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Figure 1. We show comparisons of the input multi-view images (top), watertight surfaces (middle) reconstructed with state-of-the-art
SDF-based volume rendering method NeuS [53], and open surfaces (bottom) reconstructed with our method. Our method is capable of
reconstructing high-fidelity shapes with both open and closed surfaces from multi-view images.

Abstract

Multi-view shape reconstruction has achieved impres-
sive progresses thanks to the latest advances in neural im-
plicit surface rendering. However, existing methods based
on signed distance function (SDF) are limited to closed sur-
faces, failing to reconstruct a wide range of real-world ob-
jects that contain open-surface structures. In this work,
we introduce a new neural rendering framework, coded
NeUDF1 , that can reconstruct surfaces with arbitrary
topologies solely from multi-view supervision. To gain the
flexibility of representing arbitrary surfaces, NeUDF lever-
ages the unsigned distance function (UDF) as surface rep-
resentation. While a naive extension of an SDF-based neu-
ral renderer cannot scale to UDF, we propose two new for-
mulations of weight function specially tailored for UDF-
based volume rendering. Furthermore, to cope with open

*Corresponding Author is Lin Gao (gaolin@ict.ac.cn).
1Visit our project page at http://geometrylearning.com/neudf/

surface rendering, where the in/out test is no longer valid,
we present a dedicated normal regularization strategy to
resolve the surface orientation ambiguity. We extensively
evaluate our method over a number of challenging datasets,
including DTU [21], MGN [5], and Deep Fashion 3D [61].
Experimental results demonstrate that NeUDF can signif-
icantly outperform the state-of-the-art method in the task
of multi-view surface reconstruction, especially for complex
shapes with open boundaries.

1. Introduction

Multi-view surface reconstruction is a long-standing and
fundamental problem in computer vision and computer
graphics. Conventional multi-view stereo based meth-
ods [43, 44] often underperform when the input images
are sparse or appear textureless. Recent advances in neu-
ral implicit representation [9, 30, 32, 38] have brought im-
pressive progress in achieving high-quality reconstruction
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of intricate geometry even with sparse views. Specifically,
they [13, 17, 28, 53, 54, 57, 62] leverage the volume render-
ing scheme to jointly learn the implicit geometry and color
field by minimizing the discrepancy between the rendering
results and the input images. However, since these meth-
ods represent surfaces using either signed distance function
(SDF) [28,53] or occupancy field [37], they can only recon-
struct watertight shapes. This greatly limits their applica-
tions as shapes with open surfaces, such as garments, 3D-
scanned scenes, etc, are widely seen in the real world. Re-
cent works, such as NDF [11], 3PSDF [8], and GIFS [59],
have proposed new neural implicit functions to represent
surfaces with arbitrary topologies. Nonetheless, none of
these methods is compatible with existing neural rendering
frameworks. Hence, how to leverage neural rendering to
reconstruct non-watertight shapes, e.g. open surfaces, re-
mains an open question.

We fill this gap by introducing NeUDF, a new volumet-
ric rendering framework that can reconstruct shapes with
arbitrary topologies only from multi-view image supervi-
sion. NeUDF is built upon the unsigned distance func-
tion (UDF), a straightforward implicit function that returns
the absolute distance from a query point to the target sur-
face. Despite its simplicity, we show that naively extend-
ing the SDF-based neural rendering mechanism to unsigned
distance fields cannot ensure unbiased rendering of non-
watertight surfaces. In particular, as shown in Figure 2,
the SDF-based weighting function would generate spurious
surfaces where the rendering weight triggers undesirable lo-
cal maxima in the void region. To resolve this issue, we
propose a new unbiased weighting paradigm specially tai-
lored for UDF while being aware of surface occlusions. To
accommodate the proposed weighting function, we further
present a customized importance sampling strategy that en-
sure high-quality reconstruction of non-watertight surfaces.
Furthermore, to tackle the inconsistent gradients of UDFs
near the zero iso-surface, we introduce a normal regulariza-
tion method to enhance the gradient consistency by lever-
aging normal information in the surface neighborhood.

To the best of our knowledge, NeUDF is the first attempt
to reconstruct the surfaces with arbitrary topologies solely
from 2D image supervision. Extensive experiments on the
public datasets, e.g. MGN [5], Deep Fashion3D [61], and
BMVS [56], demonstrate that NeUDF can significantly out-
perform the state-of-the-art methods in the task of open sur-
face reconstruction while achieving comparable results in
recovering watertight surfaces. We summarize our contri-
butions as follows:

• The first UDF-based neural volume rendering frame-
work, dubbed NeUDF, that can be used for multi-view
reconstruction of shapes with arbitrary topologies, in-
cluding complex shapes with open boundaries.

(a) Input (b)
Naive UDF solution based

on SDF renderer (c) NeUDF

Figure 2. As shown in (b), the naive UDF solution based on the SDF ren-
derer is biased, thus resulting in redundant surfaces in the reconstruction.
NeUDF solves this problem by introducing a novel unbiased weighting
mechanism as shown in (c).

• A novel unbiased weighting function and importance
sampling strategy specially tailored for UDF render-
ing.

• The new state-of-the-art performance in the task of
multi-view surface reconstruction over a number of
challenging datasets with non-watertight 3D shapes.

2. Related Works
In this section, we first discuss classical implicit repre-

sentations and neural rendering techniques. Next, we pro-
vide an overview of recent works on combining them to im-
prove the performance of multi-view reconstruction tasks.

Neural Implicit Representation Recent developments in
neural implicit representation [9, 31, 38, 41, 55] have sur-
passed the prior topological and resolution limit of explicit
representations (e.g. point clouds, voxels, and meshes), set-
ting a new state of the art for 3D modeling and reconstruc-
tion. Complex shapes can be implicitly represented by clas-
sifying the query points into inside or outside the shape
(binary occupancy) [10, 12, 15, 18, 30, 39, 42] or predicting
the signed distance (SDF) to the surface [9, 22, 31, 38, 41].
Due to the reliance on in/out the partition of 3D space, such
methods can only model watertight objects. Methods based
on unsigned distance function (UDF) [11, 50–52, 59] are
proposed to overcome the limitation, enabling deep neu-
ral networks to properly represent and learn a much wider
range of shapes with open surfaces. NDF [11] predicts
an unsigned distance from an input query point and its
position-aware shape feature which is encoded in a multi-
scale manner. HSDF [52] simultaneously predicts a UDF
field and a sign field to achieve better mesh fidelity. But
they [11,50–52,59] require 3D supervision for mesh recon-
struction.

Neural Rendering Besides the geometry information,
appearance information is also needed to faithfully depict
a scene, especially when the input observations take the



form of 2D pictures. Methods based on neural implicit sur-
face rendering [24, 26, 27, 36, 47, 49, 58] find the intersec-
tion between a ray and the surface using differential sphere
tracing [20] or its variants. They query the RGB color
of the ray-surface intersection point using another network
branch. Because the back-propagated gradients are influ-
enced by the entire space, surface rendering methods like
IDR [58] and DVR [36] struggle in reconstructing com-
plex shapes without additional 2D mask supervision. In
contrast, the methods based on neural volumetric render-
ing [29, 32, 34, 35, 40, 48, 60] imply that rather than a bi-
nary intersection case, rays can have a chance of interacting
with the scene properties at every point in space. For ma-
chine learning pipelines that largely rely on the availability
of well-behaved gradients for optimization, this continuous
model performs well as a differentiable rendering frame-
work.

