100k-APS respectively. We train our model
on the KITTI-360-APS dataset for 40 epochs and 200 epochs
on the BDD100K-APS dataset. We set the milestones as
65% and 90% of the total epochs.

8.1. Benchmarking Results

In this section, we report results comparing the perfor-
mance of our proposed APSNet architecture against the in-
troduced baselines. For comparisons on KITTI-360-APS
and BDD100K-APS, we report results of the models that
we trained using the official implementations that have been
publicly released by the authors and performed extensive
tuning of hyperparameters to the best of our ability. We
report results on the validation sets for all the datasets. Tab. 1
presents the benchmarking results.

In the baselines, all the other components of the amodal
panoptic segmentation network remain the same except for
the amodal instance head. Therefore, all the baselines
achieve the same APQS and APCS scores. In contrast,
our APSNet model that incorporates our proposed semantic
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Model KITTI-360-APS BDD100K-APS

APQ APC APQS APQT APCS APCT AP mIOU APQ APC APQS APQT APCS APCT AP mIOU

Amodal-EfficientPS 41.1 57.6 46.2 33.1 58.1 56.6 29.1 44.7 44.9 46.2 54.9 29.9 64.7 41.4 25.6 50.4
ORCNN [6] 41.1 57.5 46.2 33.1 58.1 56.6 29.0 44.5 44.9 46.2 54.9 29.9 64.7 41.5 25.6 50.4
BCNet [13] 41.6 57.9 46.2 34.4 58.1 57.6 30.3 45.8 45.2 46.4 55.0 30.7 64.7 42.1 26.3 51.0
VQ-VAE [12] 41.7 58.0 46.2 34.6 58.1 57.8 30.4 45.9 45.3 46.5 54.9 30.8 64.7 42.2 27.3 51.1
Shape Prior [36] 41.8 58.2 46.2 35.0 58.1 58.2 31.0 46.3 45.4 46.6 55.0 31.0 64.8 42.6 27.6 52.4
ASN [25] 41.9 58.2 46.2 35.2 58.1 58.3 31.1 46.3 45.5 46.6 55.0 31.2 64.8 42.7 27.9 52.5

APSNet (Ours) 42.9 59.0 46.7 36.9 58.5 59.9 33.4 48.0 46.3 47.3 55.4 32.8 65.1 44.5 29.2 53.3

Table 1. Performance comparison of amodal panoptic segmentation on the KITTI-360-APS and BDD100K-APS validation set. Subscripts S and T refer to
stuff and thing classes respectively. All scores are in [%].

head achieves higher APQS and APCS scores. This gain
of 0.3%-0.5% in the aforementioned metrics demonstrate
the better stuff segmentation performance of our architec-
ture. The improvement can be attributed to the ability of
our semantic head to increase the receptive field for effec-
tive context aggregation by increasing the dilation factor
of the subsequent encoding block that outputs features cor-
responding to ×16 downsampling factor instead of further
downsampling. As a consequence, our network does not lose
the ability to localize features, providing the decoder with
better semantic features to use during the upsampling stage.

Among the baselines, the ASN model achieves the highest
APQ and APC scores. This method focuses on incorporating
the global occlusion context in the model-specific mask pre-
diction heads. The other baselines either capture occlusion
features implicitly or learn the occlusion map but do not use
the information in the mask prediction heads. The perfor-
mance of the ASN model demonstrates the importance of
incorporating explicitly modeled occlusion features for im-
proved amodal reasoning. Nevertheless, our APSNet outper-
forms ASN in all the metrics, namely APQ and APC along
with the sub-components of the metrics on both datasets.
Moreover, it also achieves the highest AP and mIoU scores.
These improvements can be partially attributed to the seman-
tic head but the majority of the contribution is due to the
proposed amodal instance head. The explicit coarse mod-
eling of occlusion regions with occluder features and the
spatially independent modeling of the occluded region given
the visible and occluder features provides our amodal mask
prediction head with additional cues that positively supple-
ment its amodal reasoning abilities. Hence, our proposed
APSNet architecture achieves state-of-the-art performance
for the task of amodal panoptic segmentation.

