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Abstract

Online reconstructing and rendering of large-scale in-
door scenes is a long-standing challenge. SLAM-based
methods can reconstruct 3D scene geometry progressively
in real time but can not render photorealistic results. While
NeRF-based methods produce promising novel view syn-
thesis results, their long offline optimization time and lack
of geometric constraints pose challenges to efficiently han-
dling online input. Inspired by the complementary advan-
tages of classical 3D reconstruction and NeRF, we thus in-
vestigate marrying explicit geometric representation with
NeRF rendering to achieve efficient online reconstruction
and high-quality rendering. We introduce SurfelNeRF, a
variant of neural radiance field which employs a flexible
and scalable neural surfel representation to store geomet-
ric attributes and extracted appearance features from input
images. We further extend the conventional surfel-based
fusion scheme to progressively integrate incoming input
frames into the reconstructed global neural scene represen-
tation. In addition, we propose a highly-efficient differen-
tiable rasterization scheme for rendering neural surfel radi-
ance fields, which helps SurfelNeRF achieve 10x speedups
in training and inference time, respectively. Experimental
results show that our method achieves the state-of-the-art
23.82 PSNR and 29.58 PSNR on ScanNet in feedforward
inference and per-scene optimization settings, respectively.'

1. Introduction

Large-scale scene reconstruction and rendering is a cru-
cial but challenging task in computer vision and graphics
with many applications. Classical visual simultaneous lo-
calization and mapping (SLAM) systems [0, 12, 16,24, 41,
43] can perform real-time 3D scene reconstruction. How-
ever, they usually represent the scene geometry as solid sur-
faces and appearance as vertex color or texture maps; thus,
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Figure 1. Examples to illustrate the task of online photorealistic
reconstruction of an indoor scene. The online photorealistic re-
construction of large-scale indoor scenes: given an online input
image stream of a previously unseen scene, the goal is to progres-
sively build and update a scene representation that allows for high-
quality rendering from novel views.

the reconstructed results fail to fully capture the scene con-
tent and cannot be used for photorealistic rendering. Re-
cently, neural radiance fields (NeRF) and its variants [2, 3,
22,27,37,44] have achieved unprecedented novel view syn-
thesis quality on both object-centric and large-scale scenes.
However, NeRFs suffer from long per-scene optimization
time and slow rendering speed, especially for large-scale
scenes. Although recent advances [7, 14, 19,23, 34] achieve
faster optimization and rendering via incorporating explicit
representations, they still require gathering all input images
in an offline fashion before optimizing each scene.

In this paper, we target the challenging task of online
photorealistic reconstruction of large-scale indoor scenes:
given an online input image stream of a previously unseen
scene, the goal is to progressively build and update a scene
representation that allows for high-quality rendering from
novel views. The online setting can unlock a variety of real-
time interactive applications, providing crucial immediate
feedback to users during 3D capture. However, this task
brings multiple extra requirements, including the scalabil-
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Methods Representation Generalization Real-time Rendering Online Fusion  Scalability
DeepSurfel [21] Surfels X v X X
Instant-NGP [23] Hash Grids X v X X
PointNeRF [45] Point Clouds v X X v
VBA [10] B+ Trees X X v v
NeRFusion [52] Voxel Grids v X v X
Ours Surfels v v v v

Table 1. Comparison of representation and features with existing methods.

ity of the underlying scene representation, the ability to per-
form on-the-fly updates to the scene representation, and op-
timizing and rendering at interactive framerates. Recently,
NeRFusion [52] followed NeuralRecon [35] to unproject in-
put images into local sparse feature volumes, fusing them
to a global volume via Gated Recurrent Units (GRUs), and
then generating photorealistic results from the global fea-
ture volume via volume rendering. However, updating the
sparse volumetric feature involves computationally heavy
operations; the volume rendering is also very slow since
it requires hundreds of MLP evaluations to render a pixel.
Thus, although NeRFusion achieves efficient online scene
reconstruction, it still needs dozens of seconds to render a
frame. VBA [10] is another recent approach to online pho-
torealistic scene capture, but it only applies to object-centric
scenes. We compare with representation and key features
used in online photorealistic rendering with existing meth-
ods, which is shown in Tab. 1.

We propose surfel-based neural radiance fields, Sur-
felNeRF, for online photorealistic reconstruction and ren-
dering of large-scale indoor scenes. Surfels (surface
elements) [25] are point primitives containing geometric at-
tributes, e.g., position, color, normal, and radius. We ex-
tend this representation to neural surfels, storing extra neu-
ral features that encode the neural radiance field of the target
scene. Compared with volumetric representations, neural
surfels are more compact and flexible and can easily scale
to large scenes. Besides, we further employ a fast and dif-
ferentiable rasterization process to render neural surfel ra-
diance fields, which produces a pixel with only a few MLP
evaluations based on the rasterized neural surfels.

