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Figure 1. Speech-to-motion translation example. Given a speech signal as input, our approach generates realistic, coherent, and diverse
holistic body motions; that is, the body motion together with facial expressions and hand gestures. From top to bottom: the input audio, the
corresponding transcript, video frames, and the generated motions. Note that the audio is the only input to our approach, while the transcript
and video frames are just shown for reference.

Abstract

This work addresses the problem of generating 3D holistic
body motions from human speech. Given a speech record-
ing, we synthesize sequences of 3D body poses, hand ges-
tures, and facial expressions that are realistic and diverse.
To achieve this, we first build a high-quality dataset of 3D
holistic body meshes with synchronous speech. We then
define a novel speech-to-motion generation framework in
which the face, body, and hands are modeled separately.
The separated modeling stems from the fact that face artic-
ulation strongly correlates with human speech, while body
poses and hand gestures are less correlated. Specifically,
we employ an autoencoder for face motions, and a composi-
tional vector-quantized variational autoencoder (VQ-VAE)
for the body and hand motions. The compositional VQ-
VAE is key to generating diverse results. Additionally, we
propose a cross-conditional autoregressive model that gener-
ates body poses and hand gestures, leading to coherent and

*Equal Contribution.
†Joint Corresponding Authors.

realistic motions. Extensive experiments and user studies
demonstrate that our proposed approach achieves state-of-
the-art performance both qualitatively and quantitatively.
Our dataset and code are released for research purposes at
https://talkshow.is.tue.mpg.de/.

1. Introduction

From linguistics and psychology we know that humans
use body language to convey emotion and use gestures in
communication [25, 32]. Motion cues such as facial expres-
sion, body posture and hand movement all play a role. For
instance, people may change their gestures when shifting
to a new topic [59], or wave their hands when greeting an
audience. Recent methods have shown rapid progress on
modeling the translation from human speech to body mo-
tion, and can be roughly divided into rule-based [43] and
learning-based [23, 24, 26, 36, 37, 62] methods. Typically,
the body motion in these methods is represented as the mo-
tion of a 3D mesh of the face/upper-body [5, 18, 30, 50, 51],
or 2D/3D landmarks of the face with 2D/3D joints of the
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hands and body [24, 26, 62]. However, this is not sufficient
to understand human behavior. Humans communicate with
their bodies, hands and facial expressions together. Captur-
ing such coordinated activities as well as the full 3D surface
in tune with speech is critical for virtual agents to behave
realistically and interact with listeners meaningfully.

In this work, we focus on generating the expressive 3D
motion of person, including their body, hand gestures, and
facial expressions, from speech alone; see Fig. 1. To do
this, we must learn a cross-modal mapping between audio
and 3D holistic body motion, which is very challenging in
practice for several reasons. First, datasets of 3D holistic
body meshes and synchronous speech recordings are scarce.
Acquiring them in the lab is expensive and doing so in the
wild has not been possible. Second, real humans often vary
in shape, and their faces and hands are highly deformable. It
is not trivial to generate both realistic and stable results of
3D holistic body meshes efficiently. Lastly, as different body
parts correlate differently with speech signals, it is difficult
to model the cross-modal mapping and generate realistic and
diverse holistic body motions.

We address the above challenges and learn to model the
conversational dynamics in a data-driven way. Firstly, to
overcome the issue of data scarcity, we present a new set of
3D holistic body mesh annotations with synchronous audio
from in-the-wild videos. This dataset was previously used
for learning 2D/3D gesture modeling with 2D body key-
point annotations [24] and 3D keypoint annotations of the
holistic body [26] by applying existing models separately.
Apart from facilitating speech and motion modeling, our
dataset can also support broad research topics like realistic
digital human rendering. Then, to support our data-driven
approach to modeling speech-to-motion translation, an ac-
curate holistic body mesh is needed. Existing methods have
focused on capturing either the body shape and pose isolated
from the hands and face [9, 20, 29, 38, 54, 64, 65, 68], or
the different parts together, which often produces unreal-
istic or unstable results, especially when applied to video
sequences [21, 46, 69]. To solve this, we present SHOW,
which stands for “Synchronous Holistic Optimization in the
Wild”. Specifically, SHOW adapts SMPLify-X [46] to the
videos of talking persons, and further improves it in terms
of stability, accuracy, and efficiency through careful design
choices. Figure 9 shows example reconstruction results.

Lastly, we investigate the translation from audio to 3D
holistic body motion represented as a 3D mesh (Fig. 1). We
propose TalkSHOW, the first approach to autoregressively
synthesize realistic and diverse 3D body motions, hand ges-
tures and facial expression of a talking person from speech.
Motivated by the fact that the face (i.e. mouth region) is
strongly correlated with the audio signal, while the body and
hands are less correlated, or even uncorrelated, TalkSHOW
designs separate motion generators for different parts and

gives each part full play. For the face part, to model the
highly correlated nature of phoneme-to-lip motion, we de-
sign a simple encoder-decoder based face generator that
encodes rich phoneme information by incorporating the pre-
trained wav2vec 2.0 [7]. On the other hand, to predict the
non-deterministic body and hand motions, we devise a novel
VQ-VAE [57] based framework to learn a compositional
quantized space of motion, which efficiently captures a di-
verse range of motions. With the learned discrete represen-
tation, we further propose a novel autoregressive model to
predict a multinomial distribution of future motion, cross-
conditioned between existing motions. From this, a wide
range of motion modes representing coherent poses can be
sampled, leading to realistic looking motion generation.

We quantitatively evaluate the realism and diversity of our
synthesized motion compared to ground truth and baseline
methods and ablations. To further corroborate our qualitative
results, we evaluate our approach through an extensive user
study. Both quantitative and qualitative studies demonstrate
the state-of-the-art quality of our speech-synthesized full
expressive 3D character animations.

2. Related work
2.1. Holistic Body Reconstruction

Recent work addresses the problem of 3D holistic body
mesh recovery [14, 28, 46, 61, 69]. SMPLify-X [46] fits
the parametric and expressive SMPL-X model [46] to 2D
keypoints obtained by off-the-shelf detectors (e.g. OpenPose
[10]). PIXIE [21] directly regresses SMPL-X parameters
using moderators that estimate the confidence of part-specific
features. These features are fused and fed to independent
regressors. PyMAF-X [69] improves the body and hand
estimation with spatial alignment attention. In this work,
we adapt the optimization-based SMPLify-X to videos of
talking persons, and improve the stability and accuracy with
several good engineering practices in terms of initialization,
data term design, and regularization.