We further analyze the relationship between the different
metrics reported. Although the metrics assess different as-
pects of amodal scene parsing, due to the close relationship
of these aspects, the metrics are positively correlated. This
is evident from the reported results. With the increase in
the APQ score, the APC score is likely to increase and vice-
versa. This relationship also extends to the AP and mIoU
metrics. Additionally, computing both metrics can be ben-
eficial as the gain or loss proportion in each of the metrics

Model APQT APQV
T APQO

T APCT APQV
T APCO

T

M1 33.3 41.3 15.1 56.9 59.3 23.4
M2 33.7 41.4 15.4 57.5 59.4 23.9
M3 34.6 41.7 15.7 58.2 59.6 24.4
M4 35.0 42.6 15.7 58.8 60.2 24.5
M5 35.9 43.6 17.7 59.4 61.6 25.1
M6 (Ours) 36.9 44.1 18.6 59.9 62.2 25.8

Table 2. Evaluation of various architectural components of our proposed
amodal instance segmentation head. The performance is shown for the
models trained on the KITTI-360 APS dataset and evaluated on the valida-
tion set. Subscript T refers to thing classes. Superscripts V and O refer to
visible and occluded regions respectively. All scores are in [%].

provides more insights. APQ evaluates the amodal parsing
quality independent of instance sizes whereas APC empha-
sizes segmentation quality of larger area instances. Thus, a
higher gain in APQ compared to APC can indicate that the
amodal segmentation quality of smaller object instances im-
proves greatly compared to larger objects and vice-versa. We
further explain this observation with the visible and occluded
components of the metrics in the supplementary material.

8.2. Ablation Study on Amodal Instance Head

In this section, we quantitatively demonstrate the impor-
tance of each component of our proposed amodal instance
head. Tab. 2 presents results from this experiment. We report
the metric’s thing component and its sub-components. We
begin with the model M1 that employs visible or inmodal,
and amodal mask prediction heads in the amodal instance
head. In the M2 model, we then employ occlusion and visi-
ble mask prediction heads on top of which we add an amodal
mask prediction head. The improvement in performance
shows that modeling visible and occlusion features explic-
itly improves the amodal reasoning ability. Subsequently,
in model M3, we add an occluder mask prediction head in
parallel to the occlusion and visible mask prediction head of
M2. The amodal mask prediction head is now built on top of
these three mask prediction heads. The larger increase in the
APCO

T score demonstrates that the occlusion region segmen-
tation of nearby objects greatly improves the performance
compared to faraway objects. The occluder features that are
incorporated enable the amodal mask head to discern the
boundaries of the occluded regions. In the M4 model, we
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Figure 3. Qualitative amodal panoptic segmentation results of our proposed APSNet network in comparison to the state-of-the-art baseline ASN [25] on
KITTI-360-APS (a, b) and BDD100K-APS (c, d) datasets. We also show Improvement\Error Map which denotes the pixels that are misclassified by APSNet
in red and the pixels that are misclassified by the baseline but correctly predicted by APSNet in green.

Model AmodalAP InmodalAP

ORCNN [6] 29.0 26.4
VQ-VAE [12] 31.5 −
Shape Prior [36] 32.1 29.8
ASN [25] 32.2 29.7

APSNet (Ours) 35.6 32.7

Table 3. Amodal instance segmentation results on the KINS dataset. All
scores are in [%].

add another visible mask prediction head that builds upon
the visible and amodal mask heads. M4 achieves an improve-
ment in APQV

T by 0.9% and in APCV
T by 0.6%. Building

upon M4, in the M5 model, we predict spatially independent
occlusion masks in addition to a processing block before
the amodal mask head. Lastly, in the M6 model, following
the processing block, we add the spatio-channel attention
block. The improvement in results demonstrates that the
processing block generates salient features for the amodal
masks which are further enhanced by explicitly modeling
the interdependencies between the channels and the spatial
correlations of its features.

8.3. Performance on KINS dataset

KINS [25] is a benchmark for amodal instance segmen-
tation. We evaluate the performance of APSNet on this
sub-task of the proposed amodal panoptic segmentation by
discarding its semantic segmentation head. This benchmark
uses the AP metric for evaluating both amodal and inmodal
segmentation. Tab. 3 presents results in which we observe
that APSNet outperforms the state-of-the-art by 3.4% and
2.9% for amodal and inmodal AP respectively. This demon-
strates that our proposed amodal instance head in APSNet
also improves the inmodal segmentation performance.