Multi-view Reconstruction Multi-view stereo ap-
proaches [1, 6, 7, 14, 25, 44–46] before the advent of deep
learning mainly rely on image feature matching [6, 44]
across viewpoints or volumetric representation like voxel
grids [1, 7, 14, 25, 46]. The former, like the widely used
method COLMAP [44], highly relies on rich texture
information and classic meshing techniques from point
clouds because it computes multi-view depth maps from
correspondence between images and fuses them into dense
point clouds, while the latter is limited to low resolution
due to the cubic memory growth of voxel representation.

Recent works [13,17,24,27,28,36,37,53,54,57,58] com-
bining implicit representation and neural rendering outper-
form previous approaches in reconstructing watertight sur-
faces with high fidelity. Since these methods represent sur-
faces using either occupancy values [37] or signed distance
function [28,53] (SDF), their reconstruction results are lim-
ited to be watertight. Our NeUDF proposes a novel neural
volume rendering algorithm for unsigned distance function
(UDF) and thus can naturally extract the surface as the zero-
level set of UDF, which is capable of representing complex
shapes with open surfaces and thin structures.

3. Methodology

Given a set of calibrated images {Ik|1 ≤ k ≤ n} of
a object or scene, we aim to reconstruct arbitrary surfaces,
including closed and open structures, only using 2D image
supervision. In our paper, a surface is represented as a zero-
level set of unsigned distance functions (UDFs). To learn
the UDF representation of objects or scenes, we introduce
a novel neural rendering architecture that incorporates un-
biased formulation of weights for rendering. We first define
our scene representation based on UDF (Sec. 3.1). Then
we introduce NeUDF with two key formulations of weight
function specially tailored for UDF-based volume rendering

(Sec. 3.2). Finally, we illustrate our normal regularization
(Sec. 3.3) for alleviating the ambiguity from 2D images and
our loss configuration (Sec. 3.4).

3.1. Scene Representation

Different from signed distance function (SDF), unsigned
distance function (UDF) is sign-less and capable of repre-
senting open surfaces with arbitrary topologies, in addition
to watertight surfaces. Given a 3D object O = {V, F},
where V and F are the collections of vertices and faces,
the UDF of an object O can be formulated as a function
d = ΨO(x) : R3 7→ R+, which maps a point coordinate
x to the Euclidean distance d to the surface. We define
UDFO = {ΨO(x)|d < ϵ, d = argminf∈F (∥x − f∥2)},
where ϵ is a small threshold, and the surface of the object
can be modulated by the zero-level set of UDFO.

We introduce a differentiable volume rendering frame-
work to predict UDF from input images. The framework is
approximated by a neural network ψ, that predicts a UDF
value d and the rendering color c according to a spatial lo-
cation x along the sampling ray v:

(d, c) = ψ(v, x) : S2 × R3 7→ (R+, [0, 1]
3
) (1)

With the help of volume rendering, the weights are opti-
mized by minimizing the distance between the predicted
images I ′

k and ground-truths Ik.
The learned surface SO can be represented by the zero-

level set of the predicted UDF:

SO = {x ∈ R3|d = 0, (d, c) = ψ(v, x)} (2)

3.2. NeUDF Rendering

Rendering procedure is the key to learning an accurate
UDF as it connects the output color and the UDF value via
integration along ray v:

C(o, v) =

∫ +∞

0

w(t)c(p(t), v)dt, (3)

where C(o, v) is the output pixel color from the camera ori-
gin o along the view direction v, w(t) is the weight function
for the point p(t), and c(p(t), v) is the color at the point p(t)
along the view direction v.

To reconstruct UDFs via volume rendering, we first in-
troduce a probability density function ς ′r(Ψ(x)), called U-
density, where Ψ(x) is the unsigned distance of x. The U-
density function ς ′r(Ψ(x)) maps UDF field to a probability
density distribution which assumes prominently high val-
ues near the surface for accurate reconstruction. Inspired
by NeuS [53], we derive an unbiased and occlusion-ware
weight function wr(t) and its opaque density τr(t) using



U-density function as:

wr(t) = τr(t)e
−

∫ t
0
τr(u)du (4)

τr(t) =

∣∣∣∣∣
∂(ςr◦Ψ◦p)

∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ (5)

where ◦ is the function composition operator, and ςr(·) must
satisfy the following rules for valid UDF reconstruction:

ςr(0) = 0, lim
d→+∞

ςr(d) = 1 (6)

ς ′r(d) > 0; ς ′′r (d) < 0,∀d > 0 (7)

Figure 3. U-density
function ς ′r(d) and its
cumulative distribution
function ςr(d) satisfying
the rules in Equ. 6 and
Equ. 7.

The ςr(d) can be any function
shaped in the right figure. Since
ςr(d) is the cumulative distribution
function of U-density, ςr(0) = 0
guarantees that there is no accu-
mulated density from points with
negative distances. Furthermore,
ς ′r(d) > 0 and ς ′′r (d) < 0 ensure
U-density values are positive and
prominently high for points near
the surface. The parameter r in
ςr(d) is learnable and controls the
distribution of the density. This
function structure addresses the volume-surface gap be-
tween the volume rendering and the surface reconstruction
and guarantees global unbiased property. Please refer to our
supplementary for detailed discussions.

We argue that a naive extension of SDF-based neural
renderers would violate some of the above rules. For ex-
ample, the cumulative distribution function of U-density in
NeuS [53] is Φs (Sigmoid Function) and Φs(0) > 0 vio-
lates Equ. 6. The violation would lead to bias in rendering
weights and thus result in redundant floating faces and ir-
regular noises shown in Fig. 2. Note that the local maximal
constraint proposed in NeuS cannot address this rendering
bias in UDF. Please check out the detailed discussion of the
unbiased property and the global/local maximal constraint
in our supplemental materials.

After extensive evaluations for different forms of ςr(d) in
the ablation study (Sec. 4.3), we ultimately choose ςr(d) =
rd

1+rd with r initialized to 0.05. Further, we adopt the α-
compositing to discretize the weight function, which sam-
ples the points along the ray direction and accumulates the
colors according to the weight integral. For the detailed
discretization and proofs of the unbiased and the occlusion-
aware properties of Eqn. 4 and Eqn. 5, please refer to our
supplemental materials.

Importance points sampling. Points sampling that ac-
commodates the rendering weight is an important step in

Figure 4. Normal Regularization Diagram. We use the gradients
of points (in blue) with an offset from the surface to approximate
the unstable surface normal (in green) of UDF representation.

volume rendering. Unlike SDF, to achieve unbiased render-
ing of UDF, the rendering function should distribute more
weights before the intersection points (Fig. 2(c)). Hence, if
both the rendering and sampling functions employ the same
weights, the regularization (the Eikonal loss) on UDF gradi-
ents would lead to highly unbalanced gradient magnitudes
on the two sides of the surface. This could significantly
hamper the quality of the reconstructed UDF field. There-
fore, we propose a specially-tailored sampling weight func-
tion (Fig. 2(c)) to achieve well-balanced regularization all
over the space. The importance sampling ws(t) is formu-
lated as follows:

ws(t) = τs(t)e
−

∫ t
0
τs(u)du, τs(t) = ζs ◦Ψ ◦ p(t), (8)

where ζs(·) satisfies the rules: ζs(d) > 0 and ζ ′s(d) <
0,∀d > 0. Intuitively, ζs(·) is a monotonically decreas-
ing function in the first quadrant. In our paper, we use
ζs(d) =

se−sd

(1+e−sd)2
, where the parameter b in ζs(d) controls

the intensity at x = 0. s starts from 0.05 and changes ev-
ery sampling step z with the rate set to 2z−1. Any sampling
function that can achieve balanced regularization with the
rendering function is compatible with our framework. For
a detailed illustration of the above rules, please see our sup-
plementary document. Further, we evaluate the necessity
of the ζs(d) qualitatively and quantitatively in the ablation
study (Sec. 4.3).