2.2. Speech-to-Motion Datasets

The existing speech-to-motion datasets can be roughly
categorized as in-house and in-the-wild. The annotations of
in-house datasets [15, 19, 23, 55, 60] are accurate but are
limited in scale since the multi-camera systems used for data
capture are expensive and labor intensive. Moreover, these
datasets only provide annotations of the head [15, 19, 60]
or body [23, 55], and thus do not support whole-body gen-
eration. To learn richer and more diverse speaking styles
and emotions, [66, 67] propose to use in-the-wild videos.
The annotations are pseudo ground truth (p-GT) given by ad-
vanced reconstruction approaches, e.g. [10]. However, these
released datasets use either 2D keypoints or 3D keypoints
with 3D head mesh to represent the body. This disconnected
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Dataset Head Hand Body Holistic Body
Connection In-the-wild Length Annotations

Multiface [60] 3D mesh ✘ ✘ ✘ ✘ - multi-camera
BIWI [19] 3D mesh ✘ ✘ ✘ ✘ - 3D-scanner
VOCASET [15] 3D mesh ✘ ✘ ✘ ✘ - 4D-scan
Takeuchi et.al [55] ✘ ✘ 3D keypoint ✘ ✘ 5h MoCap
Trinity [23] ✘ ✘ 3D keypoint ✘ ✘ 4h MoCap
Yoon et.al [66, 67] ✘ ✘ 3D keypoint ✘ ✔ 52h p-GT
Speech2Gesture [24] ✘ 2D keypoint 2D keypoint ✘ ✔ 144h p-GT
Habibie et.al [26] 3D mesh 3D keypoint 3D keypoint ✘ ✔ 33h p-GT
Ours 3D mesh 3D mesh 3D mesh ✔ ✔ 27h p-GT

Table 1. Comparison of different speech-to-motion datasets.

representation limits the possible applications of the gen-
erated talking motions. In contrast to the aforementioned
work, our dataset, reconstructed by SHOW, consists of holis-
tic body meshes and synchronized speech, covering a wide
range of body poses, hand gestures, and facial expressions.
More details can be found in Table 1.

2.3. Holistic Body Motion Generation from Speech

Holistic body motion generation from speech consists
of three body parts motion generation, i.e., faces, hands,
and bodies. Existing 3D talking face generation meth-
ods [15, 18, 50, 70] rely heavily on 4D face scan datasets
for training [15, 19, 50]. There are many attempts to
perform body motion generation, and these can be di-
vided into rule-based and learning-based methods. Rule-
based methods [11, 33, 37, 47] map the input speech
to pre-collected body motion “units” with manually de-
signed rules. They are explainable and controllable but
it is expensive to create complex, realistic, motion pat-
terns. Learning-based body motion generation approaches
[1, 8, 24, 34, 35, 40, 66] have advanced significantly in part
due to publicly released synchronous speech and body mo-
tion datasets [24, 26, 39, 55, 66, 67]. However, they only
consider parts of the human body rather than the holistic
body. Most related to our work, Habibie et al. [26] pro-
pose to generate 3D facial meshes and 3D keypoints of the
body and hands from speech, but the generated faces, bodies
and hands are disjoint. Also, these methods are determinis-
tic, can not generate diverse motions when given the same
speech recording. There are a few attempts to incorporate
the diversity into motion generation using GANs [2, 41, 67],
VAEs [39, 49, 62], VQ-VAEs [5, 63], or normalising-flows
[3]. Nevertheless, the diversity of motions produced by these
methods is inadequate.

In contrast, TalkSHOW generates holistic body motions
and models different body parts separately according to their
natures: the face part is more correlated to the speech signal
than body parts. TalkSHOW develops a simple determinis-
tic encoder-decoder structure for mapping acoustic signals
to facial expressions. TalkSHOW adopts two VQ-VAEs to
generate more diverse body and hand motions. This novel de-

sign allows the learned quantized space to be compositional
and more expressive for conversational gestures. Compared
with previous VQ-VAE-based methods [53, 63], we design a
cross-conditional autoregressive model to generate different
body-part motions, which are more fluid and natural.

3. Dataset
In this section, we introduce a high-quality audiovisual

dataset, which consists of expressive 3D body meshes at
30fps, and their synchronized audio at a 22K sample rate.
The 3D body meshes are reconstructed from in-the-wild
monocular videos and are used as our pseudo ground truth
(p-GT) in speech-to-motion generation. We provide detailed
descriptions of this dataset in Sec. 3.1 and highlight sev-
eral good practices for obtaining more accurate p-GT from
videos in Sec. 3.2. Our experiments show that this dataset is
effective for training speech-to-motion models.

3.1. Dataset Description

The dataset is built from the in-the-wild talking videos
of different people with various speaking styles. We use the
same video sources from [24] for straightforward compar-
isons with the previous work. To facilitate the subsequent
3D body reconstruction, we manually filter out videos if they
are in any following cases: (i) low resolution (<720p), (ii)
occluded hand(s), or (iii) invalid download link. The filtering
leads to a high-quality dataset of 26.9 hours from 4 speakers.
For the mini-batch processing, the raw videos are cropped
into short clips (<10 seconds). Direct comparisons to the
existing datasets can be found in Table 1.

Expressive 3D whole-body meshes are reconstructed
from these videos and used as the p-GT. Specifically, the
3D holistic body meshes consist of face, hands, and bod-
ies in a connected way, which is achieved by adopting a
well-designed 3D topology from SMPL-X [46]. As a re-
sult, we represent the p-GT of the dataset as SMPL-X pa-
rameters. Given a video clip of T frames, the p-GT com-
prises parameters of a shared body shape β ∈ R300, poses{
θt|θt ∈ R156

}T

t=1
, a shared camera pose θc ∈ R3 and trans-

lation ϵ ∈ R3, and facial expressions
{
ψt|ψt ∈ R100

}T

t=1
.
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Figure 2. The 3D holistic body reconstruction results from
SMPLify-X, PIXIE, PyMAF-X, and ours. Compared to other meth-
ods, ours produces more accurate and stable results with details.

Here the pose θt includes the jaw pose θjawt ∈ R3, the body
pose θbt ∈ R63, and the hand pose θht ∈ R90.

We note that this dataset can not only be used in speech
and motion modeling, but also supports broad research topics
like realistic digital human rendering and learning-based
holistic body recovery from videos, etc.