8.4. Qualitative Evaluations

In this section, we qualitatively compare the amodal
panoptic segmentation performance of our proposed APSNet
with the best performing baseline ASN. Fig. 3 presents the
qualitative results. We observe that both approaches are ca-
pable of segmenting partial occlusion cases. However, our
APSNet outperforms ASN under partial to moderate occlu-
sion cases such as cluttered cars and pedestrians. Moreover,
APSNet achieves better boundary segmentation of visible
regions due to the refinement stage of the inmodal mask. The
results of our proposed architecture are highly motivating,
however the segmentation quality near the boundaries of
moderately to heavily occluded regions of non-rigid classes
such as pedestrians tends to be poor. These cases are ex-
tremely hard to predict for humans as well. However, hu-
mans can predict the occluded region with a high degree of
consistency [40]. We hope that this work encourages innova-
tive solutions in the future to address this problem as well as
other challenges of amodal panoptic segmentation.

9. Conclusion

In this work, we introduced and addressed the task of
amodal panoptic segmentation. We formulated two easily in-
terpretable evaluation metrics for measuring the performance
of our proposed task. We introduced several strong baselines
for amodal panoptic segmentation by combining state-of-the-
art individual models of the sub-tasks. Further, we proposed
the novel APSNet architecture that achieves state-of-the-art
performance for amodal panoptic segmentation and amodal
instance segmentation. We believe that these results demon-
strate the feasibility of this ultimate scene parsing task and
encourage new research avenues in the future.
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Thomas Brox. Box2pix: Single-shot instance segmentation by
assigning pixels to object boxes. In IEEE Intelligent Vehicles
Symposium (IV), pages 292–299. IEEE, 2018. 2

[31] Abhinav Valada, Ankit Dhall, and Wolfram Burgard. Con-
voluted mixture of deep experts for robust semantic segmen-
tation. In IEEE/RSJ International conference on intelligent
robots and systems (IROS) workshop, state estimation and
terrain perception for all terrain mobile robots, 2016. 1

[32] Francisco Rivera Valverde, Juana Valeria Hurtado, and Abhi-
nav Valada. There is more than meets the eye: Self-supervised
multi-object detection and tracking with sound by distilling
multimodal knowledge. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11612–11621, 2021. 1

[33] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
Luiten, Berin Balachandar Gnana Sekar, Andreas Geiger, and
Bastian Leibe. Mots: Multi-object tracking and segmentation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7942–7951, 2019. 4

[34] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-

alone axial-attention for panoptic segmentation. In European
Conference on Computer Vision, pages 108–126. Springer,
2020. 2

[35] Douglas Brent West et al. Introduction to graph theory, vol-
ume 2. Prentice hall Upper Saddle River, 2001. 3

[36] Yuting Xiao, Yanyu Xu, Ziming Zhong, Weixin Luo, Jiawei
Li, and Shenghua Gao. Amodal segmentation based on visible
region segmentation and shape prior. In AAAI Conference on
Artificial Intelligence, 2021. 2, 5, 7, 8, 12, 14, 17

[37] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,
Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A
unified panoptic segmentation network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8818–8826, 2019. 15

[38] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing
Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Pa-
pandreou, and Liang-Chieh Chen. Deeperlab: Single-shot
image parser. arXiv preprint arXiv:1902.05093, 2019. 3

[39] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike
Liao, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A di-
verse driving video database with scalable annotation tooling.
arXiv preprint arXiv:1805.04687, 2(5):6, 2018. BDD100K
dataset license available at: https://doc.bdd100k.
com/license.html. 4

[40] Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr Dollár.
Semantic amodal segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1464–1472, 2017. 2, 8, 11

[41] Jannik Zürn, Wolfram Burgard, and Abhinav Valada. Self-
supervised visual terrain classification from unsupervised
acoustic feature learning. IEEE Transactions on Robotics,