Overall, the weight functions are collaboratively used in
rendering (Eqn. 4) and sampling (Eqn. 8) during volume
rendering, which enables the high-fidelity open surface re-
construction with differentiable volume rendering.

3.3. Normal Regularization

Since points in UDF’s zero-level set are cusps that are
not first-order differentiable, the gradients of the sampled
points in the vicinity of the learned surface are not numer-
ically stable (jittered). As the rendering weight function
takes as input the UDF gradient, unreliable gradients lead
to inaccurate surface reconstruction. We introduce a nor-



mal regularization to perform spatial interpolation to alle-
viate this problem. The normal regularization replaces the
naively sampled surface normal with an interpolated normal
from its neighborhood. Figure 4 presents a detailed illustra-
tion. Since the unstable normal only exists near the surface,
we use the point normal with an offset from the surface to
approximate the unstable normal. We discretely formulate
it at point p(ti) as follows:

n(p(ti)) =

∑K
k=1 wi−kΨ

′(p(ti−k))∑K
k=1 wi−k

(9)

where wi−k = ∥p(i) − p(i − k)∥22 is distance from p(i) to
p(i−k). Ψ′(·) is the derivative of UDF Ψ(·), which returns
the gradients of UDF. By leveraging normal regularization,
our framework achieves smoother open surface reconstruc-
tion from the 2D images. We can adjust the normal regu-
larization weight to obtain a more detailed geometry. Ex-
periments show that normal regularization can prevent the
highly bright and dark regions in 2D images from the high-
quality reconstruction as shown in Fig. 10.

3.4. Training

To learn the high-fidelity open surface reconstruction,
we optimize the network by minimizing the difference be-
tween the rendered images and groundtruth images with
known camera poses, without any 3D supervision. Follow-
ing NeuS [53], we also apply the three loss terms used in
SDF volumetric rendering: Color loss Lc, Eikonal loss [58]
Le, and Mask loss Lm. The color loss measures the dif-
ference between rendered image and input images under L1
loss. The Eikonal loss numerically regularizes the gradients
of UDF on sampled points. If the masks are provided, the
Mask loss also encourages the predicted mask to be close to
the groundtruth mask under the BCE measurement. Over-
all, we use a loss that is composed of three parts:

L = Lc + αLe + βLm (10)

For detailed implementation and network architecture,
please refer to our supplementary document.

4. Experiments & Evaluations
In this section, we validate NeUDF on multi-view re-

construction task qualitatively and quantitatively and fur-
ther tested our method for real scenes. The experiments
demonstrate that NeUDF outperforms the state-of-the-art
techniques and can successfully reconstruct complex shapes
with open boundaries. Lastly, we perform ablation studies
and further discussions to demonstrate the importance of
each key design.

4.1. Experimental Setup

Datasets. Since our method mainly focuses on open
surface reconstruction under multi-view supervision, we

perform our experiments on three commonly used
datasets, including Multi-Garment Net dataset (MGN) [4],
Deep Fashion3D dataset (DF3D) [61], and DTU MVS
dataset(DTU) [21]. For DTU MVS dataset, Each scene
contains 49 or 64 images at 1600 × 1200 resolution and
masks are from IDR [58]. And the DF3D and MGN contain
some real-scanned garments with open boundaries, which
are rendered as 200 colored images with 800× 800 resolu-
tion for reconstruction. We respectively sampled 18 and 10
shapes from different categories for the two datasets. For
the detailed camera poses, please refer to the supplemen-
tary document. Furthermore, we also collect some complex
shapes with non-watertight structures2 and rendered them to
evaluate our framework. These shapes contain more intri-
cate structures, which are composed of surfaces with open
boundaries, e.g. plant leaves, and hollow structures (Fig. 1).
Some datasets with diverse shapes (e.g. BMVS, Mixamo,
and some real captured objects) are also tested.

Baselines. We compare NeUDF with several baselines for
multi-view reconstruction task, including COLMAP [43,
44], IDR [58], NeuS [53], NeuralWarp [13], HF-NeuS [54].
COLMAP is a widely used MVS approach, where it re-
constructs the point cloud from multi-vies images and ex-
tracts the explicit open surface by Ball-Pivoting Algorithm
(BPA) [3]. IDR is the state-of-the-art surface rendering
method, which can reconstruct high-quality meshes under
mask supervision for training. NeuS is a pioneering work
on surface reconstruction via SDF-based volume rendering,
which achieves impressive results in surface reconstruc-
tion. The latest works, NeuralWarp, HF-NeuS achieve bet-
ter performance for watertight shapes with improved high-
frequency details or geometry consistency. However, they
fail to model arbitrary surfaces with open boundaries. The
straightforward solution mentioned in Sec. 1, which is a
naive extension of NeuS renderer by adding an absolute op-
eration on predicted SDF values and keeping all other con-
figurations the same for UDF reconstruction, is also evalu-
ated.

Metrics. To measure the accuracy of reconstructed shapes
with regards to the ground truth, we adopt the commonly
used metric – Chamfer Distance [2] (CD) for quantitative
comparisons to state-of-the-art methods. We use a masked
Poisson method for UDF mesh extraction, where we first
sample one million points in the UDF and adopt SPSR [23]
to extract a watertight mesh, and then mask out the spurious
surfaces with non-zero UDF values. We scale all the meshes
of different datasets into a unit sphere for a fair comparison.
For the detailed calculation of the metrics, please refer to
Fan et al. [16].

2https://downloadfree3d.com/, https://archive3d.net/



(a) Input (b) IDR (c) NeuS (d) NeuralWarp (e) HF-NeuS (f) Ours (g) GT

Figure 5. Qualitative comparison with IDR [58], NeuS [53], NeuralWarp [13] and HF-NeuS [54]. The GT of DF3D [61] data is point
cloud (green) and the GT of MGN [5] data is open mesh (yellow). The back faces of the open surfaces are rendered in deep colors. The
baselines are limited by the SDF representation and incorporate erroneous prior of closed surfaces. In contrast, our results can reconstruct
complicated high-fidelity surfaces with open boundaries thanks to the UDF representation.

4.2. Comparisons on Multi-view Reconstruction

To demonstrate our reconstruction ability on diverse
datasets (especially for the open surfaces), we perform
quantitative and qualitative comparison to the SOTA meth-
ods on the above three datasets, including the open sur-
face datasets varying in topology and geometry, as well
as the watertight surface used in previous work. Note
that IDR uses mask supervision for DTU [21], DF3D [61]
and MGN [5] datasets, and ours uses mask supervision for
DTU [21] dataset.

Quantitative Results. We report the average Chamfer
Distance in Tab. 1. The results show that our method out-
performs these baselines on the two open surface datasets
(DF3D [61] and MGN [4]) by a large margin. Our method
is the only one which is able to reconstruct high-fidelity
open surfaces, while the baselines are subject to water-
tight shapes. For the watertight dataset (DTU [21]), our
method is comparable with baselines. We also provide the
evaluation of the naive extension of NeuS renderer. The
naive extension results in a large Chamfer Distance on
open surface samples (naive extension: 9.53 vs ours: 1.49)
due to the noisy surfaces and sometimes fails to converge
(DTU scan65).