3.2. Good Practices for Improving p-GT

In this section, we present SHOW, which adapts
SMPLify-X [46] to the videos of talking persons with several
good practices, to improve the stability, accuracy, and effi-
ciency in 3D whole-body reconstruction. In the following,
we briefly summarize our efforts for improving the p-GT.
See more details in the supplemental material.
Initialization. A good initialization can significantly accel-
erate and stabilize the SMPLify-X optimization. We apply
several advanced regression-based approaches to the videos,
and use the resulting predictions as the initial parameters of
SMPLify-X. Specifically, PIXIE [21], PyMAF-X [69], and
DECA [22] are used to initialize θb, θh, and θf , respectively.
The camera is assumed to be static, and its parameters θc

and ϵ are estimated by PIXIE [21] as well.
Data Term. The joint re-projection loss is the most impor-
tant data objective function in SMPLify-X, as it optimizes
the difference between joints extracted from the SMPL-X
model, projected into the image, with joints predicted with
OpenPose [10]. Here we extend the data term by incorpo-
rating body silhouettes from DeepLab V3, facial landmarks
from MediaPipe [31], and facial shapes from MICA [72].
Further, we use a photometric loss between the rendered
faces and the input image to better capture facial details.

Regularization. Different regularization terms in SMPLify-
X prevent the reconstruction of unrealistic bodies. To derive
more reasonable regularizations, we explicitly take informa-
tion about the video into account and make the following
assumptions. First, the speaker in each video clip remains the
same. This is further verified by a face recognition pipeline
using the ArcFace model [16]. So we can use consistent
shape parameters β to represent the holistic body shape.
Second, the holistic body pose, facial expression, and envi-
ronmental lighting in video clips change smoothly over time.
This temporal smoothness assumption has proven useful in
many previous approaches [65, 72], and we observe similar
improvements in our experiments. Third, the person’s sur-
face does self-penetrate, which should be self-evident in the
real world.

Overall, as shown in Figure 9, the p-GT can be signifi-
cantly improved by incorporating the aforementioned prac-
tices. See more results in the supplemental video.

4. Method
Given a speech recording, our goal is to generate conversa-

tional body poses, hand gestures as well as facial expressions
that match the speech in a plausible way. Motivated by the
fact that the face motion is highly correlated to the speech
signal, while the body and hand parts are less correlated,
we propose TalkSHOW, a novel framework that can model
speech and different human parts separately. In the follow-
ing, we present an encoder-decoder based face generator in
Sec. 4.2, and a body and hand generator in Sec. 4.3.

4.1. Preliminary

Let M1:T = {mt}Tt=1 be a p-GT holistic motion (i.e., a
temporal sequence of the holistic body posesmt = {θt, ψt})
provided in Sec. 3. We denote the motion of the face, body
and hands as Mf

1:T , M b
1:T and Mh

1:T respectively. In particu-
lar, a facial motion Mf

1:T is represented as a sequence of jaw
poses and facial expression parameters {θjawt , ψt}Tt=1. And
the body motion M b

1:T and the hands motion Mh
1:T are de-

noted as a sequence of body poses {θbt}Tt=1 and hand poses
{θht }Tt=1, respectively.

4.2. Face Generator

Given a raw audio signal A1:T and speaker identity I ,
our face generator GF aims to generate an expressive facial
motion M̂f

1:T = (m̂f
1 , . . . , m̂

f
T ) ∈ R103×T close to Mf

1:T ∈
R103×T .

Figure 3 (A) illustrates our idea. In order to produce
synchronized mouth motions [18], we leverage a pretrained
speech model, wav2vec 2.0 [7]. Specifically, the encoder
consists of an audio feature extractor and a transformer en-
coder [58], leading to a 768-dimensional speech representa-
tion. A linear projection layer is added on top of the encoder
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Figure 3. Overview of the proposed TalkSHOW. We employ a simple encoder-decoder model for face motions, and a novel framework for
body and hand motions. Specifically, this framework first learns VQ-VAEs on each piece separately to obtain a compositional quantized
space. Then, we autoregressively predict the code indices of the body or hand motion following the red arrows orders. Our predictor is
designed to be cross-conditioned between the body and hand motions to keep the synchronization of the holistic body. Lastly, we look up
codes in the codebook according to indices and decode them to obtain the body and hand motion. Colors are utilized to differentiate codes
within the same codebook, while various shades of these colors are used to separate body and hand codes. Best viewed in color.

to reduce the feature dimension to 256. We then concatenate
the audio feature with the speaker identity and feed them to
the decoder. The speaker identity is represented as a one-hot
vector I ∈ {0, 1}NI , where NI is the number of speakers.
Our decoder comprises six layers of temporal convolutional
networks (TCNs) followed by a fully-connected layer. We
train the encoder and decoder with an Mean Square Error
(MSE) loss.

4.3. Body and Hand Generator

Given an audio input, we aim to generate a realistic
and diverse motion for the body and hands, i.e. M̂ b

1:T =

(m̂b
1, . . . , m̂

b
T ) ∈ R63×T and M̂h

1:T = (m̂h
1 , . . . , m̂

h
T ) ∈

R90×T , respectively. Figure 3 (B) illustrates our idea. In-
stead of learning a direct mapping from audio to motion,
we leverage the recent advances of VQ-VAE [57] to learn
a multi-mode distribution space for the body and hand mo-
tions. Specifically, we first encode and quantize the body
and hand motions into two finite codebooks, from which
we can sample a wide range of plausible body and hand
combinations. Then, we introduce a novel cross-conditional
autoregressive model over the learned codebooks, which
allows us to predict diverse body and hand motions. Our
predictor is designed to be cross-conditioned between the
body and hands to keep the synchronization of the holistic

body. Lastly, we obtain the future body/hand motion by
decoding codebook indices sampled from the distribution.

Representation. We use 64-dimensional MFCC features
[52] as the audio representation for body and hand motion
generation, i.e., A1:T = (a1, . . . , aT ) ∈ R64×T . Since body
and hand gestures are more correlated to the rhythm and
beat instead of phonemes, low-dimensional MFCC features
are sufficient to produce plausible gestures from audio. Be-
sides, considering that speakers often present different mo-
tion styles, we also leverage the modality of speaker identity
I to differentiate those styles.

