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Abstract

Creating animatable avatars from static scans re-
quires the modeling of clothing deformations in different
poses. Existing learning-based methods typically add pose-
dependent deformations upon a minimally-clothed mesh
template or a learned implicit template, which have limita-
tions in capturing details or hinder end-to-end learning. In
this paper, we revisit point-based solutions and propose to
decompose explicit garment-related templates and then add
pose-dependent wrinkles to them. In this way, the clothing
deformations are disentangled such that the pose-dependent
wrinkles can be better learned and applied to unseen poses.
Additionally, to tackle the seam artifact issues in recent
state-of-the-art point-based methods, we propose to learn
point features on a body surface, which establishes a contin-
uous and compact feature space to capture the fine-grained
and pose-dependent clothing geometry. To facilitate the re-
search in this field, we also introduce a high-quality scan
dataset of humans in real-world clothing. Our approach is
validated on two existing datasets and our newly introduced
dataset, showing better clothing deformation results in un-
seen poses. The project page with code and dataset can be
found at https://www.liuyebin.com/closet.

1. Introduction

Animating 3D clothed humans requires the modeling of
pose-dependent deformations in various poses. The diver-
sity of clothing styles and body poses makes this task ex-
tremely challenging. Traditional methods are based on ei-
ther simple rigging and skinning [4,20,34] or physics-based
simulation [14, 23, 24, 50], which heavily rely on artist ef-
forts or computational resources. Recent learning-based
methods [10, 37, 40, 61] resort to modeling the clothing de-
formation directly from raw scans of clothed humans. De-
spite the promising progress, this task is still far from be-
ing solved due to the challenges in clothing representations,
generalization to unseen poses, and data acquisition, etc.

Figure 1. Our method learns to decompose garment templates (top
row) and add pose-dependent wrinkles upon them (bottom row).

For the modeling of pose-dependent garment geome-
try, the representation of clothing plays a vital role in a
learning-based scheme. As the relationship between body
poses and clothing deformations is complex, an effec-
tive representation is desirable for neural networks to cap-
ture pose-dependent deformations. In the research of this
line, meshes [2, 12, 39], implicit fields [10, 61], and point
clouds [37, 40] have been adopted to represent clothing. In
accordance with the chosen representation, the clothing de-
formation and geometry features are learned on top of a
fixed-resolution template mesh [8, 39], a 3D implicit sam-
pling space [10,61], or an unfolded UV plane [2,12,37,40].
Among these representations, the mesh is the most efficient
one but is limited to a fixed topology due to its discretization
scheme. The implicit fields naturally enable continuous fea-
ture learning in a resolution-free manner but are too flexible
to satisfy the body structure prior, leading to geometry arti-
facts in unseen poses. The point clouds enjoy the compact
nature and topology flexibility and have shown promising
results in the recent state-of-the-art solutions [37,40] to rep-
resent clothing, but the feature learning on UV planes still
leads to discontinuity artifacts between body parts.
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To model the pose-dependent deformation of clothing,
body templates such as SMPL [35] are typically leveraged
to account for articulated motions. However, a body tem-
plate alone is not ideal, since the body template only models
the minimally-clothed humans and may hinder the learning
of actual pose-dependent deformations, especially in cases
of loose clothing. To overcome this issue, recent implicit
approaches [61] make attempts to learn skinning weights in
the 3D space to complement the imperfect body templates.
However, their pose-dependent deformations are typically
coarse due to the difficulty in learning implicit fields. For
explicit solutions, the recent approach [33] suggests learn-
ing coarse templates implicitly at first and then the pose-
dependent deformations explicitly. Despite its effective-
ness, such a workaround requires a two-step modeling pro-
cedure and hinders end-to-end learning.