Qualitative Results. The quantitative comparisons on the
DF3D and MGN datasets are visualized in Fig. 5. As

Table 1. Quantitative comparison with the baselines on
DF3D [61], MGN [4] and DTU [21] datasets. We split the open
surface dataset (i.e. MGN, DF3D) into some sub-categories. For
each dataset, we mark the evaluated number of scenes in the sub-
categories. In this table, we report the average score of each cat-
egory under the metric – Chamfer Distance (×10−3). From the
results, we can see that our method outperforms the IDR and NeuS
on the two open surface datasets (MGN, DF3D) by a large margin.

DataSet COLMAP IDR NeuS NeuralWarp HF-NeuS Ours

MGN-upper (6) 12.32 19.68 11.65 15.40 9.16 6.78
MGN-pants (4) 30.62 23.70 17.95 22.26 24.02 16.43
DF3D-upper (6) 8.60 14.46 15.29 10.27 23.31 8.72
DF3D-pants (4) 25.91 16.91 16.00 7.99 12.29 5.77
DF3D-dress (8) 9.77 14.27 11.75 7.79 12.03 7.39

DTU (15) 3.75 4.92 4.46 3.78 5.60 4.98

Mean(open surface) 15.35 17.19 13.98 12.05 15.58 8.60

Mean(all) 11.31 12.91 10.80 9.16 12.10 7.34

shown in Fig. 5 (b) (c) (d) (e), the SDF-based methods
(IDR [58], NeuS [53], NeuralWarp [13], HF-NeuS [54])
are subject to watertight shapes, and underperform with sur-
faces with open boundaries. In comparison, NeUDF can re-
construct high-fidelity meshes with open boundaries (such
as the sleeves, collars and waists) without mask as shown in
Fig. 5 (f).

We further conduct comparisons with NeuS [53] on the
Mixamo [33] and BMVS [56] datasets. As shown in Fig-
ure 6 (i.e. mixamo-demon and bmvs-bear), our method is
able to reconstruct geometries with open boundaries, such



(a) Input (b) NeuS (c) Ours

Figure 6. Comparisons with NeuS [53] on BMVS [56] dataset
and Mixamo [33] dataset. Our NeUDF can reconstruct geometries
with open boundaries (e.g. greeting card at the bear hand, clothes
on the human character) while SDF-based method NeuS [53] is
unable to properly represent. Further, our method also maintain
comparable reconstruction quality for watertight parts such as bod-
ies of the bear and the human character.

as the greeting card in the bear’s hand and the single-layer
cloak. It is clear to obverse that NeuS fails to synthesis
the surface with open boundaries. In comparison, our re-
constructed shape geometries are accurate, and the complex
open structures are preserved. More qualitative results are
presented in our supplementary document.

We additionally show some challenging cases with the
complex structure in Fig. 1, such as the hollowed box,
plant leaves, and patch-based fish. From the results on
these objects with complex open boundaries, we see both
detailed geometry and complex open-surface structures
clearly, which validates that NeUDF learns a better UDF
for multi-view reconstruction.

(a) Input (b) NeuS (c) Ours

Figure 7. The evaluation on the captured real scenes. We conduct a
comparison with NeuS on the real scenes. From the results, we can
see that our method is capable of complex surface reconstruction
with open boundaries, while NeuS encourages to merge the book
pages together.

(a) Input (b) w/o ws(t)(c) w/o Nor-
mal Reg

(d) w/o Le (e) Ours

CD ×10−4 1.29 1.95 6.48 0.85

Figure 8. Ablation of different components in our NeUDF. (a) the
input multi-view images; (b) w/o our importance points sampling,
namely adopting color weight function for sampling instead; (c)
w/o normal regularization; (d) w/o Eikonal loss; (e) Ours with full
components. From all the results, it is clearly observed that all
key designs are critical for our high-fidelity complex surface re-
construction.

Captured Real Scenes. We further evaluate our method on
the captured data from real-world objects, including book
pages, fan blades and plant leaves. For each scene, we use
the mobile phone to capture a video surrounding the object
and extract about 200 frames from the video. Then, we use
COLMAP to estimate the camera poses and take the cali-
brated images as input to optimize the network parameters
without mask supervision. Fig. 7 presents the reconstructed
shape of book pages, and more captured real scenes are pre-
sented in our supplementary document. The results show
that NeuS encourages merging the book pages together and
causing unrealistic geometry, while ours achieves accurate
surface reconstruction with open boundaries.

(a) Input (b) 1− e−x (c) 2arctan(x)
π

(d) x/(1 + x)

CD ×10−4 1.10 1.09 1.01

Figure 9. Ablation on different choice of ςr in τr . According to
the given rules (Eqn. 6, Eqn. 7), we have evaluated some similar
function (e.g., 1 − e−x, 2arctan(x)/(π), x/(1 + x)). From the
results, we find the different ςr only affects the speed of converge.
The reconstructed shapes are similar until converge. In the figure,
we present the visual results when ours converges. We can see that
other ablated versions do not converge with several holes.

4.3. Further Discussions and Analysis

We conduct three ablation studies to validate our indi-
vidual designs of our methods. First, evaluating different
choices of ςr in τr shows its effectiveness for UDF learn-
ing. Then, we also validate the necessity of our designed
importance sampling and normal regularization for the ac-
curate open surface reconstruction. All the ablation stud-
ies are conducted on multiple sample objects with diverse
shapes.



(a) Input (b) w/o Normal Reg (c) Ours

Figure 10. Evaluations on two extreme cases for effectiveness of
normal regularization. (b): Without normal regularization, arti-
facts can be observed on the reconstructed skull with high lights
and metal rabbit with dark shadow. (c): Our full method with nor-
mal regularization can produce more visually pleasing results.

The choice of ςr in τr. Although we have given the rules
(Eqn. 6, Eqn. 7) that ςr should satisfy, there is a family
of functions that satisfy the rules. All the functions in the
family are suitable for UDF volume rendering, so we con-
duct validations on several different candidate functions to
check the convergence aptitude of each function for net-
work optimization, i.e., with which function the network
converges to the best results in a given training iterations.
Fig 9 shows the visual results of three candidate functions
(1 − e−x, 2arctan(x)

π and x
1+x ) that follow the rules. After

the given iterations (300k), the network using the function
x

1+x converges to the best result both qualitatively and quan-
titatively, while the other functions are not fully convergent
and cause incomplete surfaces and slightly higher Chamfer-
Distances. Evaluation on diverse shapes also demonstrates
that all the functions work well and the chosen one ( x

1+x )
works the best (ours: 1.11 vs candidates: 1.13/1.18) in our
setting.

Necessity of Importance Points Sampling ws(t) (Eqn. 8).
To demonstrate the necessity of Eqn. 8, we design an ab-
lated version that removes the importance of point sampling
and uses the Eqn. 4 to sample the points for training. Fig. 8
(b) shows that the output surfaces using the same weight for
both rendering and sampling are less smooth and with larger
CD errors as expected. The errors come from the sampling
points distribution is not balanced on both sides of the sur-
face, and the network is not well regularized. Fig. 8 (e)
shows that the network is well regularized with the impor-
tance sampling and produces better results.

Necessity of Normal Regularization. We use the Normal
Regularization (Sec 3.3) to address the unstable gradients at
the zero level set of UDF, and we conduct a validation on
the necessity of the Normal Regularization. As shown in
Fig. 8(c), without the Normal Regularization the result suf-
fers from rough surfaces and large Chamfer distance due
to unstable gradient calculating. Further, the normal regu-

(a) Input (b) Ours (c) GT

Figure 11. Failure Case. The severely occluded parts in this plant
can’t be well reconstructed.

larization benefits the surface reconstruction even with ex-
treme cases, e.g. extremely bright or dark regions. Figure 10
shows two cases in extremely bright and dark light condi-
tions. The visualization results indicate that normal regular-
ization is critical to alleviating the geometric error induced
by the ambiguity of light conditions (e.g. the artifacts on the
DTU-skull and the DTU-metal-rabbit).