Compositional Quantized Motion Codebooks. The vanilla
VQ-VAE learns a discrete codebook Z = {zi}|Z|

i=1 consist-
ing of multiple vectors zi ∈ Rdz to quantize the latent
space of the input. To further expand the range that the
learned codebook can represent, we divide the body and
hand motion into compositional pieces, i.e., body and hands,
and learn VQ-VAEs on each piece separately. By doing
this, the body and hand motions are encoded and quan-
tized into two separate finite codebooks Zb = {zbi }

|Zb|
i=1

and Zh = {zhj }
|Zh|
j=1 , where zbi , z

h
i ∈ Rdz with lengths

|Zb| and |Zh| respectively. This approach enables us to
obtain |Zb| × |Zh| different body-hand pose code pairs
(zbi , z

h
j ) and expand the range of motion diversity. In this
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scheme, given the body and hand motions M b
1:T ∈ R63×T

and Mh
1:T ∈ R90×T as input, we first encode them into

the feature sequence Eb
1:τ = (eb1, . . . , e

b
τ ) ∈ R64×τ and

Eh
1:τ = (eh1 , . . . , e

h
τ ) ∈ R64×τ . Here, τ = T

w , where w is
the temporal window size, and w consecutive poses corre-
spond to one feature embedding. In this paper, we set w = 4
to achieve a balance between inference speed and quality.
Then, we quantize the embedding by mapping it into the
nearest code in the corresponding codebook:

zbt = arg min
zb
k
∈Zb

∥ebt − zbk∥ ∈ R64,

zht = arg min
zh
k
∈Zh

∥eht − zhk∥ ∈ R64.
(1)

Finally, the quantized features Zb
1:τ = (zb1, . . . , z

b
τ ) ∈

R64×τ and Zh
1:τ = (zh1 , . . . , z

h
τ ) ∈ R64×τ are fed into the

decoder for the synthesis.
We train the encoder, decoder, and codebook simultane-

ously with the following loss function:

LV Q = Lrec(M1:T , M̂1:T ) + ∥sg[E1:T ]− Z1:T ∥
+ β ∥E1:T − sg [Z1:T ]∥ ,

(2)

where Lrec is an MSE reconstruction loss, sg is a stop gradi-
ent operation [13] that is used to calculate codebooks loss,
and the third part is a “commitment” loss with a trade-off β.

Cross-Conditional Autoregressive Modeling. After we
learn the compositional quantized codebooks, any body and
hand motions can be represented as a sequence of codebook
vectors via the encoder and quantization, which is denoted as
Cb

1:τ = (cb1, . . . , c
b
τ ) ∈ R|Zb|×τ and Ch

1:τ = (ch1 , . . . , c
h
τ ) ∈

R|Zh|×τ .
Now, with the quantized motion representation, we de-

sign a temporal autoregressive model over it to predict the
distribution of the possible next code, given the input audio
embedding A and existing motions. Besides, we enable the
modality input of identity I to distinguish different gesture
styles. Because we model the body and hands independently,
to keep the consistency of the holistic body and thus predict
realistic gestures, we exploit the mutual information and
design our model to be cross-conditioned between the body
and hand motions. Specifically, following Bayes’ Rule, we
model the joint probability of Cb

1:τ and Ch
1:τ as follows:

p(Cb
1:τ , C

h
1:τ | A1:τ , I) =

τ∏
t=1

p
(
cbt | cb<t, c

h
<t, a≤t, I

)
p
(
cht | cb≤t, c

h
<t, a≤t, I

)
.

(3)

Note that our cross-condition modeling between the body
and hand motions makes the most of mutual information
in two ways: (1) the current body/hand motion (i.e. cbt /c

h
t )

depend on past body/hand motion information (i.e. cb<t/c
h
<t);

(2) we argue that the current body motion cbt is also respon-
sible for predicting the distribution of current hand motion.

Method
Face

L2 ↓ LVD ↓
Habibie et al. [26] 0.139 0.257
TalkSHOW (Ours) 0.130 0.248

Method
Body&Hands

RS ↑ Variation ↑
Habibie et al. [26] 0.146 0
Audio Encoder-Decoder 0.214 0
Audio VAE 0.182 0.044
Audio+Motion VAE 0.240 0.176
TalkSHOW (Ours) 0.414 0.821

Table 2. Comparison to Habibie et al. [26] and several baselines. ↑
indicates higher is better and ↓ indicates lower is better.

Such modeling guarantees the coherence of the body and
hand motions as a whole and thus achieves realistic gestures.
Gated PixelCNN [56] is adopted to model these quantities,
in which the convolutional kernel is masked to make sure
the model cannot read future information. During the train-
ing phase, the quantized body/hand motion representation
concatenated with the audio and identity features is used for
training. A teacher-forcing scheme and cross-entropy loss
are adopted for the optimization. At inference, the model
predicts multinomial distributions of the future body and
hand motions, from which we can sample to acquire code-
book indices for each motion. A codebook lookup is then
conducted to retrieve the corresponding quantized element
of motion, which we feed into the decoder for the final syn-
thesis. Figure 3 (B) illustrates the pipeline. More training
details are given in the supplemental material.

5. Experiments
We evaluate the ability of our method in generating body

motions (i.e. a sequence of poses) from the speech on the
created dataset both quantitatively and qualitatively. Specif-
ically, we choose video sequences longer than 3s and split
them into 80%/10%/10% for the train/val/test set. Several
metrics are used to measure the realism and diversity of the
generated motions including facial expression and poses.
Furthermore, we conduct perceptual studies to assess the
performance of our method.

5.1. Experimental Setup

Evaluation Metrics. Because we model face motion as
a deterministic task and the body and hand motions as a
non-deterministic task, we assess the generated motion in
terms of the realism and the synchronization of face motion,
and the realism and the diversity of body and hand motions.
Specifically, the following metrics are adopted:

• L2: L2 distance between p-GT and generated facial
landmarks, including jaw joints and lip shape [44, 71].
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• LVD: Landmark Velocity Difference calculates the ve-
locity difference between p-GT and generated facial
landmarks, which measures the synchronization be-
tween the input speech and the facial expression [71].

• RS: Score on the realism of the generated body and
hand motions. Following [4, 62], we trained a binary
classifier to discriminate real samples from fake ones
and the prediction represents the realistic score.

• Variation: As used in [44], diversity is measured by the
variance across 16 samples of body and hand motions.

Compared Methods. We compare TalkSHOW to Habibie
et al. [26], a SOTA speech-to-motion method. Also, we com-
pare several baselines for modeling body and hand motions
when using the same face generator as ours:

• Audio Encoder-Decoder. It encodes input audio and
outputs motions; this is used by [24, 26].

• Audio VAE. Given the input audio, the VAE-like struc-
ture encodes audio into a Gaussian distribution, and
then the sampled audio is fed into the decoder, which
transforms the sample into motions.

• Audio+Motion VAE. Given the input motion and audio,
it adopts a VAE-like structure with two encoders to
encode motion and audio into Gaussian distributions,
respectively, and then the sampled motion and audio are
concatenated and fed into the decoder for the synthesis.