In this work, we propose CloSET, an end-to-end method
to tackle the above issues by modeling Clothed humans on a
continuous Surface with Explicit Template decomposition.
We follow the spirit of recent state-of-the-art point-based
approaches [33, 37, 40] as they show the efficiency and po-
tential in modeling real-world garments. We take steps for-
ward in the following aspects for better point-based model-
ing of clothed humans. First, we propose to decompose the
clothing deformations into explicit garment templates and
pose-dependent wrinkles. Specifically, our method learns a
garment-related template and adds the pose-dependent dis-
placement upon them, as shown in Fig. 1. Such a garment-
related template preserves a shared topology for various
poses and enables better learning of pose-dependent wrin-
kles. Different from the recent solution [33] that needs
two-step procedures, our method can decompose the ex-
plicit templates in an end-to-end manner with more gar-
ment details. Second, we tackle the seam artifact issues
that occurred in recent point-based methods [37, 40]. In-
stead of using unfolded UV planes, we propose to learn
point features on a body surface, which supports a continu-
ous and compact feature space. We achieve this by learn-
ing hierarchical point-based features on top of the body
surface and then using barycentric interpolation to sample
features continuously. Compared to feature learning in the
UV space [40], on template meshes [8, 39], or in the 3D
implicit space [59, 61], our body surface enables the net-
work to capture not only fine-grained details but also long-
range part correlations for pose-dependent geometry mod-
eling. Third, we introduce a new scan dataset of humans in
real-world clothing, which contains more than 2,000 high-
quality scans of humans in diverse outfits, hoping to facili-
tate the research in this field. The main contributions of this
work are summarized below:

• We propose a point-based clothed human modeling
method by decomposing clothing deformations into
explicit garment templates and pose-dependent wrin-

kles in an end-to-end manner. These learnable tem-
plates provide a garment-aware canonical space so that
pose-dependent deformations can be better learned and
applied to unseen poses.

• We propose to learn point-based clothing features on
a continuous body surface, which allows a continu-
ous feature space for fine-grained detail modeling and
helps to capture long-range part correlations for pose-
dependent geometry modeling.

• We introduce a new high-quality scan dataset of
clothed humans in real-world clothing to facilitate the
research of clothed human modeling and animation
from real-world scans.

2. Related Work
Representations for Modeling Clothed Humans. A key
component in modeling clothed humans is the choice of rep-
resentation, which mainly falls into two categories: implicit
and explicit representations.

Implicit Modeling. Implicit methods [3, 10–12, 15, 21,
30, 42, 43, 49, 61, 69, 72, 79] represent surfaces as the level
set of an implicit neural scalar field. Recent state-of-the-art
methods typically learn the clothing deformation field with
a canonical space decomposition [9, 31, 46, 61, 67] or part-
based modeling strategies [16, 25, 47, 56, 77]. Compared to
mesh templates, implicit surfaces are not topologically con-
strained to specific templates [59, 60], and can model vari-
ous clothes with complex topology. However, the learning
space of an implicit surface is the whole 3D volume, which
makes training and interpolation difficult, especially when
the numbers of scan data are limited.

Explicit Modeling. Mesh surfaces, the classic explicit
representation, currently dominate the field of 3D model-
ing [6–8,13,23,24,26,27,29,39,44,50,62,64,66,68,71,74]
with their compactness and high efficiency in downstream
tasks such as rendering, but they are mostly limited to a
fixed topology and/or require scan data registered to a tem-
plate. Thus, mesh-based representations forbid the learn-
ing of a universal model for topologically varying cloth-
ing types. Though some approaches have been proposed
to allow varying mesh topology [45,48,65,70,81], they are
still limited in their expressiveness. Point clouds enjoy both
compactness and topological flexibility. Previous work gen-
erates sparse point clouds for 3D representation [1, 19, 32,
76]. However, the points need to be densely sampled over
the surface to model surface geometry accurately. Due to
the difficulty of generating a large point set, recent meth-
ods group points into patches [5, 17, 18, 22]. Each patch
maps the 2D UV space to the 3D space, allowing arbitrar-
ily dense sampling within this patch. SCALE [37] success-
fully applies this idea to modeling clothed humans, but pro-
duces notable discontinuity artifacts near patch boundaries.
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POP [40] further utilizes a single fine-grained UV map for
the whole body surface, leading to a more topologically
flexible representation. However, the discontinuity of the
UV map may lead to seam artifacts in POP. Very recently,
FITE [33] suggests learning implicit coarse templates [78]
at first and then explicit fine details. Despite the efficacy,
it requires a two-step modeling procedure. Concurrently,
SkiRT [38] proposes to improve the body template by learn-
ing the blend skinning weights with several data terms. In
contrast, our method applies regularization to achieve tem-
plate decomposition in an end-to-end manner and learns the
point-based pose-dependent displacement more effectively.