Inspired by classical real-time surfel-based geometric re-
construction methods [6, 15, 43], we propose an efficient
neural radiance field fusion method to progressively build
the scene representation by integrating neighboring neural
surfels. Unlike point-based representations [1, 26, 30, 45]
that are computationally heavy when finding neighboring
points, it is easier to locate overlapping surfels and then
merge neural features from multiview observations. By
coupling the SurfelNeRF representation, the efficient neural
surfel fusion approach, and the fast neural surfel rasteriza-
tion algorithm, we achieve high-quality, photorealistic 3D
scene reconstruction in an online manner.

We conduct experiments on the large-scale indoor scene

dataset ScanNet [1 1], which contains complex scene struc-
tures and a large variety of scene appearances. We train the
SurfelNeRF end-to-end across the scenes on the ScanNet,
obtaining a generalizable model that enables both feedfor-
ward inference on unseen data and per-scene fine-tuning.
We demonstrate in experiments that the proposed Surfel-
NeRF achieves favorably better rendering quality than the
state-of-the-art approaches in both feedforward and fine-
tuning settings while maintaining high training and render-
ing efficiency. We believe the proposed online photorealis-
tic reconstruction framework has great potential in practical
applications.

2. Related Work

Novel view synthesis. Novel view synthesis is a chal-
lenging task for computer vision and computer graphics.
Previous methods utilize geometry-based view synthesis.
Zhou et al. [53] proposes to use the multiplane image (MPI)
representation for novel view synthesis. Recently, neural
radiance fields [22] and neural-based geometry representa-
tion have attracted more interest due to high-quality render-
ing. Recent methods propose to associate neural features
on geometry structure and then synthesize novel views via
rendering rasterized features, such as point cloud [, 30],
texture [38] and surfel [21]. DeepSurfel performs on-
line appearance fusion only on a fixed given geometry dur-
ing online fusion, while our SurfelNeRF performs online
appearance and geometry integration. To render outputs,
DeepSurfel rasterizes surfels and then passes them through
2D CNN filters, while our SurfelNeRF performs neural vol-
ume rendering which could achieve higher-quality render-
ing. Some recent works [9, 13, 18,47] focus on real-time
neural rendering methods. = However, these methods all
require per-scene optimization, which makes them imprac-
tical to handle novel scenes. In contrast, our SurfelNeRF is
generalizable, which can reconstruct new scenes via direct
feedforward inference.

Neural Radiance Fields. Recently, neural radiance fields
(NeRF) methods [2, 22, 44] achieve promising results on
novel view synthesis, but it requires expensive per-scene
optimization. Some methods proposed to reduce the long
per-scene optimization time via deferred neural render-
ing [13,49], hash table [23] or geometry prior [20]. Recent,



generalization NeRF methods [5, 8,39,45,48] are proposed
to produce novel view without per-scene optimization by
learning a radiance fields representation from offline given
images of novel scenes. PixelNeRF [48] and IBRNet [39]
render novel view images using volume rendering based on
corresponding warped features from nearby given images.
MVSNEeRF [8] reconstructs local neural volumes from local
nearby views, and then conducts volume rendering based on
volumes. FWD [5] renders novel views by warping all input
images to the target view, and fusing and refining features
of these warped inputs. However, these methods are gen-
eralizable on local small-scale scenes, and require taking
all input images before rendering novel views in an offline
fashion. PointNeRF [45] learns to reconstruct a point-based
neural radiance field for the novel scene. However, point-
based representation is redundant, especially on large-scale
scenes, and the point clouds cannot be updated based on
multi-view input. Unlike these works, our method can rep-
resent not only large-scale scenes but also update compact
surfel representation in an online fashion.

Online scene reconstruction and rendering. Most online
scene reconstruction methods [4,35,43,54,55] focus on 3D
reconstruction only via TSDF-based fusion [4, 35], surfel-
based fusion [43] and SLAM-based reconstruction [54].
However, they cannot render photorealistic novel view syn-
thesis. Recently, some methods [10,32,52] employ radiance
fields to tackle online scene representation for high-quality
rendering. VBA [10] builds a neural dynamic B+Tree to
represent scenes and apply volume rendering on it, but
it still requires per-scene optimization. SRT [32] repre-
sents scenes with set-latent with a transformer encoder and
decoder, but it cannot synthesize high-resolution images,
which makes it not ready for real-world applications. NeR-
Fusion [52] represents large-scale scenes with neural voxel
grids, update them via GRU in an online fashion, and ren-
ders results via slow volume rendering. However, grid-
based representation is wasteful for large-scale scenes, and
is inefficient during features update due to features in empty
areas are also updated. In contrast, our surfel representation
is compact for large-scale scenes, and surfel-based fusion
and corresponding rendering are more efficient.

3. Method

Unlike most existing methods [22,23,45] that build neu-
ral radiance fields in an offline fashion, we aim for the task
of online photorealistic scene reconstruction. Given a se-
quence of images {I,}, the goal is to progressively build
the neural scene representation on the fly as the input im-
ages arrive.