5.2. Quantitative Analysis

Table 2 shows the comparison results. We see that our
method outperforms Habibie et al. [26] across all metrics.
Particularly, our method surpasses it in terms of L2 and
LVD, which demonstrates the effectiveness of our face gen-
erator for generating realistic facial expressions. Also, our
method significantly outperforms it in terms of variation,
which demonstrates the powerful capacity to generate di-
verse body and hand motions resulting from our proposed
compositional quantized motion representation. Moreover,
regarding the realism (RS) for body and hand motions, we
surpass Habibie et al. [26] considerably, which confirms the
effectiveness of our cross-conditioned autoregressive model
in generating realistic motion.

On the other hand, compared to VAE-based models, our
method achieves large gains in both realism and diversity. In
particular, we obtain much higher diversity. This indicates
the advantage of the learned compositional quantized motion
codebooks, which effectively memorize multiple motion
modes of the body and hands and thus boost the diversity of
the generated body and hand gestures.

... I'm not anti vaccine. But, and it's what comes ... 
hands up hands down

/t//b/ /Λ//æ/

Sa
m

pl
e 

1
Sa

m
pl

e 
2

Sa
m

pl
e 

3

Figure 4. Our method generates diverse motions consistent with the
rhythm of the input audio. For instance, we can generate different
movements of hands corresponding to the strengthening tone of
“But” in the speech, e.g. using left hand only (top), right hand only
(middle), or both hands (bottom).

... do you need to do? Shift back, forge reactions  ...

/f/ /t/ /b/ /æ/

Figure 5. Given speech audio as input, our method generates facial
expressions with accurate lip shapes.

5.3. Qualitative Analysis

Figure 4 shows examples of our generated 3D holistic
body motion from speech. We see that given the word “But”
from the speech which represents a strengthening tone of
voice, our method generates plausible holistic body motions
with hands up before saying “But” and hands down after
saying “But”. Notably, the generated motions are diverse in
many aspects, e.g. the range of motion and which hands to
use, as shown in three different generated samples.

Figure 5 illustrates the qualitative performance of our
face generator. Our approach generates realistic face mo-
tions including consistent lip motions with the correspond-
ing phonemes such as /f/, /t/, /b/, and /æ/. Furthermore,
our method exhibits a robust generalization ability to un-
seen languages and various audio types, e.g. French and
songs. Additional interesting examples can be found in our
supplemental video.
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Figure 6. The comparison of VQ-VAE and VQ-VAEs with compo-
sitional codebooks.

5.4. Model Ablation

Effect of Wav2vec Feature in Face Generation. We evalu-
ate the effect of the wav2vec feature used in face generation
compared to the MFCC feature. We add an extra encoder
to increase the dimension of the MFCC feature from 64
to 256 for a fair comparison. The wav2vec-based model
outperforms the MFCC-based model in both metrics (0.130
vs. 0.165 in L2 and 0.251 vs. 0.277 in LVD) due to its
larger capacity for modeling the relationship between audio
and phonemes. Moreover, we experimentally find that the
wav2vec-based model can generalize well to unseen identi-
ties; see supplementary for more details.

Effect of Compositional Quantized Motion Codebooks.
We analyze the capability of capturing the diverse motion
modes represented in motion data by our proposed compo-
sitional quantized motion codebooks of VQ-VAEs. To this
end, we compare VQ-VAE with a single codebook. Recon-
struction ErrorRE is adopted as the metric, in which a lower
reconstruction loss indicates a higher capacity. Figure 6 il-
lustrates the results. We see that compared to VQ-VAE with
a single codebook, VQ-VAEs with compositional codebooks
yield consistently lower RE across different codebook sizes.
This demonstrates the effectiveness of the proposed compo-
sitional codebooks in modeling the diverse motion modes.

Effect of Cross-Conditional Modeling. In contrast to cross-
conditional modeling (w/ c-c), the model without cross con-
dition (w/o c-c) generates body and hand motions indepen-
dently. Our method w/ c-c yields a higher realistic score than
that w/o c-c (0.414 vs. 0.409), benefiting from the cross-
conditional modeling between the body and hand motions
which leads to generating more coherent and realistic mo-
tions. Our method w/ c-c attains a slight reduction in diver-
sity (0.821 vs. 0.922 in variance), however the method w/o
c-c leads to implausible body and hands combination.

5.5. Perceptual Study

We conduct perceptual studies with Google Forms to eval-
uate our reconstruction and generation results, respectively.
We randomly sample 40 videos in total with 10 videos from
each speaker. Ten participants took part in the study.

Method face body hands holistic body
PyMAF-X [69] 0.323 0.500 0.438 0.193
SHOW (ours) 0.898 0.738 0.800 0.768

Table 3. Perceptual study results on reconstruction. For each
method, we report the average percentage of answers that the re-
constructed results match the input video.

Method face body and hands holistic body
[26] vs. p-GT 0.153 0.141 0.169
TalkSHOW (Ours) vs. p-GT 0.478 0.464 0.458
TalkSHOW (Ours) vs. [26] 0.888 0.910 0.913

Table 4. Perceptual study of motion generation. We use A/B testing
and report the percentage of answers where A is preferred over B.

Reconstruction. We assess the quality of our holistic body
reconstruct results against PyMAF-X [69], compared with
the ground truth. Participants are asked to answer the fol-
lowing questions with Yes or No: Does the reconstructed
face/hands/body/full-body match the input video? Table 3
reports the average percentage of answers that the recon-
structed results match the input video. We see that our
method outperforms PyMAF-X by a large margin.

Holistic Body Motion Generation. We use A/B testing
to evaluate our generation results, compared to the p-GT
and Habibie et al. [26]. Specifically, participants are asked
to answer the following questions with A or B: For the
face/body&hands/overall region, which one is a better match
with the given speech? Table 4 reports the average preference
percentage of answers. We see that participants favor our
method over Habibie et al. in terms of all the regions. Not
surprisingly, participants perceive the p-GT better over both
methods, with our method preferred by many more users.