Pose-dependent Deformations for Animation. In the
field of character animation, traditional methods utilize rig-
ging and skinning techniques to repose characters [4, 20,
34, 35, 51]. but they fail to model realistic pose-dependent
clothing deformations such as wrinkles and sliding motions
between clothes and body. We conclude two key ingredients
in modeling pose-dependent clothing: (i) pose-dependent
feature learning; (ii) datasets with realistic clothing.

Pose-dependent Feature Learning. Some traditional
methods directly incorporate the entire pose parameters into
the model [29, 39, 50, 73]. Such methods easily overfit on
pose parameters and introduce spurious correlations, caus-
ing bad generalization to unseen poses. Recent work ex-
plores poses conditioning with local features, either with
point clouds [37,40] or implicit surfaces [61,69], and shows
superiority in improving geometry quality and in eliminat-
ing spurious correlations. Among them, the most relevant to
ours is POP [40], which extracts local pose features by uti-
lizing convolution on a UV position map. Despite its com-
pelling performance, POP suffers from artifacts inherent to
its UV-based representation, hence the convolution on the
UV map produces discontinuity near UV islands’ bound-
aries [40]. We address this issue by discarding the UV-based
scheme and returning to the actual 3D body surface. We at-
tach the features to a uniform set of points on a T-posed
body template, and process them via a PointNet++ [54]
structure for pose-dependent modeling. As validated by
our experiments, our pose embedding method leads to both
qualitative and quantitative improvements.

Clothed Human Datasets. Another challenging issue
for training an animatable avatar is the need for datasets
of clothed humans in diverse poses. There are consid-
erable efforts seeking to synthesize clothed datasets with
physics-based simulation [14,23,24,40,50]. Although they
are diverse in poses, there remains an observable domain
gap between synthetic clothes and real data. Acquiring
clothed scans with realistic details of clothing deforma-
tions [39, 52, 57, 75, 80] is crucial for the development of
learning-based methods in this field.

3. Method
As illustrated in Fig. 2, the proposed method CloSET

learns garment-related and pose-dependent features on
body surfaces (see Sec. 3.1), which can be sampled in a
continuous manner and fed into two decoders for the gen-
eration of explicit garment templates and pose-dependent
wrinkles (see Sec. 3.2).

3.1. Continuous Surface Features

As most parts of the clothing are deformed smoothly in
different poses, a continuous feature space is desirable to
model the garment details and pose-dependent garment ge-
ometry. To this end, our approach first learns features on
top of a body template surface, i.e., a SMPL [35] or SMPL-
X [51] model in a T-pose. Note that these features are not
limited to those on template vertices as they can be contin-
uously sampled from the body surface via barycentric inter-
polation. Hence, our feature space is more continuous than
UV-based spaces [2, 40], while being more compact than
3D implicit feature fields [61, 69].

To model pose-dependent clothing deformations, the un-
derlying unclothed body model is taken as input to the ge-
ometry feature encoder. For each scan, let Vu = {vu

n}Nn=1

denote the posed vertex positions of the fitted unclothed
body model, where N = 6890 for SMPL [35] and N =
10475 for SMPL-X [51]. These posed vertices act as the
pose code and will be paired with the template vertices
Vt = {vt

n}Nn=1 of the body model in a T-pose, which
shares the same mesh topology with Vu. These point pairs
are processed by the pose encoder Fp to generate the pose-
dependent geometry features {ϕp(v

t
n) ∈ RCp}Nn=1 at ver-

tices Vt, i.e.,

{ϕp(v
t
n) ∈ RCp}Nn=1 = Fp(V

t,Vu). (1)

To learn hierarchical features with different levels of re-
ceptive fields, we adopt PointNet++ [54] as the architecture
of the pose encoder Fp, where vertices Vt are treated as
the input point cloud in the PointNet++ network, while ver-
tices Vu act as the feature of Vt. As the template vertices
Vt are constant, the encoder Fp can focus on the feature
learned from the posed vertices Vu. Moreover, the Point-
Net++ based Fp first abstracts features from the template
vertices Vt to sparser points {Vt

l}Ll=1 at L levels, where
the number of Vt

l decreases with l increasing. Then, the
features at {Vt

l}Ll=1 are further propagated back to Vt suc-
cessively. In this way, the encoder can capture the long-
range part correlations of the pose-dependent deformations.