37(2):466–481, 2020. 1

10

https://doc.bdd100k.com/license.html
https://doc.bdd100k.com/license.html


Amodal Panoptic Segmentation

Supplementary Material

Rohit Mohan Abhinav Valada
University of Freiburg

{mohan, valada}@cs.uni-freiburg.de

In this supplementary material, we provide additional
details on various aspects of our work. We present dataset
statistics for our proposed amodal panoptic segmentation
datasets in Sec. 1. We then discuss the baseline architectures
and the inference in-depth in Sec. 2 and Sec. 3, respectively.
Subsequently, we provide details on the loss functions that
we employ to train the amodal instance segmentation head of
our APSNet in Sec. 4. Finally, we discuss the benchmarking
results on the KITTI-360-APS dataset in detail to reinforce
the utility of our proposed evaluation metrics in Sec. 5.

1. Datasets
In this section, we present statistics and examples for

each of the datasets that we introduce. To evaluate the shape
complexity of the amodal segments, we compute the shape
convexity and simplicity [40] for each dataset as follows:

convexity(S) =
Area(S))

Area(ConvexHull(S))
, (1)

simplicity(S) =

√
4π ∗Area(S)

Perimeter(S)
. (2)

Tab. 1 presents the shape complexity metric scores for
KITTI-360-APS and BDD-APS datasets. Additionally, we
compare the convexity and simplicity of our dataset with ex-
isting amodal instance segmentation datasets namely COCO-
A [40] and KINS [25].

1.1. KITTI-360-APS

The KITTI-360-APS dataset consists of 11 stuff classes
namely road, sidewalk, building, wall, fence, pole, traffic
sign, vegetation, terrain, and sky. The dataset further com-
prises 7 thing classes, namely car, pedestrians, cyclists, two-
wheeler, van, truck, and other vehicles. Tab. 2 presents the
thing class distribution for the dataset. We observe that the
instances of the car are predominant in thing classes fol-
lowed by pedestrian and truck classes. The contribution of
the Other-Vehicle class to the number of instances is the least
with 0.2%. Fig. 1 (a) illustrates the histogram of occlusion
level which is defined as the fraction of occluded region area.
We notice about 60% of the instances are either slightly oc-
cluded or not occluded at all in the dataset and the rest of the

Simplicity Convexity

Inmodal Amodal Inmodal Amodal

COCO-A [40] 0.746 0.856 0.658 0.685
KINS [25] 0.709 0.830 0.610 0.639
KITTI-360-APS 0.778 0.884 0.689 0.746
BDD100K-APS 0.697 0.821 0.594 0.618

Table 1. Comparison of shape statistics between inmodal and amodal
segments in our proposed KITTI-360-APS and BDD100K datasets, along
with COCO-A and KINS datasets.

instances have different degrees of occlusions. The second
peak in the graph is observed for near moderate occlusion
levels while heavily occluded regions are relatively small in
comparison. In terms of shape complexity (Tab. 1), KITTI-
360-APS consists of relatively simpler amodal segments in-
dicated by the higher the convexity-simplicity average value
which is in line with the intuition [40] that independent of
scene geometry and occlusion patterns, amodal segments
tend to be relatively simpler. Fig. 2 presents examples from
our dataset.

1.2. BDD100K-APS

The BDD100K-APS dataset provides amodal panoptic
annotations for 10 stuff classes and 6 thing classes. Road,
sidewalk, building, fence, pole, traffic sign, fence, terrain,
vegetation, and sky are the stuff classes. Whereas, pedestrian,
car, truck, rider, bicycle, and bus are the thing classes. In the
BDD100K-APS dataset, the number of instances of car and
pedestrian classes is relatively close and are the predominant
classes followed by the truck class. Bicycle and bus classes
have similar instance distributions whereas instances of rider
are the least with 1.1% of the total instances. Fig. 1 (b)
presents the occlusion level distribution of instances of this
dataset. About 54% of the instances in the dataset are not
occluded or are slightly occluded. The number of instances
having a higher degree of occlusion level approximately de-
creases with an increase in the occlusion level. In Tab. 2, the
convexity-simplicity average value for the amodal segments
is lower for this dataset implying BDD100K-APS is a more
complex dataset due to the presence of a large number of
non-rigid objects such as pedestrians.
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Class Car Pedestrian Cyclist Two-Wheelers Truck Van Other-Vehicles

Number 192624 6240 3096 2805 6561 3573 443
Ratio 89.4% 2.8% 1.4% 1.3% 3.0% 1.6% 0.2%

Table 2. Thing class distribution of KITTI-360-APS dataset.