5. Discussions & Conclusions
Limitation. While our method can successfully recon-
struct arbitrary surfaces with open boundaries, it still has
several limitations. First, it is difficult to model transpar-
ent surfaces with our formulation. The reconstruction qual-
ity degrades when there are not enough visible information
from input images (e.g. sparse in viewpoints or severely
occluded) and an example of failure cases is given in Fig-
ure 11. There also exist trade-offs between the smoothness
and high-frequency details due to the normal regularization,
since it accumulates the vicinity information to alleviate the
surface normal ambiguity. Further, since we introduce UDF
for better representation ability, we need additional meshing
tools like MeshUDF [19] or SPSR [23] which may intro-
duce more reconstruction errors.

Conclusions. We propose NeUDF, a novel UDF-based
volume rendering approach to achieve high-fidelity multi-
view reconstruction for arbitrary shapes with both open and
closed surfaces from 2D images with or without masks.
NeUDF outperforms the state-of-the-art methods both qual-
itatively and quantitatively, especially on complex surfaces
with open boundaries. Therefore, our NeUDF can play a
crucial role in real-world 3D applications. In future work,
we can extend our formulation for better reconstruction of
transparent surfaces. Enhancing our NeUDF to support
sparse input images is also an interesting future direction.
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Appendices
A. Overview

In the main paper, we introduce a novel UDF-based
volume rendering approach to achieve high-fidelity multi-
view reconstruction for arbitrary shapes with both open and
closed surfaces. This supplemental material consists of de-
tailed proofs, implementation details and additional results
of multi-view reconstruction. All the sections are organized
as follows:

• Section B analyzes the inherent bias in color rendering
of the naive UDF solution based on SDF renderer.

• Section C provides detailed proofs of the unbiased and
occlusion-aware properties of our proposed NeUDF.

• Section D provides implementation details on net-
work architecture (Section D.1), training details (Sec-
tion D.2) and data preparation (Section D.3).

• Section E provides additional qualitative results of
multi-view reconstruction.

B. Bias in Naive UDF solution based on SDF
renderer

In this section we illustrate the bias of color rendering in-
troduced by the naive UDF solution based on SDF renderer,
which directly extends the weight of NeuS to UDF. The bias
causes inherent geometric error like redundant surfaces and
floating noises.

To apply the naive UDF solution based on the SDF ren-
derer of NeuS, we denote the rendered color C(o, v):

C(o, v) =

∫ +∞

0

wn(t)c(p(t), v)dt, (11)

where (o, v) are the origin and view direction of the sample
ray, c(x, v) the color at position x along the view direction
v, and wn(t) the rendering weight of NeuS:

wn(t) = ρs(t)e
−

∫ t
0
ρs(u)du (12)

ρs(t) = max{−
∂(Φs◦Ψ◦p)

∂t (t)

Φs ◦Ψ ◦ p(t)
, 0} (13)

where ρs(t) denotes the opaque density of NeuS, Φs(d) the
Sigmoid function, and Ψ(x) the UDF value at position x.
The learnable parameter s controls the distribution of the
Sigmoid function, which is expected to increase to infinity
during training.

Assume that the ray linearly crosses the open surface in
its local neighbor, e.g., there exists an interval (tl, tr), the
intersection point t∗ ∈ (tl, tr), which satisfies:

Ψ ◦ p(t) = |cos θ| · |t− t∗| ,∀t ∈ (tl, tr), (14)

where θ is the angle between the view direction and the sur-
face normal.

In UDF, the color C(o, v) rendered based on SDF ren-
derer, Equ. 11, consists of inherent bias and inconsistency
of the geometry. Denote the first intersection point t∗0 and its
corresponding interval (tl0, t

r
0), the bias can be formularized

as below:

lim
s→∞

C(o, v) = 0.5c(p(t∗0), v) +
2k − 1

2k+1
cm +

1

2k+1
cn,

(15)
where k is the number of intersection points along the ray,
cm the undesired mixture of colors from invisible surfaces
and cn the colors from floating noise induced by the render-
ing bias. The parameter s decides the weight distribution
of colors along the ray, and is supposed to increase towards
infinity during training.

Note that the weight distribution corresponding to
Equ. 15 satisfies the local maximal constraint discussed in
NeuS, i.e. the weight attains local maxima at each intersec-
tion point (locally unbiased). But the local maximal con-
straint is not sufficient for an unbiased rendering for open
surfaces due to the volume-surface representation discrep-
ancy. The volume rendering relies on the volume-level color
fusion for optimization, while the ground-truth color is ex-
actly the surface color at the intersection point of the sam-
ple ray and the first intersected surface. A self-consistent
rendering procedure should be able to address this volume-
surface discrepancy, i.e. the color fusion range should be
limited as close to the first intersection point as possible
(globally unbiased). Otherwise the network is not able to
converge to a surface representation through volume ren-
dering. Note that the weight of NeuS is globally and locally
unbiased for SDF, but not globally unbiased for UDF, and
this difference comes from the difference of the value do-
mains of SDF and UDF.

To illustrate the detailed causation of cm and cn, we first
prove that:

lim
s→∞

∫ tl0

0

wn(t)dt = 0 (16)

lim
s→∞

∫ tr0

tl0

wn(t)dt = 0.5, (17)

which means that the output color consists of undesired bias
whose weight sums to 0.5, and the bias cannot be corrected
through training. Then we show the detailed distribution of
the bias cm and cn for corroboration.



Proof of Equ. 16. Specifically, to prove Equ. 16, we have:

∫ tl0

0

wn(t)dt

=

∫ tl0

0

ρs(t)e
−

∫ t
0
ρs(u)dudt

=

∫ tl0

0

− ∂

∂t
e−

∫ t
0
ρs(u)udt

=− e−
∫ t
0
ρs(u)du|t

l
0
0

=− e−
∫ tl0
0 ρs(u)du + 1

=− e−
∫ tl0
0 max{

∂(Φs◦Ψ◦p)
∂u

(u)

Φs◦Ψ◦p(u)
,0}du + 1

(18)

It follows that:

∫ tl0

0

wn(t)dt

⩽− e
−

∫ tl0
0

∣∣∣∣∣ ∂(Φs◦Ψ◦p)
∂u

(u)

Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e
−

∫ tl0
0

∣∣∣∣∣
∂Φs◦Ψ◦p(u)

∂Ψ◦p(u)
· ∂Ψ◦p(u)

∂u
Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e
−

∫ tl0
0

∣∣∣∣∣Φ′
s◦Ψ◦p(u)· ∂Ψ◦p(u)

∂u
Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e−
∫ tl0
0

|Φ′
s◦Ψ◦p(u)|·| ∂Ψ◦p(u)

∂u |
|Φs◦Ψ◦p(u)| du + 1

(19)

Denote that:

A = |Φ′
s ◦Ψ ◦ p(u)| (20)

B =

∣∣∣∣∂Ψ ◦ p(u)
∂u

∣∣∣∣ (21)

C = |Φs ◦Ψ ◦ p(u)| (22)

We have:

∫ tl0

0

wn(t)dt = −e−
∫ tl0
0

A·B
C du + 1 (23)

Because t∗0 is the first zero point of Ψ ◦ p(t) and Ψ(x) is
a continuous function, there is:

∃Ψmin > 0, s.t.,Ψ ◦ p(t) > Ψmin,∀t ∈ (0, tl0).