Similar to POP [40], our method can be trained under
multi-outfit or outfit-specific settings. When trained with
multiple outfits, the pose-dependent deformation should be
aware of the outfit type, and hence requires the input of
the garment features. Specifically, the garment-related fea-
tures {ϕg(v

t
n) ∈ RCg}Nn=1 are also defined on template
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Figure 2. Overview of the proposed method CloSET. Given an input body model, its pose code and garment code are processed hierar-
chically by point-based pose and garment encoders Fp and Fg for the learning of surface features ϕp and ϕg . For any point pt

i lying on
the template surface, its features ϕ(pt

i) are sampled from surface features accordingly and fed into two decoders for the prediction of the
explicit garment template and pose-dependent wrinkle displacements, which will be combined and transformed to the clothing point cloud.
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Figure 3. Comparison of the bilinear interpolation on the UV plane
and the barycentric interpolation on the surface.

vertices Vt, which are learned by feeding the garment code
{ϕgc(v

t
n)}Nn=1 to a smaller PointNet++ encoder Fg . Note

that the garment-related features ϕg are shared for each out-
fit across all poses and optimized during the training. Since
both the pose-dependent and garment-related geometry fea-
tures are aligned with each other, we denote them as the sur-
face features {ϕ(vt

n)}Nn=1 for simplicity. Note that the input
of ϕg(p

t
i) has no side effect on the results when trained with

only one outfit, as the garment features are invariant to the
input poses.

Continuous Feature Interpolation. In the implicit
modeling solutions [43, 59, 61], features are learned in a
spatially continuous manner, which contributes to the fine-
grained modeling of clothing details. To sample continuous
features in our scheme, we adopt barycentric interpolation
on the surface features ϕ. As illustrated in Fig. 3, for any
point pt

i = Vt(bi) lying on the template surface, where
bi = [ni1, ni2, ni3, bi1, bi2, bi3] denotes the corresponding
vertex indices and barycentric coordinates in Vt. Then, the
corresponding surface features can be retrieved via barycen-
tric interpolation, i.e.,

ϕ(pt
i) =

3∑
j=1

(bij ∗ ϕ(vt
nij

)). (2)

In this way, the point features are not limited to those
learned on the template vertices and are continuously de-
fined over the whole body surface without the seaming dis-
continuity issue in the UV plane.

3.2. Point-based Clothing Deformation

Following previous work [37, 40], our approach repre-
sents the clothed body as a point cloud. For any point on
the surface of the unclothed body model, the correspond-
ing features are extracted from surface features to predict
its displacement and normal vector.

Explicit Template Decomposition. Instead of predict-
ing the clothing deformation directly, our method decom-
poses the deformations into two components: garment-
related template displacements and pose-dependent wrin-
kle displacements. To achieve this, the garment-related
template is learned from the garment-related features and
shared across all poses. Meanwhile, the learning of
pose-dependent wrinkles are conditioned on both garment-
related and pose-dependent features. Specifically, for the
point pu

i = Vu(bi) at the unclothed body mesh, it has the
same vertex indices and barycentric coordinates bi as the
point pt

i on the template surface. The pose-dependent and
garment-related features of the point pu

i are first sampled
according to Eq. (2) based on pt

i = Vt(bi) and then further
fed into the garment decoder Dg and the pose decoder Dp

for displacement predictions, i.e.,

rgi = Dg(ϕg(p
t
i),p

t
i),

rpi = Dp(⊕(ϕg(p
t
i),ϕp(p

t
i)),p

t
i),

(3)

where ⊕ denotes the concatenation operation, rgi and rpi
are the displacements for garment templates and pose-
dependent wrinkles, respectively. Finally, rgi and rpi will be
added together as the clothing deformation ri = rgi + rpi .
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Local Transformation. Similar to [37,40], the displace-
ment ri is learned in a local coordinate system. It is further
transformed to the world coordinate system by applying the
following transformation, i.e., xi = Tiri + pu

i , where Ti
denotes the local transformation calculated based on the un-
clothed body model. Following [37, 40], the transformation
matrix Ti is defined at the point pu

i on the unclothed body
model, which naturally supports the barycentric interpola-
tion. Similarly, the normal ni of each point is predicted
together with ri from D and transformed by Ti.