Class Pedestrian Car Truck Rider Bicycle Bus

Number 19671 23775 2653 561 1110 1288
Ratio 40.1% 48.4% 5.4% 1.1% 2.3% 2.7%

Table 3. Thing class distribution of BDD100K-APS dataset.

(a) Occlusion level of KITTI-360-APS dataset.

(b) Occlusion level of BDD100K-APS dataset.

Figure 1. Illustration of occlusion level (defined as the fraction of region area
that is occluded) in KITTI-360-APS (a) and BDD100K-APS (b) datasets.

2. Baseline Architectures

We introduce a total of six baselines for our proposed
amodal panoptic segmentation task. We create the base-
lines by building upon the EfficientPS [20] model which is

a state-of-the-art top-down panoptic segmentation network.
The EfficientPS architecture consists of four parts. The first
part is the shared backbone which is a combination of an
encoder and a feature pyramid network (FPN) variant. We
employ the EfficientNet-B5 [29] model as the encoder and
remove its squeeze and excitation [10] connections. We also
replace the batch normalization and activation layers with
synchronized Inplace Activated Batch Normalization (iABN
sync) [2] and Leaky ReLU activations respectively. The
backbone uses the 2-way FPN [20] on top of the encoder to
bidirectionally aggregate multi-scale features. The encoded
multi-scale features from the backbone are then propagated
to an instance and semantic head. The instance head is a
variant of Mask R-CNN [9] where the convolution opera-
tion in the mask prediction heads is replaced by depth-wise
separable convolutions. The semantic segmentation head in-
corporates various modules to focus on modeling of different
feature representations: DPC [3] for capturing long-range
contextual information, LSFE [20] for capturing characteris-
tic features, and MC [20] for aligning mismatched correction
modules. The final component of EfficientPS is an adaptive
fusion module that fuses the output of instance and semantic
head based on their logits.

In the baseline architectures, we keep all the components
of EfficientPS intact except for the instance segmentation
head which is replaced by different state-of-the-art amodal
instance segmentation heads namely, Amodal EfficientPS,
ORCNN [6], VQ-VAE [12], Shape Prior [36], ASN [25], and
BCNet [13]. In the following, we provide a brief overview
of the amodal instance segmentation heads of the baselines.

1. Amodal-EfficientPS is an extension of its inmodal
variant and relies implicitly on the network to learn
the relationship between the occluder and occludee
along with modeling the appropriate class-specific struc-
tures. Fig. 3 (a) presents the amodal instance head of
Amodal-EfficientPS.

2. ORCNN [6] employs an invisible mask prediction head
in addition to the inmodal and amodal mask prediction
heads, to explicitly learn the propagation from visible
mask to amodal mask. To do so, the approach designs
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 2. Visualization of amodal panoptic segmentation groundtruth from our proposed KITTI-360-APS (a-f) and BDD100K-APS (g-l) datasets. In (a) and
(f) the second car on the left, (e) the far away cars on the left are heavily occluded by other car instances and vegetation, respectively. Similarly, in (h) and (l)
the center cars occlude the car and the truck in front of them to a high degree, respectively. Moreover, we also observe a varying degree of occlusion from
partial to mid in all of the visualization examples. The variations in occlusion of instances, cluttered urban road scenes with several thing class instances, and
complex stuff classes makes both the proposed datasets extremely challenging for amodal panoptic segmentation.
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(a) Amodal-EfficientPS (b) ORCNN

(c) ASN (d) Shape Prior

(e) VQ-VAE

(f) BCNet

Figure 3. Topologies of various amodal instance segmentation head of the amodal panoptic segmentation baselines. Please note that the boxes enclosed in
color dashes in each of the architecture corresponds to the expanded version of the same colored boxes depicted on the right.

the invisible mask prediction by abstracting the amodal
mask from the visible mask. Fig. 3 (b) shows the amodal
instance head of ORCNN.