To achieve this goal, we present SurfelNeRF, an online
neural reconstruction framework based on the neural surfel
radiance fields representation. The insight of our method
is that the classical explicit surfel representation is efficient

for both reconstruction and rendering, has compact memory
footprints, has the scalability to large and complex scenes,
and can be naturally extended to equip neural attributes.
Meanwhile, one can integrate multi-frame information and
perform incremental updates on neural surfels in a geomet-
rically meaningful way, and the operations involved can be
streamlined.

Figure 2 gives an overview of our proposed method. The
framework first learns to generate per-view local neural sur-
fel radiance fields S; for each input frame I;. We then adopt
the conventional surfel fusion process [0, 15,43] to the neu-
ral setting, parameterizing the neural surfel fusion procedu-
ral as a neural network Ny. Through Ny, per-view repre-
sentations {S;} can be integrated into a global neural sur-
fel radiance field S, on the fly, aggregating geometric and
neural attributes. The neural surfel radiance fields can be
efficiently rendered to photorealistic images using a differ-
entiable rasterizer without extra optimization. The frame-
work can be trained end-to-end on large-scale indoor scene
datasets. Once trained, it can generalize to previously un-
seen data and perform online photorealistic reconstruction;
if needed, the rendering quality can be further improved by
a short period time of fine-tuning.

3.1. Neural Surfel Radiance Field Construction

Surfel Representation. Adopted from classical 3D recon-
struction research, each surfel s” is equipped with the fol-
lowing geometric attributes: a position p” € R3, normal
n" € R3, weight w"™ € R and radius r™ € R. The weight
w™ measures the confidence of a surfel based on the dis-
tance of the current depth measurement from the camera
center. The radius r™ of each surfel is designed to repre-
sent the local support area around the projected 3D posi-
tion while minimizing visible holes. The weight and ra-
dius of each surfel are initialized following [43]. Besides
geometric properties, we further associate each surfel with
neural features f* € R” from input images for modeling
semi-transparent structures and view-dependent effects. Al-
though a similar representation has been explored in Deep-
Surfels [21], we construct neural surfels in a feedforward
manner and incorporate them in progressive scene recon-
struction.

Local Neural Surfel Radiance Field. Given an input
frame I;, camera parameters c;, and estimated depth Dy,
the corresponding local neural surfel radiance field S; can
be constructed by unprojecting pixels in the input image to
3D space using camera parameters, then estimating corre-
sponding normal, weight, radius, and neural features. The
depth D; can be captured from sensors or estimated via off-
the-shelf MVS-based methods [46], which might be incom-
plete and noisy. Thus, we employ a U-Net structure [29] to
refine the depth following [5].

Neural Features on Surfels. We estimate neural features



= — &
_ —>{ =2 h
=0’ 5 T E :
o 5 c 0]
9] o =
= <R N
y L wun Q 4
7 € Z . S
= = o
(0] = >
. = o o
[vs >
o Yo = =
4 o =3 o Rendered
: > (1)
5 . 4 £ o Color
= =
- c Q X
o =2 )
=2 o >
o S oL
i) © :
Online Local Global
Input Surfel Neural Surfel Neural Surfel Neural Surfel Volume Rendering Network

Reconstruction

Sequence Radiance Field

Association & Fusion

Radiance Field

Figure 2. Overview of our SurfelNeRF. Given an online input stream of image sequences, we first reconstruct a surfel representation
associated with neural features to build a local neural surfel radiance field for each input keyframe. Then the neural surfel radiance
field integration is used to fuse the input local neural surfel radiance field into the global neural surfel radiance field by updating both
surfel position and features. More specifically, input local neural surfels associated with global surfels are fused to global surfels with
corresponding global ones, and remaining local surfels without corresponding ones are added to the global model. Furthermore, the novel
views can be rendered from updated global surfels via our efficient rasterization-guided render. Our proposed rasterization-guided renderer
renders color only on the intersection points of ray and surfels, which is faster than volume rendering.

f™ of surfels by extracting corresponding pixel features in
the input image. We employ a 2D CNN to extract features
of input images. Specifically, we use a MasNet follow-
ing [35,52] to extract multi-scale view-dependent features.

3.2. Online Integration of Neural Surfels

Based on the neural surfel representation, we adopt a
geometry-guided fusion scheme to efficiently and progres-
sively integrate local neural surfel radiance fields into a
global model. Compared with previous volumetric fusion
methods [10,52], our surfel-based solution offers the advan-
tages of 1) efficiency - the fusion operation only needs to be
performed at surfel locations and 2) scalability - the mem-
ory footprint only grows linearly to the number of neural
surfels.

In particular, our fusion scheme can be divided into two
steps. Firstly, for each local neural surfel, we determine
whether it should be added as a global neural surfel or
should be merged with corresponding global surfels. Sec-
ondly, we insert it into the global model or perform updates
to corresponding global surfels with local features.