3.3. Loss Functions

Following previous work [37,40], the point-based cloth-
ing deformation is learned with the summation of loss func-
tions: L = Ldata + λrglLrgl. where Ldata and Lrgl de-
note the data and regularization terms respectively, and the
weight λrgl balances the loss terms.

Data Term. The data term Ldata is calculated on the
final predicted points and normals, i.e., Ldata = λpLp +
λnLn. Specifically, Lp is the normalized Chamfer distance
to minimize the bi-directional distances between the point
sets of the prediction and the ground-truth scan:
Lp = Chamfer

(
{xi}Mi=1, {x̂j}Ns

j=1

)
=

1

M

M∑
i=1

min
j

∥xi − x̂j∥22 +
1

Ns

Ns∑
j=1

min
i

∥xi − x̂j∥22, (4)

where x̂j is the point sampled from the ground-truth sur-
face, M and Ns denote the number of the predicted and
ground-truth points, respectively.

The normal loss Ln is an averaged L1 distance between
the normal of each predicted point and its nearest ground-
truth counterpart:

Ln = L1
(
{ni}Mi=1, {n̂i}Mi=1

)
=

1

M

M∑
i=1

∥ni − n̂i∥, (5)

where n̂i is the normal of its nearest point in the ground-
truth point set.

Note that we do not apply data terms on the garment tem-
plates, as we found such a strategy leads to noisy template
learning in our experiments.

Regularization Term. The regularization terms are
added to prevent the predicted deformations from being
extremely large and regularize the garment code. More-
over, following the previous implicit template learning so-
lution [31, 78], we also add regularization on the pose-
dependent displacement rpi to encourage it to be as small
as possible. As the pose-dependent displacement represents
the clothing deformation in various poses, such a regular-
ization implies that the pose-invariant deformation should
be retained in the template displacement rgi , which forms

the garment-related template shared by all poses. Overall,
the regularization term can be written as follows:

Lrgl =
1

M

M∑
i=1

∥ri∥22+
λpd

M

M∑
i=1

∥rpi ∥
2
2+

λgc

N

N∑
n=1

∥ϕgc(v
t
n)∥22.

(6)

4. Experiments
Network Architecture. For a fair comparison with
POP [40], we modify the official PointNet++ [54] (PN++)
architecture so that our encoders have comparable network
parameters as POP [40]. The modified PointNet++ archi-
tecture has 6 layers for feature abstraction and 6 layers for
feature propagation (i.e., L = 6). Since the input point
cloud Vt has constant coordinates, the farthest point sam-
pling in PointNet++ is only performed at the first forward
process, and the sampling indices are saved for the next
run. In this way, the runtime is significantly reduced for
both training and inference so that our pose and garment
encoders can have similar network parameters and runtime
speeds to POP. Note that the pose and garment encoders in
our method can also be replaced with recent state-of-the-
art point-based encoders such as PointMLP [41] and Point-
NeXt [55]. More details about the network architecture and
implementation can be found in the Supp.Mat.

Datasets. We use CAPE [39], ReSynth [40], and our
newly introduced dataset THuman-CloSET for training and
evaluation.
CAPE [39] is a captured human dataset consisting of mul-
tiple humans in various motions. The outfits in this dataset
mainly include common clothing such as T-shirts. We fol-
low SCALE [37] to choose blazerlong (with outfits of blazer
jacket and long trousers) and shortlong (with outfits of short
T-shirt and long trousers) from subject 03375 to validate the
efficacy of our method.
ReSynth [40] is a synthetic dataset introduced in POP [40].
It is created by using physics simulation, and contains chal-
lenging outfits such as skirts and jackets. We use the official
training and test split as [40].
THuman-CloSET is our newly introduced dataset, con-
taining high-quality clothed human scans captured by a
dense camera rig. We introduce THuman-CloSET for the
reason that existing pose-dependent clothing datasets [39,
40] are with either relatively tight clothing or synthetic
clothing via physics simulation. In THuman-CloSET, there
are more than 2,000 scans of 15 outfits with a large variation
in clothing style, including T-shirts, pants, skirts, dresses,
jackets, and coats, to name a few. For each outfit, the subject
is guided to perform different poses by imitating the poses
in CAPE. Moreover, each subject has a scan with mini-
mal clothing in A-pose. THuman-CloSET contains well-
fitted body models in the form of SMPL-X [51]. Note that
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Table 1. Quantitative comparison with previous point-based meth-
ods on ReSynth. † denotes the methods using 1/8 training data.