3. ASN [25] head emphasizes the importance of global
information in addition to visible cues for amodal mask
prediction. Fig. 3 (c) presents the ASN amodal instance
head. It consists of an additional occlusion classifi-
cation branch and uses the features from this branch
through a multi-level coding (MLC) block to impart the
learned global information to the individual inmodal
and amodal mask prediction head. The MLC block
essentially takes the concatenation of bounding box
features and occlusion features from their respective
classification branches, performs a series of transpose
convolution-convolution operations to process the col-
lective features, and then concatenates it with the model-
specific mask features. This is followed by another
series of convolution operations to generate the final
modal-specific mask predictions.

4. Shape Prior [36] approach strongly supports the idea

of using the visible region segmentation in conjunc-
tion with shape priors as the key to better amodal mask
segmentation. Fig. 3 (d) depicts the amodal instance
head of this approach. The aforementioned head em-
ploys two modal-specific fully convolutional network
heads with parameter sharing. The first modal-specific
heads give the initial mask predictions that are further
used as attention for refining the final mask predictions
with a feature matching loss and pre-trained shape prior
autoencoder. Additionally, the approach also incorpo-
rates the shape-prior autoencoder in the non-maximum
suppression step of the amodal bounding boxes [27].

5. VQ-VAE [12] seeks to incorporate shape prior infor-
mation through discrete shape codes while using Vector
Quantized Variational Autoencoder for mask segmen-
tation. Fig. 3 (e) shows the amodal instance head of
VQ-VAE.

6. BCNet [13] models occluder and occludee with a bi-
layer GCN layer. To be precise, the approach first
predicts the occluder mask and contour segmentation
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and uses these occluder features in conjunction with
the ROI features to segment the occludee or the target
object in a class agnostic manner. Fig. 3 (f) presents the
amodal instance head of this approach. In contrast, our
APSNet employs FCN based class agnostic occluder
mask segmentation head to coarsely model the occlu-
sion regions of the target object as a strong prior and is
further refined in a spatially independent manner with
an occlusion mask segmentation head. Moreover, we
use additional processing blocks with spatio-channel
attention to explicitly model the underlying relation-
ship among occluder (general location and shape of the
occluded region), occludee (visible region), and the oc-
clusion (precise shape of the occluded region) features
before finally computing the amodal mask segmenta-
tion. Fig. 4 illustrates our fragmentation of the amodal
bounding box of a target object.

To summarize, for a better amodal perception perfor-
mance, an amodal instance head should have the ability to
decipher the existence of occlusion regions and be able to
reason about the shape given the visible region features. We
build our APSNet on these two core ideas.

3. Inference

At inference time, to obtain the amodal panoptic segmen-
tation output, we fuse the amodal instance segmentation and
the semantic segmentation predictions. There are several
fusion heuristics [15, 20, 37] that have been proposed for
panoptic segmentation. We adapt the panoptic fusion pro-
posed in [20] due to its superior performance over other fu-
sion approaches. This heuristic allows adaptive fusion of the
task-specific head outputs, which can alleviate the inherent
overlap problem between the outputs of the different heads.
The semantic head generates semantic logits of |Cs|+ |Ct|
channels where Cs and Ct are the set of stuff and thing se-
mantic classes. While the amodal instance head outputs a
set of object instances consisting of a class prediction score,
confidence score, amodal bounding box prediction, inmodal,
and amodal mask logits. To apply the panoptic fusion, we
need to compute two logits MLA and MLB . We begin with
the computation of logit MLA where we apply confidence
thresholding to reduce the number of instances followed by
the ROI sampling operation for the amodal bounding box
on the two model-specific logits to increase their resolution
from 28× 28 to the input image resolution H ×W . Here,
H and W are the height and width of the input image. Sub-
sequently, we compute the inmodal bounding box from the
inmodal mask derived from the inmodal mask logits. We
then sort the class prediction, the modal-specific logits, and
the inmodal bounding box according to the class confidence
score. We then employ overlap thresholding using the in-
modal mask logits to finally yield the mask logit MLA.