Neural Surfel Association. Given an input image frame I,
and corresponding camera parameter, each surfel in global
surfels can be projected as an ellipse onto the image plane
of the current input camera view. For each pixel in the input
image, we obtain top-K global surfels that are overlapped
with it after rasterization. We discard irrelevant surfels with
a normal filter. Then we determine the incremental surfel
by comparing the depth distance between respective top-M
global surfels from near to far step by step. If the min-

imal distance between a local surfel and its global surfel
candidates is smaller than a threshold dgep¢, then we deter-
mine that this input surfel needs to be merged; otherwise,
it should be directly added to global surfels. The overall
workflow follows [43], and K is set to 8.

Neural Surfel Fusion. After the surfel association, there
are a set of input surfels that need to be added directly and
another set of surfels that will be merged with correspond-
ing global surfels. For the former set of surfels, we directly
construct neural surfels (Sec. 3.1) and then add them to
global surfels. For the latter surfels, we use a GRU net-
work to update neural features between the features f;'*
of input surfels and features f7°7"® of corresponding global
surfels, which is given as

£7°7T% = GRU(EP™™®", £5°77), (M

where £;°"®¢ and f7°5* are input and hidden state of GRU
respectively. We then update the geometric attributes of
these global surfels via a weighted sum. The update rule
of each respective pair of local surfel st and global surfel
s]_, can be expressed by
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Figure 3. Our efficient rasterization-guided surfel rendering for
neural surfel radiance fields is visualized using a toy model as an
example. We begin by rasterizing neural surfels into the image
plane, and then render the ray using shading points on the inter-
sections between the ray and corresponding surfels. This method
uses a combination of rasterization and ray tracing to render view-
dependency results with surfel representation and 3D rendering.

where p{, n{, r{ and w'tj are the updated position, normal,
radius, and weight of the global surfels, respectively.

3.3. Rendering Neural Surfel Radiance Fields

We propose a fast rasterization-based rendering algo-
rithm for neural surfel radiance fields (see Figure. 3). Given
a neural surfel radiance field S and the camera parameter
cqr Of a target view, we first conduct a differentiable ras-
terization process on the neural surfels to project them on
the target image plane. For a pixel p, in the target image,
we gather the neural surfels {s; }}£; that cover it and render
its color C(p,.) based on a few shading points {x;}} that
are the intersections between {s;}, and pixel ray, using

the following volume rendering formula [22]:

M
Cpz) = Zﬁ(l —exp(—0;Ai))ci,
i—1 3)
T; = exp(— ZojAj),
j=1

where 7 indicates the accumulated transmittance; o; and c;
indicate the volume density and radiance on shading point
x;; A is the distance between adjacent shading points. For
each shading point x;, we regress its volume density o; and
radiance c; based on its view direction d and shading point
features f? (x;) associated from surfel s;, which can be for-
mulated as:

04, ¢; = Render(z;, f(x;), d), 4)

where we use an MLP to parameterize the Render module.
The “interpolated” surfel feature f*(x;) is given as:

£i(x;) = Hx;il.pHF(fi,d,ni,wi), (5)

where F is also parameterized as an MLP-like network.
Note that a recent concurrent work [50] also explores the

hybrid rendering process by combining rasterization and
volume rendering, but using a different neural representa-
tion.

3.4. Training and Optimization

All modules in SurfelNeRF are differentiable, so they
can be trained end-to-end on large-scale scene datasets with
sequential images as input. We utilize L2 pixel-wise render-
ing loss to train our network supervised by the target ground
truth image:

£render = || Cgt - Cr‘|%7 (6)

where Cy; is the ground truth pixel color and C). denotes
the rendered pixel color output from SurfelNeRF. In addi-
tion, if we can acquire sensor depth D$*" senor for image I;,
we further employ an L1 loss to train the depth refinement
network:

Lq=|| D™ ® M; — D' © M| 1, 7

where D' is the output from depth refinement network, and
M; is a binary mask indicating valid sensor depths. This
supervision can make the depth refinement network to learn
to match the sensor depths.
To sum up, the total loss to train SurfeINeRF end-to-end
is given as
L= ﬁrender +A- IL(»Cd)» ()

where 1 denotes the indicator function whose value is set to
1 if sensor depth is available; A is the balancing weight.
Training Details. Following [52], we uniformly sample
keyframes from each image sequence as input for training
SurfelNeRF. To train SurfelNeRF, we sample about 5% of
the full sequence as keyframes, and other frames are used
as supervision.