Note that Φs(x) is the Sigmoid function Φs(x) = (1 +

e−s∗x)−1, and ∂Ψ◦p(u)
∂u is the gradient of the UDF along the

ray. We have:

C = |Φs ◦Ψ ◦ p(u)| (24)

= (1 + e−s·Ψ◦p(u))−1 (25)

> (1 + e−s·Ψmin)−1 (26)
> 0.5 (27)

B =

∣∣∣∣∂Ψ ◦ p(u)
∂u

∣∣∣∣ < 1 (28)

and ∀ϵ > 0,∃S = max{1, −4tl0
ln (1−ϵ)·Ψ2

min
}, s.t.,∀s > S,

there is:

A = |Φ′
s ◦Ψ ◦ p(u)|

=
s · e−s·Ψ◦p(t)

(1 + s · e−s·Ψ◦p(t))2

⩽
2

Ψ2 ◦ p(t) · s

⩽
2

Ψ2
min · s

⩽
2

Ψ2
min · −4tl0

ln (1−ϵ)·Ψ2
min

=
−0.5 ln (1− ϵ)

tl0

(29)

It follows that:∫ tl0

0

wn(t)dt = −e−
∫ tl0
0

A·B
C du + 1

< −e−
∫ tl0
0

0.5 ln (1−ϵ)

tl0

·1

0.5 du + 1

= −e
−

∫ tl0
0

ln (1−ϵ)

tl0

du
+ 1

= −e
−tl0·

ln (1−ϵ)

tl0 + 1

= −eln (1−ϵ) + 1

= −(1− ϵ) + 1

= ϵ

(30)

This leads to:

lim
s→∞

∫ tl0

0

wn(t)dt

= lim
s→∞

(−e−
∫ tl0
0

A·B
C du + 1)

=0

(31)

The Equ. 31 means that the weight before the first inter-
section of the ray converges against zero during training, so
the output color composites no color before the first inter-
sected surface. This completes the proof of Equ. 16.



Proof of Equ. 17. Then we give the proof of Equ. 17.
Same as the derivation of Equ. 18, we have:∫ t∗0

tl0

wn(t)dt

=

∫ t∗0

t∗0

ρs(t)e
−

∫ t
0
ρs(u)dudt

=

∫ t∗0

tl
)

− ∂

∂t
e−

∫ t
0
ρs(u)udt

=− e−
∫ t
0
ρs(u)du|t

∗
0

tl0

=− e−
∫ t∗0
0 ρs(u)du + e−

∫ tl0
0 ρs(u)du

=− e
−

∫ tl0
0 ρs(u)du−

∫ t∗0
tl0

ρs(u)du
+ e−

∫ tl0
0 ρs(u)du

=e−
∫ tl0
0 ρs(u)du(−e

−
∫ t∗0
tl0

ρs(u)du
+ 1)

(32)

Note that when t ∈ (tl0, t
∗
0), we have:

∂Ψ ◦ p(t)
∂t

= − |cos θ| . (33)

It follows that:

− e
−

∫ t∗0
tl0

ρs(u)du
+ 1

=− e
−

∫ t∗0
tl0

max{
∂(Φs◦Ψ◦p)

∂u
(u)

Φs◦Ψ◦p(u)
,0}du

+ 1

=− e
−

∫ t∗0
tl0

∣∣∣∣∣ ∂(Φs◦Ψ◦p)
∂u

(u)

Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e
−

∫ t∗0
tl0
| ∂
∂u ln Φs◦Ψ◦p(u)du|

+ 1

=− e
−

∫ t∗0
tl0

− ∂
∂u ln Φs◦Ψ◦p(u)du

+ 1

=− eln Φs◦Ψ◦p(t∗0)−ln Φs◦Ψ◦p(tl0) + 1

=− eln Φs◦Ψ◦p(t∗0)

eln Φs◦Ψ◦p(tl0)
+ 1

=− Φs ◦Ψ ◦ p(t∗0)
Φs ◦Ψ ◦ p(tl0)

+ 1

(34)

Since t∗0 is the intersection point, we have Ψ ◦ p(t∗0) = 0
and Φs ◦Ψ ◦ p(t∗0) = 0.5. It follows that:

− e
−

∫ t∗0
tl0

ρs(u)du
+ 1

=− Φs ◦Ψ ◦ p(t∗0)
Φs ◦Ψ ◦ p(tl0)

+ 1

=− 0.5

Φs ◦Ψ ◦ p(tl0)
+ 1

⩽− 0.5

1
+ 1 = 0.5

(35)

∀ϵ > 0,∃S = − ln 2ϵ
Ψ◦p(tl0)

, s.t.,∀s > S,

− e
−

∫ t∗0
tl0

ρs(u)du
+ 1

=− 0.5

Φs ◦Ψ ◦ p(tl0)
+ 1

=− 0.5

(1 + e−s·Ψ◦p(tl0))−1
+ 1

⩾− 0.5

(1 + e
− − ln 2ϵ

Ψ◦p(tl0)
Ψ◦p(tl0)

)−1

+ 1

=− 0.5

(1 + eln 2ϵ)−1
+ 1

=− 0.5

(1 + 2ϵ)−1
+ 1

=− ϵ+ 0.5

(36)

The Equ. 35 and 36 derive that:

lim
s→∞

(−e
−

∫ t∗0
tl0

ρs(u)du
+ 1) = 0.5 (37)

It has been proved in Equ. 30 that:

lim
s→∞

(−e−
∫ tl0
0 ρ(u)du + 1) = 0, i.e., (38)

lim
s→∞

(e−
∫ tl0
0 ρ(u)du) = 1 (39)

The equations 32, 37 and 39 together derive that:

lim
s→∞

∫ tr0

tl0

wn(t)dt

= lim
s→∞

(e−
∫ tl0
0 ρs(u)du(−e

−
∫ t∗0
tl0

ρs(u)du
+ 1))

=0.5

(40)

The Equ. 40 determines that the rendered color C(o, v)
of NeuS in UDF cannot converge to the ground-truth color
c(p(t∗0), v) as up to half of the weight is not constrained,
which causes the mixed rendering color with undesired bias
and inherent geometric error. This completes the proof of
Equ. 17.

Distribution of Bias. Further, we illustrate the compo-
nents of the bias, e.g., cm and cn, and show the correspond-
ing distribution.

For t ∈ (t∗0, t
∗
1), where t∗0 and t∗1 denotes the first and

second intersection points along the ray p(t). Consider that:

wn(t) = ρs(t)e
−

∫ t
0
ρs(u)du

= ρs(t)e
−

∫ t
t∗0

ρs(u)du · e−
∫ t∗0
0 ρs(u)du

(41)



As is proved, lims→∞ e−
∫ t∗0
0 ρs(u)du = 0.5, there is:

wn(t
∗
1) = 0.5ρs(t)e

−
∫ t∗1
t∗0

ρs(u)du (42)

According to the assumption that ∃(tl1, tr1) ∋ t∗1, the
UDF value Ψ(t) along the ray is linear for t ∈ (tl1, t

r
1). So

similarly we can prove that:

lim
s→∞

∫ t∗1

0

wn(t)dt

=0.5 lim
s→∞

∫ t∗1

0

ρs(t)e
−

∫ t
t∗0

ρs(u)du
dt

=0.25

(43)

Consequently, for any given k > 0, we have:

lim
s→∞

∫ t∗k

0

wn(t)dt =
1

2k+1
(44)

The colors of the k invisible surfaces are mixed to
the output color C(o, v), whose weight sums to 2k−1

2k+1 .
The mixed colors integral cm leads to the undesired bias
2k−1
2k+1 cm, which cannot be corrected during training. The
last weight 1 − 0.5 − 2k−1

2k+1 = 1
2k+1 comes from the dis-

turbance besides the neighborhood of surfaces, and leads
to new redundant surfaces during training. The bias cm and
cn case inherent geometric error like redundant surfaces and
floating noises in invisible space.