We compute the second mask logit MLB for the corre-
sponding instances of objects from the semantic head logits
by selecting the channel based on the class of the instance
and zero-out the logits for that channel outside the inmodel
bounding box. Lastly, we fuse the two logits MLA and
MLB as

FL = (σ(MLA) + σ(MLB))� (MLA +MLB), (3)

where σ(·) is the sigmoid function and � is the Hadamard
product.

We then concatenate the stuff logits from the semantic
head logits with FL. Subsequently, we apply softmax and
the argmax operation along the channel dimension to ob-
tain the so-called intermediate prediction (IP ). In the final
step, we zero out the stuff classes class labels and copy the
semantic head prediction stuff labels to the zero places in
IP . We obtain the amodal mask for each instance in IP by
accessing the amodal mask logits channels according to the
instance ID. We then compute the sigmoid of the selected
amodal mask logits and threshold it at 0.5 to obtain the final
amodal binary mask. Following, we set the pixels in the
amodal binary mask to 2 that does not overlap with the cor-
responding instance ID mask in IP to represent its occluded
regions. The set of this tensor along with its class prediction
and instance ID is concatenated with IP to yield the final
amodal panoptic prediction.

4. Amodal Instance Head
To recapitulate, our proposed amodal segmentation head

aims to impart the awareness of the presence of occlusion
regions with coarse localization (occluder head) and learn to
perceive the occlusion shape given the visible and occluder
regions. It also models the necessary interconnecting fea-
tures of occlusion, occluder, and visible regions (processing
block with spatio-channel attention) to be able to predict the
amodal mask. Additionally, it uses the computed amodal
features to further refine the inmodal mask prediction. Fur-
ther, to efficiently train the occlusion mask head with dense
feedback, our APSNet opts to learn spatially independent
occlusion masks. Fig. 5 presents examples of the spatially
dependent and independent occlusion groundtruth masks.

The amodal instance segmentation head of APSNet con-
sists of object classification, bounding box regression, and
various mask heads. The training loss for bounding box
object classification head Lcls and the bounding box regres-
sion head Lbbx is the same as defined in [20]. Similarly,
the visible mask head loss Lv

mask, occluder mask head loss
Lod
mask, occlusion mask head loss Lol

mask, amodal mask head
loss Lam

mask and inmodal mask head loss Linm
mask are akin to

Lmask in [20] given as

Lmask(Θ) = − 1

|Kp|
∑

(P,P ′)∈Kp

Lp(P, P ′), (4)
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Figure 4. Illustration of our fragmentation of bounding box of the target object into class-agnostic occluder, class-wise occlusion, and visible masks. Our
amodal instance head employs individual mask heads to predict each mask. The features from these mask heads are further processed with a series of
convolution operations along with spatio-channel attention to predict the amodal mask of the target object.

where Lp(P, P ′) is the binary cross-entropy loss, P is the
ground truth binary mask, P ′ is the predicted binary mask
and Kp is the set of positive matches.

Thus the overall loss for our proposed amodal instance
segmentation head is as

Lainst = Lcls + Lbbxam
+ Lbbx + Lv

mask +

Lod
mask + Lol

mask + Lam
mask + Linm

mask.
(5)

Note that the gradient from the loss Lainst does not flow
through the RPN.

5. Extended Benchmarking Results
In this section, we discuss the benchmarking results on

the KITTI-360-APS validation set in detail to understand
the mutual relationship between the two proposed metrics
clearly. Tab. 4 presents the quantitative results using the
APQ and APC metrics and all their components. The APS
baseline with the trivial implementation of amodal instance
head, Amodal-EfficientPS achieves the lowest APQ and APC
scores. Similarly, ORCNN that employs a derivative head for
occlusion mask prediction over the trivial amodal instance
head attains similar performance to Amodal-EfficientPS.
However, this similar overall performance of the two net-
works stems from varying effectiveness of segmenting the
visible and invisible regions rather than being the same. APS-
EfficientPS has higher APQV

T and APCV
T scores implying

better visible thing region parsing, whereas ORCNN has
higher APQO

T and APCO
T values, indicating better occluded

thing region parsing. Following, BCNet performs better than
Amodal-EfficientPS and ORCNN, lagging behind VQ-VAE
by 0.1% in both APQ and APC scores. However, BCNet
achieves an improvement of 1.9% in APQO

T and 1.2% in

APCO
T scores. This difference in the proportional improve-

ment in the two metrics where the increase in performance
is higher for APQO

T signifies that BCNet primarily improves
the segmentation of partially occluded objects with smaller
occlusion regions. When paired with the improvement in
APQV

T of 0.7% and APCV
T of 1.2% indicates that the ap-

proach improves the segmentation of nearby larger objects
that are partially occluded. We hypothesize that this is pri-
marily due to the bilayer modeling of occluder and occludee
which enables more refined target mask segmentation.