6. Conclusion
In this work, we propose TalkSHOW, the first approach

to generate 3D holistic body meshes from speech. We de-
vise a simple and effective encoder-decoder for realistic face
generation with accurate lip shape. For body and hands,
we enable diverse generation and coherent prediction with
compositional VQ-VAE and cross-conditional modeling, re-
spectively. Moreover, we contribute a new set of accurate 3D
holistic body meshes with synchronous audios from in-the-
wild videos. The annotations are obtained by an empirical
approach designed for videos. Experimental results demon-
strate that our proposed approach achieves state-of-the-art
performance both qualitatively and quantitatively.
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othy Bickmore. Beat: the behavior expression anima-
tion toolkit. In Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques,
pages 477–486, 2001. 3

[12] Liang-Chieh Chen, George Papandreou, Florian
Schroff, and Hartwig Adam. Rethinking atrous convo-
lution for semantic image segmentation. arXiv, 2017.
13, 14

[13] Xinlei Chen and Kaiming He. Exploring simple
siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15750–15758, 2021. 6

[14] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart,
Dimitrios Tzionas, and Michael J. Black. Monocu-
lar expressive body regression through body-driven
attention. In European Conference on Computer Vi-
sion (ECCV), pages 20–40, 2020. URL https:
//expose.is.tue.mpg.de. 2

[15] Daniel Cudeiro, Timo Bolkart, Cassidy Laidlaw,
Anurag Ranjan, and Michael Black. Capture, learning,
and synthesis of 3D speaking styles. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 10101–10111, 2019. 2, 3

[16] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In Computer Vision and Pattern
Recognition (CVPR), pages 4690–4699, 2019. 4

[17] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen,
Yunde Jia, and Xin Tong. Accurate 3d face reconstruc-
tion with weakly-supervised learning: From single im-
age to image set. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 0–0, 2019. 14

[18] Yingruo Fan, Zhaojiang Lin, Jun Saito, Wenping Wang,
and Taku Komura. Faceformer: Speech-driven 3d fa-
cial animation with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18770–18780, 2022. 1, 3, 4

[19] Gabriele Fanelli, Juergen Gall, Harald Romsdorfer,
Thibaut Weise, and Luc Van Gool. A 3-D Audio-Visual

9

https://expose.is.tue.mpg.de
https://expose.is.tue.mpg.de


Corpus of Affective Communication. IEEE Transac-
tions on Multimedia, 12(6), October 2010. ISSN 1941-
0077. doi: 10.1109/TMM.2010.2052239. 2, 3

[20] Qi Fang, Kang Chen, Yinghui Fan, Qing Shuai, Jiefeng
Li, and Weidong Zhang. Learning analytical posterior
probability for human mesh recovery. In Computer
Vision and Pattern Recognition (CVPR), June 2023. 2

[21] Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios
Tzionas, and Michael J Black. Collaborative regres-
sion of expressive bodies using moderation. In 2021
International Conference on 3D Vision (3DV), pages
792–804. IEEE, 2021. 2, 4, 13, 14

[22] Yao Feng, Haiwen Feng, Michael J Black, and Timo
Bolkart. Learning an animatable detailed 3d face model
from in-the-wild images. ACM Transactions on Graph-
ics (TOG), 40(4):1–13, 2021. 4, 13, 14

[23] Ylva Ferstl and Rachel McDonnell. Investigating the
use of recurrent motion modelling for speech gesture
generation. In Proceedings of the 18th International
Conference on Intelligent Virtual Agents, pages 93–98,
2018. 1, 2, 3

[24] S. Ginosar, A. Bar, G. Kohavi, C. Chan, A. Owens, and
J. Malik. Learning individual styles of conversational
gesture. In Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2019. 1, 2, 3, 7

[25] Susan Goldin-Meadow. The role of gesture in commu-
nication and thinking. Trends in cognitive sciences, 3
(11):419–429, 1999. 1

[26] Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta,
Lingjie Liu, Hans-Peter Seidel, Gerard Pons-Moll, Mo-
hamed Elgharib, and Christian Theobalt. Learning
speech-driven 3d conversational gestures from video.
In Proceedings of the 21st ACM International Con-
ference on Intelligent Virtual Agents, pages 101–108,
2021. 1, 2, 3, 6, 7, 8, 15

[27] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In International Conference on
Machine Learning (ICML), pages 448–456, 2015. 15

[28] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total
capture: A 3d deformation model for tracking faces,
hands, and bodies. In Computer Vision and Pattern
Recognition (CVPR), pages 8320–8329, 2018. 2

[29] Angjoo Kanazawa, Michael J Black, David W Jacobs,
and Jitendra Malik. End-to-end recovery of human
shape and pose. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
7122–7131, 2018. 2

[30] Tero Karras, Timo Aila, Samuli Laine, Antti Herva,
and Jaakko Lehtinen. Audio-driven facial animation by
joint end-to-end learning of pose and emotion. Trans-
actions on Graphics (TOG), 36(4):1–12, 2017. 1

[31] Yury Kartynnik, Artsiom Ablavatski, Ivan Gr-
ishchenko, and Matthias Grundmann. Real-time fa-
cial surface geometry from monocular video on mobile
gpus. arXiv, 2019. 4, 13, 14

[32] Adam Kendon. Gesture: Visible action as utterance.
Cambridge University Press, 2004. 1

[33] Stefan Kopp and Ipke Wachsmuth. Synthesizing multi-
modal utterances for conversational agents. Computer
animation and virtual worlds, 15(1):39–52, 2004. 3

[34] Taras Kucherenko, Dai Hasegawa, Gustav Eje Henter,
Naoshi Kaneko, and Hedvig Kjellström. Analyzing
input and output representations for speech-driven ges-
ture generation. In Proceedings of the 19th ACM In-
ternational Conference on Intelligent Virtual Agents,
pages 97–104, 2019. 3

[35] Taras Kucherenko, Patrik Jonell, Sanne Van Waveren,
Gustav Eje Henter, Simon Alexandersson, Iolanda
Leite, and Hedvig Kjellström. Gesticulator: A frame-
work for semantically-aware speech-driven gesture gen-
eration. In Proceedings of the 2020 International Con-
ference on Multimodal Interaction, pages 242–250,
2020. 3

[36] Sergey Levine, Christian Theobalt, and Vladlen Koltun.
Real-time prosody-driven synthesis of body language.
pages 1–10. 2009. 1

[37] Sergey Levine, Philipp Krähenbühl, Sebastian Thrun,
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Appendices
A. Dataset

A.1. Dataset Description

Our dataset is built from the in-the-wild talking videos
of four persons with various poses. The dataset contains
high-quality 3D holistic body mesh annotations that are re-
constructed from video clips of 26.9 hours in total. Each clip
is less than 10 seconds. Fig. 7 illustrates the distributions of
video durations from different characters.

Figure 7. The distribution of the number of short clips for each
character (0-10 seconds) of different speakers.