C. Proofs of Unbiased and Occlusion-aware
properties of NeUDF

In this subsection we illustrate the capability of NeUDF
for UDF learning from three aspects. First we show that
different from NeuS, NeUDF avoids the cm and cn which
cause the biased rendering color and inherent geometric er-
ror in UDF. Then we give the proofs of the unbiased and
occlusion-aware properties of NeUDF respectively.

C.1. Avoidance of cm and cn in NeUDF.

Before providing the detailed proofs of the unbiased and
occlusion-aware properties of NeUDF, we briefly show that
NeUDF is free from the undesired colors cm and cn by in-
troducing the new rendering weight function:

wr(t) = τr(t)e
−

∫ t
0
τr(u)du, (45)

τr(t) =

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ , (46)

where ςr(d) satisfies that:

ςr(0) = 0, lim
d→∞

= 1, (47)

∀d > 0, ς ′r(d) > 0, ς ′′r (d) < 0. (48)

Similar to the derivation in B, there is:

lim
r→∞

∫ tl0

0

wr(t)dt = 0 (49)

and

lim
r→∞

∫ t∗0

tl0

wn(t)dt

= lim
r→∞

e−
∫ tl0
0 τr(u)du(−e

−
∫ t∗0
tl0

τr(u)du
+ 1)

= lim
r→∞

−e
−

∫ t∗0
tl0

τr(u)du
+ 1

(50)

When t ∈ (tl0, t
r
0), there is:

∂Ψ ◦ p(t)
∂t

= − |cos θ| < 0 (51)

We have:

− e
−

∫ t∗0
tl0

τr(u)du
+ 1

=− e
−

∫ t∗0
tl0

∣∣∣∣ ∂ςr◦Ψ◦p
∂u

(u)

ςr◦Ψ◦p(u)

∣∣∣∣du
+ 1

=− e
−

∫ t∗0
tl0
| ∂
∂u ln ςr◦Ψ◦p(u)|du

+ 1

=− e

∫ t∗0
tl0

∂
∂u ln ςr◦Ψ◦p(u)du

+ 1

=− eln ςr◦Ψ◦p(t∗0)−ln ς◦Ψ◦p(tl) + 1

=− ςr ◦Ψ ◦ p(t∗0)
ς ◦Ψ ◦ p(tl)

+ 1

=− 0 + 1

=1

(52)

So we have:

lim
r→∞

∫ t∗0

tl0

wn(t)dt = 1 (53)

It follows that:

lim
r→∞

C(o, v) = lim
r→∞

∫ t∗0

tl0

wn(t)dt · c(p(t∗0), v)

+ (1− lim
r→∞

∫ t∗0

tl0

wn(t)dt) · cm

=c(p(t∗0), v)

(54)

It indicates that NeUDF avoids the limitation introduced
by the undesired mixture cm (and cn). The detailed proof of
unbiased property of NeUDF is provided in the next section.



C.2. Proof of Unbiased Property in NeUDF.

Intuitively, the rendering weight function should be un-
biased, i.e., more contribution should come from the inter-
section point than its neighbor. In this subsection we prove
that NeUDF is unbiased:

• Given the ray p(t) and the UDF Ψ(x), the weight of
rendering wr(t) in NeUDF attains a locally maximum
value at a intersection point t∗.

Assume that the weight wr(t) is a linear function within
the local neighborhood (tl, tr) of the zero point t∗ ∈
(tl, tr). We consider the intervals (tl, t∗) and (t∗, tr) re-
spectively. For t ∈ (tl, t∗), we have:

wr(t) = τr(t)e
−

∫ t
0
τ(u)du

= τr(t)e
−

∫ tl

0
τ(u)due−

∫ t

tl
τ(u)du

= τr(t)e
−

∫ tl

0
τ(u)due

−
∫ t

tl

∣∣∣∣ ∂ςr◦Ψ◦p
∂u

(u)

ςr◦Ψ◦p(t)

∣∣∣∣du
= τr(t)e

−
∫ tl

0
τ(u)due−

∫ t

tl | ∂
∂u ln ςr◦Ψ◦p(u)|du

= τr(t)e
−

∫ tl

0
τ(u)due−

∫ t

tl
∂
∂u ln ςr◦Ψ◦p(u)du

= τr(t)e
−

∫ tl

0
τ(u)dueln ςr◦Ψ◦p(t)−ln ςr◦Ψ◦p(tl)

= τr(t)e
−

∫ tl

0
τ(u)du e

ln ςr◦Ψ◦p(t)

eln ςr◦Ψ◦p(tl)

= τr(t)e
−

∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂u (u)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ e− ∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=

∣∣∣∂ςr◦Ψ◦p(t)
∂Ψ◦p(t)

∣∣∣ · ∣∣∣∂Ψ◦p(t)
∂t

∣∣∣
|ςr ◦Ψ ◦ p(t)|

e−
∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=
|ς ′r ◦Ψ ◦ p(t)| · |cos θ|

|ςr ◦Ψ ◦ p(t)|
e−

∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=
ς ′r ◦Ψ ◦ p(t) · |cos θ|

ςr ◦Ψ ◦ p(t)
e−

∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=
ς ′r ◦Ψ ◦ p(t) · |cos θ| · e−

∫ tl

0
τr(u)du

ςr ◦Ψ ◦ p(tl)
(55)

For a given parameter r, ςr ◦Ψ◦p(tl), e−
∫ tl

0
τr(u)du and

|cos θ| are all constant. So we have:

wr(t) = A·ς ′r ◦Ψ◦p(t), A =
|cos θ| · e−

∫ tl

0
τr(u)du

ςr ◦Ψ ◦ p(tl)
, (56)

where A is a fixed positive number for any given r.
Note that ς ′r(d) > 0, ς ′′r (d) < 0, it follows that:

wr(t1) > wr(t2),∀t1 > t2, t1, t2 ∈ (tl, t∗). (57)

For t ∈ (t∗, tr), we have:

τr(t) =

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ = ς ′r ◦Ψ ◦ p(t) · |cos θ|
ςr ◦Ψ ◦ p(t)

(58)

∀t1 > t2, t1, t2 ∈ (t∗, tr), there is:

τr(t1) < τr(t2) (59)

e−
∫ t1
0 τr(u)du < e−

∫ t2
0 τr(u)du (60)

It follows that:

wr(t1) < wr(t2),∀t1 > t2, t1, t2 ∈ (tl, t∗). (61)

The Equ. 57 and 61 indicates that the point closer to the
zero point is with higher weight value. Note that the proof
does not require a strict zero point t∗, i.e., the property holds
true when there is a small perturbation ∆ to the zero point
t∗: Ψ ◦ p(t∗) = ∆ > 0.

Empirically, the zero point of the UDF is encoded as a
small positive number, so the weight function wr(t) is con-
tinuous along the ray. Therefore we have:

wr(t
∗) > wr(t),∀t ∈ (tl, tr), t ̸= t∗ (62)

This completes the proof.

C.3. Proof of Occlusion-aware Property in NeUDF.

In this subsection we prove that NeUDF is occlusion-
aware. Intuitively, for two parts of the sample ray with the
same UDF value, we hope that more contribution of the out-
put colors is from the part closer to the camera. That is, the
closer surfaces are more likely to have higher weight.