Per-scene Fine-tuning. After being trained on large-scale
datasets, our SurfelNeRF is capable of constructing neu-
ral surfel radiance fields and rendering photorealistic novel
views on unseen scenes in a feedforward manner. To fur-
ther improve the rendering performance on test scenes, one
can also perform a short period of per-scene optimization
via fine-tuning the surfel representations and the rendering
module. To make a fair comparison, we do not use the ad-
ditional depths in the fine-tuning process and keep the depth
refinement module fixed. Thanks to our efficient rendering
scheme, SurfelNeRF takes less time when fine-tuning com-
pared with existing methods [45, 52].

4. Experiments
4.1. Experimental Settings

Training Datasets. Our training data consists of large-scale
indoor scenes from ScanNet [ | 1] which provides the online
sequence input of images with known camera parameters,



and the captured incomplete sensor depths. We focus on the
online input of large-scale scenes in the main paper. Follow-
ing [39,52], we randomly sample 100 scenes from ScanNet
for training.

Implementation Details. We train our SurfelNeRF on
the large-scale training dataset mentioned above using the
Adam [17] optimizer with an initial learning rate of 0.001
for total 200k iterations on 4 NVIDIA Tesla V100 32GB
GPUs. For per-scene optimization settings, we fine-tune our
method also using the Adam optimizer with an initial learn-
ing rate of 0.0002. All input images are resized to 640 x480.
The X in Eq. 8 is set to 0.1. The threshold of dgeptp, is set to
0.1m in surfel fusion (Sec. 3.2). The maximum number of
candidates M in Eq. 3 for rendering is set to 80. We imple-
ment our method using Pytorch and Pytorch3D.

Metrics. Following previous works [52], we report the
PSNR, SSIM [40] and LPIPS,44 [51] to evaluate and com-
pare the results. For fair comparisons with previous meth-
ods, we also evaluate our method on the same test set on
the ScanNet dataset. The time cost of rendering and per-
scene fine-tuning is measured on the same platform using
one NVIDIA Tesla V100 32GB GPU.

4.2. Comparison with state-of-the-arts

In this section, we evaluate our method with other state-

of-the-arts on the large-scale dataset, ScanNet. To achieve
fair comparisons, we evaluate our methods strictly follow-
ing the same training and evaluation scheme as NeRFu-
sion [52] and NerfingM VS [42]. There are 8 selected testing
scenes in ScanNet where 1/8 of images are held out for test-
ing. Following [52], we report no per-scene optimization
results via direct inference network and per-scene optimiza-
tion results.
Baselines. In addition to comparing SurfelNeRF with NeR-
Fusion [52], we also compare it with other state-of-the-art
(SOTA) methods, such as fast per-scene optimization NeRF
and neural point cloud representation, generalizable NeRF,
scalable MLP-based representation NeRF, NeRF with ad-
ditional depth supervision, and classical image-based ren-
dering methods, including Instant-NGP [23], ADOP [31],
PointNeRF [45], Mip-NeRF-360 [3], Dense Depth Prior
NeRF(DDP-NeRF) [28], and IBRNet [39]. Among these
methods, Mip-NeRF-360 is one of the state-of-the-art NeRF
methods for large-scale scenes. DDP-NeRF employs an of-
fline NeRF with additional depth supervision. PointNeRF
achieves state-of-the-art performance thanks to point-based
representation. ADOP achieves promising results on offline
large-scale rendering. These two methods employ a similar
representation to our method; thus we also compare with
them. We run generalizable PointNeRF with the same No
per-scene optimization and per-scene optimization settings
using its open-source code.

The result is shown in Tab. A.1 (a). For no per-scene

Methods ~ PSNR{ SSIM{ LPIPS | Time |

IBRNet [39]  21.19 0.786  0.358 -
NeRFusion [52] 22.99 0.838 0.335  38sf
PointNeRF [45] 20.47 0.642 0.544 30s

SurfelNeRF ~ 23.82 0.845 0327 0.2s

(a) Results of No per-scene optimization setting on ScanNet. And we re-
port the average time to render an image. f indicates that the time of NeR-
Fusion is reported by authors using a 2080Ti since they have not released
executable code before submission.

Methods PSNRT SSIMT LPIPS | Time |

Instant-NGP [23] 2323 0.714 0459  0.03
ADOP [31] 25.01 0.807 0.272 Is
NeRFingMVS [42] 26.37 0903  0.245 -
IBRNet [39] 25.14 0.871 0.266 -
DDP-NeRF [28] 26.61 0.80 0.26 -
Mip-NeRF-360 [3] 27.85 0.86 0.25 -
NeRFusion [52] 2649 0915 0.209 38s
PointNeRF [45]  28.99 0.829 0.324 30s
SurfelNeRF 29.58 0919 0215 0.2s

(b) Per-scene optimization. TimeJ indicates the average time to render an
image.