Subsequently, VQ-VAE adds an occlusion detection
branch and mask refinement with shape priors to incorpo-
rate amodal reasoning capabilities. Compared to the trivial
Amodal-EfficientPS, this approach achieves an improvement
of 0.7% in APQ and 0.4% in APC, where the improvement
in APQT and APCT component of the metrics is 1.5% and
1.2% respectively. Next, the Shape Prior model refines the
coarsely predicted mask with shape priors in addition but
uses a combination of a pre-trained autoencoder with K-
Means based codebook. It further incorporates a visible
mask refinement step with amodal features. This model has
an APQ score of 41.8% and an APC score of 58.2%. Its
APQO

T and APCO
T are higher than that of VQ-VAE by 0.6%

and 0.4% respectively. This improvement suggests that in-
corporating shape priors with an additional codebook yields
better performance. A similar trend is also observed for
visible thing region metrics indicating that refining visible
mask with amodal features helps improve the performance
further.

Nevertheless, our proposed approach performs the best
in all the metrics, namely APQ and APC, and their compo-
nents. Here, the proportional improvement of APSNet can
be observed in visible and occlusion components of APQT
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Inmodal Mask Amodal Mask Spatially Dependent Spatially Independent
Occlusion Mask Occlusion Mask
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Figure 5. Illustration of spatially dependent and independent occlusion masks. The spatially dependent occlusion mask consists of few pixels compared to the
inmodal mask for partial occlusion. On the other hand, the spatially independent occlusion masks that effectively capture the underlying shape of the occluded
regions are denser. Thus, enabling stronger feedback during training and consequently resulting in capturing the underlying shape of the occlusion mask
effectively.

APQ APC APQS APQT APQV
T APQO

T APCS APCT APCV
T APCO

T AP mIOU

Amodal-EfficientPS 41.1 57.6 46.2 33.1 41.3 12.7 58.1 56.6 58.5 22.7 29.1 44.7
ORCNN [6] 41.1 57.5 46.2 33.1 41.1 12.8 58.1 56.6 58.1 22.9 29.0 44.5
BCNet [13] 41.6 57.9 46.2 34.4 42.0 14.5 58.1 57.6 59.7 23.9 30.3 45.8
VQ-VAE [12] 41.7 58.0 46.2 34.6 42.2 14.7 58.1 57.8 59.8 23.9 30.4 45.9
Shape Prior [36] 41.8 58.2 46.2 35.0 42.5 15.3 58.1 58.2 60.3 24.3 31.0 46.3
ASN [25] 41.9 58.2 46.2 35.2 42.7 15.4 58.1 58.3 60.4 24.2 31.1 46.3

APSNet (Ours) 42.9 59.0 46.7 36.9 43.6 18.3 58.5 59.9 61.5 25.8 33.4 48.0

Table 4. Performance comparison of amodal panoptic segmentation on the KITTI-360-APS validation set. Subscripts S and T refer to stuff and thing classes
respectively. Subscripts S and T refer to stuff and thing classes respectively. Superscripts V and O refer to visible and occluded regions respectively. All
scores are in [%].

(0.9% and 2.9%) and APCT (0.9% and 1.6%) compared to
the best baselines ASN. This demonstrates that our approach
improves the segmentation of partial-to-mid occluded ob-
jects, however, the performance is limited when it comes
to heavily occluded objects, as observed in the qualitative

evaluations in the manuscript. To conclude, computing both
the metrics for the amodal panoptic segmentation task gives
more insights into the performance of an approach, which
can be extremely valuable while developing an effective
solution for this problem.
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