A.2. Good Practices for Improving p-GT

Preliminary. The 3D holistic body meshes consist of face,
hands, and body, which is achieved by adopting SMPL-X
[46]. It uses standard vertex-based linear blend skinning
with learned corrective blend shapes and has N = 10475
vertices and K = 67 joints. Let W be the linear blend skin-
ning function, the predicted mesh vertices can be represented
as v = W (θ, ψ, β) ∈ RN×3. Let V = {vt|vt ∈ RN×3}Tt=1

and J = {jt|jt ∈ R67}Tt=1 be the temporal sequence of
mesh vertices and its 3D joint locations regressed from a
linear regressor. We also denote P b = {pbt |pbt ∈ R32}Tt=1

and Ph = {pht |pht ∈ R24}Tt=1 as the temporal sequence of
the coefficients of the latent space of VPoser and low dimen-
sional pose space after principal component analysis (PCA)
for the body and hands respectively. For time interval [1 : t],
V1:t = (v1, ..., vt), J1:t = (j1, ..., jt), P b

1:t = (pb1, ..., p
b
t)

and Ph
1:t = (ph1 , ..., p

h
t ) represent segments of mesh vertices,

3D joints, body pose, and hand pose, respectively. Note that
we use a fixed pose (sitting or standing) for the invisible
lower body. And in a temporal sequence of the p-GT holistic
motions mi, at each time step t, the facial representation
mf

t = [θft , ψt] ∈ R103 is a concatenation of jaw orienta-
tion and expression, and the body and hand motions are
respectively represented by their poses mb

t = θbt ∈ R63 and
mh

t = θht ∈ R90.

Initialization. Since optimization-based methods are of-
ten slow and sensitive to the initialization. In contrast,
regression-based methods tend to give a reasonable, but
not well pixel-aligned results. Therefore, we use the results
from PIXIE [21] and PyMAF-X [68] to initialize the pa-
rameters of body and hand pose, respectively. Results from
DECA [22] are used to initialize the parameters of jaw pose
and facial expression.

Data terms. We extend the data term by incorporating
body silhouettes, facial landmarks, facial shapes, and facial
details.

Firstly, to deal with the imperfect 2D landmarks by Open-
pose [10], we introduce the silhouette constraint to encour-
age the rendered SMPL-X body to be inside the human body
mask. Ground-truth person segmentations are expensive to
obtain for in-the-wild datasets. Hence, we employ an off-
the-shelf segmentation model, Deeplab V3 [12] to generate
p-GT person semantics maskMsil ∈ RT×h×w, where H and
W are the height and width of the input image. Pytorch3D is
used as the differential renderer to process the rendered pix-
els of all mesh triangles, leading to the predicted semantics
mask M̂sil ∈ RT×h×w. The silhouette loss term is given by:

Lsil =
∑

||d(M̂sil)⊙ dedt(g(Msil))||2, (4)

where g(x) =MaxPool(x)− x is a function for detecting
the edge of the binary mask. dedt is a distance function to cal-
culate the smallest Euclidean distance from the background
point to the silhouette boundary.

Secondly, to get a better facial geometry in SMPL-X, we
minimize the difference between the facial shape in SMPL-
X and the reconstructed facial shape from MICA [72]. We
term this as a facial shape objective LFS given by:

LFS = ||Mg1(VSMPL−X)−Mg2(VMICA + tFS)||2, (5)

where VSMPL−X ∈ RN×3 is the SMPL-X vertices at neu-
tral pose (i.e. θ = 0, ψ = 0). VMICA ∈ R5023×3 is the
MICA shape, and tFS ∈ R3 is the offset of VMICA from
VSMPL−X . Mg1 and Mg2 are functions that maps the orig-
inal mesh vertices of VSMPL−X and VMICA to the corre-
sponding 1787 vertices of frontal face part, respectively.

Thirdly, to get better facial expression, we use Medi-
aPipe [31] to extract 105 of 468 dense 2D facial landmarks
for each image. The loss term LFE is calculated as:

LFE =
∑
t

||U1:t − Û1:t||2, (6)

where U1:t and Ûi are temporal segments of landmarks from
MediaPipe [31] and the 2D projection of the corresponding
3D joints J1:t, respectively.

Lastly, to obtain high-frequency resolution facial details,
we employ face expression tracking to monocular RGB
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Figure 8. The architecture of SHOW. It consists of initialization and optimization modules. Specifically, given an input the image sequence,
firstly, PIXIE [21], DECA [17] and PyMAF-X [68] are used to initialize the parameters of SMPL-X. Secondly, the optimization routine
incorporates body silhouettes from DeepLab V3 [12], facial landmarks from MediaPipe [31], and facial shapes from MICA [72]. Then, it
uses a photometric loss between the rendered faces and the input image to better capture facial details. Lastly, SHOW outputs the final
results.

images in a self-supervised fashion. Specially, we follow
[22, 72] to reconstruct the face jointly with an illumination
model based on spherical harmonics and a Lambertian mate-
rial assumption:

LFR =
∑
t

||Ir(MS2F (V1:t))− Ihead1:t ||2, (7)

where MS2F is a function that selects the head part of V1:t.
Ir is the forward pass of differential rendering. Ihead1:t is the
cropped head image from input image. Note that we choose
different scales (e.g. 256, 512, 1024) for different stages in
the optimization procedure.

Regularization. Different regularization terms in SMPLify-
X prevent the reconstruction of unrealistic bodies. To derive
more reasonable regularization terms, we explicitly take the
video prior into account.

To reduce the jittery results caused by the noisy 2D de-
tected keypoints, we introduce a smooth term for body and
motion poses (P b and Ph). They are defined as:

Mb =
∑
t

||P b
2:t − P b

1:t−1||2, (8)

Mh =
∑
t

||Ph
2:t − Ph

1:t−1||2. (9)

We also add constant-velocity smooth term Mj on J :

Mj =
∑
t

||J3:t + J1:t−3 − 2× J2:t−2||2, (10)

Furthermore, to prevent the inter-penetration of two
hands, we use Collision Penalizer [46] and denote this loss
term as Lpen.

Training Losses. The final objective function is given by:

E(β, {θ}Tt=1, {ψ}Tt=1, ψlight, ψlbs, tFS) =

T∑
t=1

(ESMPLify−X(t))+λFELFE+λFSLFS+λFRLFR+

λmbMb + λmhMh + λmjMj + λsilLsil + λpenLpen,
(11)

where ψlight ∈ R3 is the spherical harmonic coefficients
representing the environmental illumination. ψlbs ∈ R128

is the linear blend skinning parameters of albedo model.
ESMPLify−X(t) is the basic prior on single image as de-
scribe in [46]. Weights λ steer the influence of each term.