Table 2. Quantitative comparisons with SOTAs on the ScanNet
dataset with No per-scene and per-scene optimization.

optimization settings, NeRFusion achieves PSNR of 22.99
thanks to the fusion between input features to global grid
representations. Our SurfelNeRF outperforms NeRFusion
since SurfelNeRF benefits from compact and precise fea-
ture fusion and the geometric guidance of surfels. For the
per-scene optimization task, the result is shown in Tab. A.1
(b). PointNeRF gains a large improvement after fine-tuning,
which illustrates it achieves sub-optimal performance in no
per-scene optimization settings due to its inability to fuse
and update point features. Compared with DDP-NeRF,
which employs additional depth supervision, our Surfel-
NeReF still outperforms it by taking advantage of surfel rep-
resentation and its integration. Our method achieves state-
of-the-art results again, which shows that our neural sur-
fel representation can provide optimal initialization for fine-
tuning.

The qualitative comparison is shown in Figure. 4. We
compare our method with PointNeRF without per-scene op-
timization, and compare with per-scene optimization meth-
ods of PoingNeRF and ADOP. Since NeRFusion has not
release the executable code, we cannot generate qualitative
results. As shown in Figure. 4, our results are visually much
better than state-of-the-art methods, PointNeRF and ADOP.

4.3. Ablation Study

We investigate the effectiveness of designs in our Sur-
feINeRF by conducting the following ablation studies on
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Figure 4. Qualitative comparisons of rendering quality. The 1-2 column are the results of no per-scene optimization. And the left three
columns are per-scene optimization results. It is obvious that with or without per-scene optimization, our method can still achieve the most
photorealistic rendering results. Since PointNeRF without a depth refinement network relies on captured depths only, it cannot handle the
scenario that depth is incomplete. However, our method can tackle this problem with a lightweight depth refinement network. ADOP can

produce geometrically correct results, but its color is less photorealistic.

ScanNet.

Fusion Schemes. Our surfel-based fusion is inspired by
classical Surfel-based fusion in conventional 3D reconstruc-
tion [43]. The classical surfel-based fusion update fea-
tures via the simple weighted sum of two overlapped sur-
fels. We conduct an experiment that updates surfel fea-
tures by weighted sum based on surfel weights, which is
a similar operation of updating geometry attributes in Eq. 2.
The results are shown in Tab. A.3. Since the GRU module
can learn to adaptively update features based on the global
surfels and new incremental surfels, it can improve perfor-
mance with negligible computation overhead.

Depth Refinement Module. To investigate the effective-

Fusion Scheme Setting PSNRT SSIMT LPIPS |

Weighted Sum  No per-scene  23.09 0.833 0.353
GRU optimization 23.82 0.845 0.327
Weighted Sum Per-scene 28.54 0.884 0.293
GRU optimization 29.58 0.919 0.215

Table 3. Ablation studies about fusion schemes in our SurfelNeRF.

ness of our depth refinement, we conduct experiments that
reconstruct scenes with incomplete depth captured by sen-
sors. The quantitative results are shown in Tab. 4, which
show that PSNR performance drops about 4% without the



Depth Refinement PSNR?T  SSIM{  LPIPS |
w/o 19.51 0.713 0.454
w 23.09 0.833 0.353

Table 4. Ablation studies about the effectiveness of depth refine-
ment in scene0000-01 in the ScanNet with the no per-scene op-
timization setting. The depth captured by the sensor in this scene
is incomplete. If using captured depths only, some pixels cannot
be projected to the 3D space, as the visualization results of Point-
NeRF shown in the first row in the qualitative results in Fig. 4.

Rendering Scheme Setting PSNRT  Time |

No per-scene  23.80 30s

Volume Rendering

Ours optimization 23.82 0.2s
Volume Rendering Per-scene 29.45 30s
Ours optimization 29.58 0.2s

Table 5. Comparing with two rendering schemes, volume render-
ing [22] and our proposed rasterization-guided rendering, in the
ScanNet dataset.

depth refinement. Depth quality affects surfel reconstruc-
tion geometry quality, but captured depth is always incom-
plete (visualized in the first row in Fig. 4). Thus, a depth
refinement network is necessarily required to refine the in-
put depth for better surfel geometry quality. The experi-
mental result shows that the depth refinement network is
effective in alleviating the noisy or incomplete captured or
estimated depth. Moreover, we also conduct an experiment
with worse depth quality that resizes input depth resolu-
tion to half size. Our performance just sightly drops 0.5%
PSNR. These experiments show the effectiveness of our
depth refinement module.

Rendering Schemes. Our proposed renderer renders a ray
with a few shading points, which are the intersection points
of ray and surfels, unlike volume rendering in NeRF [22]
that requires hundreds of shading points each with one MLP
evaluation. To validate the effectiveness of our differen-
tiable rasterization scheme for rendering, we conduct an ex-
periment that replaced our rendering scheme with NeRFs’
volume rendering. The result is shown in Tab. 5. Since on-
line integration of surfels can limit the number of intersect-
ing surfels, our rendering speed is persistently faster than
volume rendering with fewer shading points. Specifically,
The average and maximal number of rasterized surfels per
pixel at novel views on ScanNet are 2.92 and 10, respec-
tively.