Specifically, given two surfaces S1 and S2 such that S1
is closer to the camera, for two corresponding points p(t1)
and p(t2) with the same UDF value, we have:∫ t1+δ

t1

wr(t)dd1(t) >

∫ t2+δ

t2

wr(t)dd2(t), (63)

where di(t) denotes the distance between the location p(t)
and the surface Si, and δ denotes the small step length.

τr(t) =

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ = |ς ′r ◦Ψ ◦ p(t)| · |cos θ|
ςr ◦Ψ ◦ p(t)

(64)

For t1 < t2,Ψ(t1) = Ψ(t2), wr(t1), wr(t2) > 0, we
have:

τr(t1)

|cos θ1|
=

|ς ′r ◦Ψ ◦ p(t1)|
ςr ◦Ψ ◦ p(t1)

=
|ς ′r ◦Ψ ◦ p(t2)|
ςr ◦Ψ ◦ p(t2)

=
τr(t2)

|cos θ2|
(65)



e−
∫ t1
0 τr(u)du > e−

∫ t2
0 τr(u)du (66)

There is:

wr(t1)

|cos θ|
=
τr(t1)e

−
∫ t1
0 τr(tu)du

|cos θ|

>
τr(t2)e

−
∫ t2
0 τr(tu)du

|cos θ|
=
wr(t2)

|cos θ|

(67)

It follows that:∫ t1+δ

t1

wr(t)dd1(t) =

∫ t1+δ

t1

wr(t)

|cos θ|
dt (68)

∫ t2+δ

t2

wr(t)dd2(t) =

∫ t2+δ

t2

wr(t)

|cos θ|
dt (69)

∫ t1+δ

t1

wr(t)dd1(t) >

∫ t2+δ

t2

wr(t)dd2(t), (70)

where di(t) denotes the distance between the location p(ti)
and the surface Si.

The Equ. 70 indicates that the cumulative weight near
the the first intersected surface are higher that the second
one. This means that more concentration are on the former
surface. Note that no prior assumption of the existence of
other intersected surfaces is required, i.e., the property of
occlusion-aware holds true for more than two surface in-
tersections along the ray. This completes the proof of the
occlusion-aware property.

D. Implementation Details
D.1. Network Architecture

Similar to IDR [53] and NeuS [53], we use two MLP net-
works to respectively encode the UDF and the color. The
input of the UDF network is the spatial location p(t) and
the output is the corresponding UDF value along with a
256-dimensional feature vector. The UDF network Ψ(x)
consists of 8 hidden layers with hidden size of 256, and the
activation function is chosen as the Softplus with β = 100
for all hidden layers and the output layer. A skip connection
is also used to connect the input with the output of the fourth
layer. The inputs of the color network are the spatial loca-
tion p(t), the view direction v, the gradient n of the UDF
network at the spatial location p(t) and the corresponding
feature vector derived by the UDF network. The color net-
work c(x, v) consists of 4 hidden layers with hidden size of
256. Normal regularization is applied before the gradient n
of the UDF network is used as the input of the color net-
work. Same positional encoding and weight normalization
are adopted as in Neus.

D.2. Training Details

Discretization. We adopt the α-compositing to discretize
the weight function, which divides the sample ray into bins
by sampling n points p(ti) = o+ ti|i = 1, ..., n, ti < ti+1

and accumulate colors within each bin according to the
weight integral:

αi = 1− e−
∫ ti+1
ti

τr(t)dt

=
|ςr ◦Ψ ◦ p(ti)− ςr ◦Ψ ◦ p(ti+1)|

ςr ◦Ψ ◦ p(ti)
.

(71)

We slightly modify Equ. 71 by:

αi =
ςmax
i − ςmin

i

ςmax
i

, (72)

where ςmax
i and ςmin

i is the maximum and minimum of the
set {ςr ◦Ψ ◦ p(ti), ςr ◦Ψ ◦ p(ti+1)}.

Up Sampling. We first formally sample 64 points per ray,
and then hierarchically conduct importance sampling on top
of the sampling weight ws(t) for another 64 points:

ws(t) = τs(t)e
−

∫ t
0
τs(u)du, τs(t) = ζs ◦Ψ ◦ p(t) (73)

And ζs(·) satisfies the rules: ζs(d) > 0 and ζ ′s(d) <
0,∀d > 0. Intuitively, the τs(t) derived by the monoton-
ically decreasing function is a view-invariant sampling den-
sity, and the density has positive correlation with the UDF
value. To derive the sampling weight ws(t), the classical
volume rendering scheme is applied.

The weight of the ith sample point ws(ti) is slightly
modified by:

w′
s(ti) = max{ws(ti+k), k = −1, 0, 1} (74)

And then the weight w′
s(t) is normalized so that the integral

equals to one:

w′′
s (t) =

w′
s(t)∑n−1

i=0 w
′
s(ti)

(75)

For each iteration we hierarchically conduct the impor-
tance sampling for two times, and each time 32 points are
sampled. The total number of sampling points are 128. If no
masks are provided, 32 points are randomly sampled in ad-
dition outside the unit sphere per ray to represent the outside
scene. The outside scene is represented with NeRF++ [60],
as used in NeuS [53].



Platform. The network is trained with ADAM optimizer,
and the learning rate warms up to 2 × 10−4 in the first 5k
iterations, and decreases to 1 ∗ 10−5 by the end of training.
For each iteration, 512 random rays are sampled from 8 in-
put camera poses randomly selected. We train each model
for 400k iterations in total for 9 hours for the setting of with
mask, and 11 hours for the setting of without mask on a
single Nvidia 3090 GPU.

D.3. Data Preparation

Figure 12. Poses of the camera. The camera poses are represented
as the yellow pyramid, and the object to reconstruct is represented
in purple.

Rendered Data. To generate the customized data, we use
the pyrender package to render images from the ground-
truth objects. We rendered 200 views at 800 × 800 pixels
for each textured mesh or colored point cloud. Fig 12 visu-
alizes the camera poses. Corresponding masks with black
background are provided optionally. Only the rendered im-
ages and the masks are used as inputs of the network.

Captured Data. We additionally captured several real-
world objects using the mobile phone. The captured images
are extracted from the captured videos around the object.
For the book object we captured 200 images at the reso-
lution of 1920 × 1440. For the fan object we captured 59
images at the resolution of 3456×4608. For the plant object
we captured 200 images at the resolution of 720×1280. All
the camera poses are estimated by COLMAP [43,44] and no
masks are provided.

E. Additional Results
We visualize more reconstruction results of NeUDF on

DF3D [61], MGN [4], DTU [21], BMVS [56] datasets
and real-captured data. Fig. 13 shows the comparison
with NeuS on the DF3D dataset without mask supervision.
Fig. 14 shows the comparison with NeuS on the DF3D
dataset with mask supervision. Fig. 15 shows the compari-
son with NeuS on the MGN dataset without mask supervi-
sion. Fig. 16 shows the comparison with NeuS on the MGN
dataset with mask supervision. Fig. 17 shows the compari-
son with NeuS on the DTU and BMVS datasets with mask
supervision. Fig. 18 shows the additional results of the real-
captured scenes with open surfaces.
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Figure 13. Additional results on the DF3D [61] dataset without mask supervision.
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Figure 14. Additional results on the DF3D [61] dataset with mask supervision.
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Figure 15. Additional results on the MGN [4] dataset without mask supervision.
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Figure 16. Additional results on the MGN [4] dataset with mask supervision.
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Figure 17. Additional results on the DTU [21] dataset (the first three scenes) and BMVS [56] dataset (the last one scene) with mask
supervision.
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Figure 18. Additional results of the real-captured data without mask supervision.