Optimization. Following [46], we adopt the Limited-
memory BFGS [45] with strong wolfe line search for opti-
mization. An iterative fitting routine is used for better fitting.
With proper initialization, we minimize the objective func-
tion using a five-stage fitting procedure to avoid the local
minima trap and reduce the optimization time. The learning
rate is set to 1. As the required GPU memory increases
dramatically with the image batch size for neural rendering,
we use a mini-batch of 50 on NVIDIA Tesla V100.

B. Network Architecture Details
B.1. Face Generator

The raw audio input is normalized to zero mean and unit
variance, and then is fed to encoder, which consists of an
audio feature extractor, a transformer encoder, and a full-
connected layer. The audio feature extractor is followed
by an interpolation operation, in which the audio feature is
re-sampled into target frames. For the decoder, it comprises
six temporal convolution layers (with a kernel size, stride
and padding of 3, 1 and 1 respectively) and a full-connected
layer. Each temporal convolution layer is followed by layer
normalization [6] and a Leaky RELU activation function
[42]. We adopt SGD with momentum and a learning rate of
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Figure 9. The 3D holistic body reconstructions of four subjects from SMPLify-X, PIXIE, PyMAF-X, and ours. Compared to other methods,
ours produces more accurate and stable results with details.

0.001 as the optimizer. The face generator is trained with
batchsize of 1 for 100 epochs, in which each batch contains
a full-length audio and corresponding facial motions.

B.2. Body and Hand Generator

VQ-VAEs Details. The VQ-VAE takes body or hand mo-
tions as input. The encoder of each VQ-VAE is composed
of three residual layers, which includes three temporal con-
volution layers (with a kernel size, stride and padding of
3, 1 and 1 respectively) followed by batch normalization
[27] and a Leaky RELU activation function [42]. The en-
coder is interleaved with a temporal convolution layer with
a kernel size, stride and padding of 4, 2 and 1 respectively
after every residual layer except the last so that the temporal
window size w is equal to 4. On the top of the encoder, a
full-connected layer is added to reduce the dimension before
quantization. The decoder is symmetric with the encoder.
We adopt Adam with β1 = 0.9, β2 = 0.999 and a learning
rate of 0.0001 as the optimizer. The commitment loss weight
β is set to 0.25. The VQ-VAEs are trained with a batchsize
of 128 and a sequence length of 88 frames for 100 epochs.

Autoregressive Model Details. The autoregressive model
consists of an audio encoder and a Gated PixelCNN [56].
The audio encoder, which has the same structure as the
VQ-VAE encoder, takes MFCC feature as input. Then we
concatenate the output of the audio encoder and VQ-VAEs
encoders and feed it to the Gated PixelCNN. The Gated
PixelCNN has 15 gated convolution layers conditioned on
identity, in which the convolution kernel is masked to make

Input Two Near Images SHOW Habibie et al. IK Meshes from Habibie et al.

Figure 10. Holistic body reconstruction compared to Habibie et al.

sure the model cannot read future information. We adopt
Adam with β1 = 0.9, β2 = 0.999 and a learning rate of
0.0001 as the optimizer. The autoregressive model is trained
with a batchsize of 128 and a sequence length of 88 frames
for 100 epochs.

C. More Comparison

Habibie el al. [26] v.s. SHOW. Habibie et al. [26] represent
body, hands, and face separately. The lack of connection
between body and face/hands results in unnatural poses of
the face/hands w.r.t. the body. Fig. 10 a) shows that the hand
and head poses of the body mesh, reconstructed from their
estimated 3D skeleton, are less accurate than ours. Generated
video results are further jittery. In contrast, SHOW generates
more stable and accurate holistic body meshes.

Experimental Results. We compare our method with more
other approaches and more metrics in Tab. 5. Specifically,
We add Frechet Gesture Distance (FGD) [67] to measure the
motion realism and beat consistency (BC) [41] to measure
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Method Habibie Audio VAE Audio+Motion VAE Audio2Gesture[39] Ours w/o c-c Ours w/ c-c
FGD ↓ 239.32 121.01 166.65 203.99 147.81 74.88
Variance ↑ 0 0.044 0.176 0.240 0.922 0.821
BC (GT 0.868) 0.948 0.746 0.822 0.943 0.851 0.872

Table 5. More experimental results.

Figure 11. The application with SMPLpix to create photo-realistic
neural avatars. Top row (input): the mesh vertices provided by
TalkSHOW and their colors projected onto the image plane, bottom
row: rendered output.

the alignment between the generated body motion and input
audio, and compare with another audio-to-body motion base-
line [39]. Our method outperforms the baselines in all these
metrics and generates more diverse body motions, which are
better aligned with the input audio.

D. Application
One application of our speech-to-motion generation is

to create the photo-realistic neural avatars through neural
renderers such as SMPLpix [48]. Given the mesh vertices
provided by TalkSHOW and their colors, we first project
them onto the image plane. Then, with the projected mesh
vertices, SMPLpix allows us to efficiently synthesise photo-
realistic images of humans. As TalkSHOW can produce
continuous yet diverse motions, integrating SMPLpix with
our motion generation framework enables us generate human
avatars under different poses (see Fig. 11), leading to end-to-
end photo-realistic video generation.

E. Discussions

Reconstruction. SHOW is based on SMPLify-X whose su-
pervision signal is obtained from 2D keypoint reprojection.
Thus, it is sensitive to severe hand shape deformation and
heavy occlusion. A future direction would be to leverage ad-
vanced hand model with rich shape and pose space. Besides,

SHOW can only handle static camera cases currently. In the
future, we plan to extend it to moving cameras.

Audio2motion. While we have demonstrated that Talk-
SHOW can generate realistic, coherent, and diverse holistic
body motion with facial expression, body, and hand motions,
it is subject to a limitation that can be addressed in the future.
For the face generator, we mainly focus on facial motion (e.g.
lip motion) and might not handle the very complex facial
movements caused by emotions. In the future, we plan to
extend to model this sort of part.

F. Risks and Potential Misuse
This work is intended for studying the translation from

human speech to holistic body motion, helping building vir-
tual agents to behave realistically and interact with listeners
meaningfully. Since our techniques can generate a realistic
and diverse 3D talking humans from audio, there is a risk
that such technique could be potentially misused for fake
video generation. For instance, a fake speech could be used
to construct highly realistic 3D holistic body motion while
it never happened. Thus, we should use such technology
responsibly and carefully. We hope to raise the public’s
awareness about a safe use of such technology.
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