Computational Cost and Memory Usage. To evaluate
the computational cost and memory usage on a large-scale
scene, we plot components of GPU processing time, surfel
number, and memory usage of our method on a large three
rooms scene measured on a V100 GPU implemented by Py-
torch3D. During inference, our method renders 640 x 480

1000
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[}
GPU Memory (MB)
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(a) GPU processing time. (b) GPU memory usage.

Figure 5. The computation cost, memory footprint, and the num-
ber of surfels grow according to input frames measured on a three
rooms scene.

images at 5.2FPS on average. As shown in Fig. 5a and
Fig. 5b, the number of surfels has a sub-linear growth
thanks to the proposed surfel integration. The fluctuation
of Time (Rasterization) is caused by the different numbers
of corresponding surfels at novel views. Although the com-
putational cost of rasterization depends on the number of
rasterized surfels, but it is still faster than volume render-
ing [22]. These results show that our surfel representation
is compact and efficient. The major computation cost comes
from rasterization, and the cost of surfel construction as
well as integration could be neglected.

5. Limitations

Our method requires high-quality surfel geometry as
neural surfel representation since SurfelNeRF relies on it
to conduct surfel integration and rasterization-guided ren-
der. To obtain better geometry quality, we may require more
accurate depth quality to construct surfel geometry, which
necessitates extra depth supervision or the MVS depth esti-
mator. Since captured or estimated depth quality is not ex-
act, there may be geometry discontinuities or missing parts
in the surfel representation. Consequently, there may be
some missing parts or incorrect geometry in the rendered
output (examples of missing parts are shown in the first row
in Fig. 4 or video). As discussed in ablation studies of depth
refinement above, inaccurate and noisy estimated depth as
well as depth discontinuity could affect the construction of
neural surfel representation. To alleviate this issue, we pro-
pose a depth refinement module (Tab. 4) to refine depth in-
formation.

6. Conclusion

In this paper, we propose SurfelNeRF for online photo-
realistic reconstruction and rendering of large-scale indoor
scenes. We employ neural surfels to store a neural radiance
field, adopt an efficient neural radiance field fusion method
to progressively build the scene representation, and propose
a fast and differentiable rasterization-based rendering algo-
rithm to tackle the challenging task. Experiments on the
ScanNet dataset demonstrate that our method achieving fa-
vorably better results than the state-of-the-art methods.
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A. Implementation Details
A.1. Network Details

Image feature extractor. We follow [52] to use the same
modified MnasNet [36] pretrained from ImageNet as a 2D
CNN to extract surfel features from images. For each sur-
fel, we extract multi-scale image features from correspond-
ing pixels. The channel number of extracted image features
is 83. We then project extracted image features to surfel
features with channel number of 32 by an MLP.

GRU fusion network. We employ a one layer GRU net-
work to fuse the surfel features. Given features f;*"%° of
input surfels and features £7°5™® of corresponding global
surfels, the process of updating global surfel features with
GRU can be given as:

££°77% — GRU(E7™, £°7°), ©)
where the detail is expresses by
Z = MZ([f;nerge’ ftcgﬁrsbv
vy = M ([, £7°7°]),
(10)

pcorrs __ corrs gpmerge
f; = My ([re = £7277°, £77°7)),

corrs __ corrs fcorrs
ft = (1_Zt)*ft71 +Zt*ft y

where M., M, and M, both have one MLP layer followed
by a sigmoid, sidmoid and tanh activation function, respec-
tively. [-, -] denotes the operation of concatenate.
Rendering module. We employ an MLP-like rendering
module, Render(z;, f*(x;),d), to predict volume density
o; and radiance c; at each shading point x; with giving “in-
terpolated” surfel features f?(x;) and its view direction d.
Specifically, the details can be given as

01 = Fo ([f'(xi),7(x:)]),

. (11)
C; = SlngId(Fr([fv(Xl% ’Y(d)]))v

where F, () is a one layer MLP network with the ReLU ac-
tivation function. F.(-) is an MLP network with four layers
and ReL U activation function, where the channel number
of all hidden layers is 256. «(-) denotes the positional em-
bedding with maximum frequency of 5. x; is the position
of shading point. [-,] is the concatenation operation. The
“interpolated” surfel features f?(x;) are obtained based on
the intersection of ray and surfels as

. ri — Xi — p" . . .
fi(x;) = MF(fﬁd,n%w% (12)
where p?, f, n’, r’ and w’ indicate the position, features,
normal, radius and weight of surfels s* respectively. The
function F is a MLP-like network, which is given as

F(f',d,n’, w') =

) ) ) (13)
Ff([fzav(d)?’y(wz)v’Y(nz)>'7(d - 1’1)]),

12

Methods PSNR?T SSIM?T LPIPS | Time |
Instant-NGP [23] 23.23 0.714 0.459 0.03s
ADOP [31] 25.01 0.807 0.272 Is
NeRFingMVS [42] 26.37 0903 0.245 -
IBRNet [39] 25.14 0.871 0.266 -
NeRFusion [52] 2649 0915 0.209 38s
PointNeRF [45] 2899 0.829 0.324 30s
SurfelNeRF 29.58 0919 0.215 0.2s
SurfelNeRF (MVS) 29.74 0.920 0.211 0.2s

Table A.1. Quantitative comparisons with SOTAs on the ScanNet
dataset with per-scene optimization. SurfelNeRF (MVS) indicates
taking RGB input with estimated depth via the MVS depth esti-
mator. Time| indicate average time to render an image.

Methods PSNR{ SSIM{ LPIPS |
IBRNet [39] 21.19  0.786  0.358
NeRFusion [52]  22.99 0.838  0.335
PointNeRF [45] 2047 0.642  0.544
SurfelNeRF 23.82  0.845 0.327
SurfelNeRF (MVS) 24.29 0.871 0.324

Table A.2. Quantitative comparisons with SOTAs on the ScanNet
dataset with no per-scene optimization. SurfelNeRF (MVS) indi-
cates taking RGB input with estimated depth via the MVS depth
estimator.

where F’y is a two layer MLP network with ReLU activation
function and the channel number of hidden layers is 256.

Overall, the function F takes features of surfels and cor-
responding geometry attributes of surfels and rays as in-
put, and outputs view-dependent surfel features. The view-
dependent surfel features are then weighted based on the
radius and the distance between intersections and centers of
surfels. The far the intersections are, the less they contribute
to the interpolated features.

B. Additional Results

In this section, we report and analyse quantitative and
qualitative results of additional ablation studies, and provide
additional qualitative comparison with recent SOTA meth-
ods.

B.1. Depth from MVS

We conduct an additional experiment that takes the RGB
input from sensors only and employ a off-the-shelf depth
estimator [33] to obtain estimated MVS depth maps. We
show the quantitative results of this setting with direct net-
work inference and per-scene optimization in Table. A.2
and Table. A.1, respectively. Our method with estimated



Fusion Scheme PSNRT SSIM{ LPIPS |

Weighted Sum  No per-scene  23.09 0.833 0.353

GRU optimization 23.82 0.845 0.327
Weighted Sum Per-scene 28.54 0.884 0.293
GRU optimization ~ 29.58 0.919 0.215

Table A.3. Ablation studies about fusion schemes in our Surfel-
NeRF.

depth, called SurfeINeRF(MVS), achieve comparable per-
formance with using sensor depth and a depth refinement
network. The slight improvement comes from the scenes
where depth captured from the sensor appears heavily in-
complete and noisy, where the off-the-shelf depth estima-
tor [33] can produce better depth via multi-view stereo than
raw sensor measurements. To investigate the influence of
depth quality, we conduct an additional ablation study about
depth refinement network in the next section.

B.2. Additional Ablation Studies

Depth refinement network. We show the visualization
results of heavily incomplete scenes with different input
depth, including depth captured from sensors, refined from
the depth refinement network, and estimated by the off-the-
shelf depth estimator, as shown in Figure. A.1. For the first
column that a novel view from scene0000-01 in ScanNet,
the sensor cannot capture the high-quality depth around the
thin bicycle wheels and the far away television. With the
help of RGB input or multi-view stereo techniques, the
depth refinement network and depth estimator can fill the
depth, which reconstruct surfels better and providing better
rendering results. Comparing with the depth refinement net-
work, the off-the-shelf depth estimator produce higher qual-
ity of estimated depth since it spends extra time to consider
the prior of multi-view stereo. Comparing the results with
different depth quality, this results shows that the higher
quality of depth the better photo-realistic rendering results
since depth quality decides the quality of reconstruction sur-
fels.

Fusion scheme. To investigate the effectiveness of the GRU
fusion module, we have conducted an ablation study and
shown quantitative results in the main paper. We recap the
results which is shown in Table. A.3 and provide the quali-
tative results in Figure. A.2.
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(a) Sensor

(b) Depth
Refinement
Network

(c) Depth
Estimator

(d) GT

Figure A.1. Comparison of different types of input depth on the per-scene optimization setting. Per-sceen optimizaiton would not change
the surfel position and number, so it can obtain the same conclusion when evaluating on the no per-scene optimization setting. The highlight
areas are indicated by red rectangles. It is obvious that depths captured from sensor may be incomplete and noisy, which affects the surfel
reconstruction resulting in sub-optimal rendering results.

(a) Weighted Sum

(b) With GRU

Figure A.2. Comparison of different fusion schemes on the per-scene optimization setting. The highlight areas are indicated by red
rectangles. As can be seen in the figure, GRU can generate sharper and clearer details in novel view synthesis. GRU has the capability to
adaptively update features based on high-level features, which makes the fusion process more robust.
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