Method
Chamfer-L2 ↓ Normal diff. ↓

Mean Max Mean Max

outfit-specific
SCALE [37] 1.491 8.451 1.041 1.321
POP [40] 1.356 7.339 1.013 1.289

multi-outfit
Baseline (POP [40]) † 1.490 7.859 1.050 1.326
Baseline w. PN++ † 1.290 5.940 1.028 1.330
CloSET (Ours) † 1.240 5.543 1.019 1.315

Table 2. Quantitative comparison of different methods on the pro-
posed THuman-CloSET dataset in the outfit-specific setting.

Subject ID
SCANimate SNARF POP CloSET

CD NML CD NML CD NML CD NML

sweater-000 1.06 1.64 7.11 2.09 0.76 1.55 0.68 1.48
longshirt-001 1.42 1.85 6.66 2.21 1.54 1.83 1.39 1.71
skirt-005 1.93 1.74 9.39 2.31 1.66 1.43 1.49 1.36

the loose clothing makes the fitting of the underlying body
models quite challenging. For more accurate fitting of the
body models, we first fit a SMPL-X model on the scan of
the subject in minimal clothing and then adopt its shape pa-
rameters for fitting the outfit scans in different poses. More
details can be found in the Supp.Mat. In our experiments,
we use the outfit scans in 100 different poses for training
and use the remaining poses for evaluation. We hope our
new dataset can open a promising direction for clothed hu-
man modeling and animation from real-world scans.

Metrics. Following previous work [40], we generate 50K
points from our method and point-based baselines and adopt
the Chamfer Distance (see Eq. (4)) and the L1 normal dis-
crepancy (see Eq. (5)) for quantitative evaluation. By de-
fault, the Chamfer distance (CD) and normal discrepancy
(NML) are reported in the unit of ×10−4m2 and ×10−1, re-
spectively. To evaluate the implicit modeling methods, the
points are sampled from the surface extracted using March-
ing Cubes [36].

4.1. Comparison with the State-of-the-art Methods

We compare results with recent state-of-the-art methods,
including point-based approaches SCALE [37], POP [40],
and SkiRT [38], and implicit approaches SCANimate [61]
and SNARF [10].

ReSynth. Tab. 1 reports the results of the pose-dependent
clothing predictions on unseen motion sequences from the
ReSynth [40] dataset, where all 12 outfits are used for eval-

Table 3. Quantitative comparison of different methods on the
ReSynth dataset in the outfit-specific setting. The garment styles
are non-skirt, skirt, and dress for carla-004, christine-027, and
felice-004, respectively.

Subject ID
SCANimate POP SkiRT CloSET

CD NML CD NML CD NML CD NML

carla-004 0.90 1.52 0.51 1.02 0.48 1.06 0.49 1.04
christine-027 3.21 1.66 1.72 0.97 1.54 0.99 1.49 0.97
felice-004 20.79 2.94 7.34 1.24 6.45 1.25 6.01 1.16

uation. As can be seen, the proposed approach has the
lowest mean and max errors, which outperforms all other
approaches including POP [40]. Note that our approach
needs fewer data for the pose-dependent deformation mod-
eling. By using only 1/8 data, our approach achieves a per-
formance comparable to or even better than other models
trained with full data. Tab. 3 also reports outfit-specific per-
formances on 3 selected subject-outfit types, including jack-
ets, skirts, and dresses. In comparison with the recent state-
of-the-art method SkiRT [38], our method achieves better
results on challenging skirt/dress outfits and comparable re-
sults on non-skirt clothing.

THuman-CloSET. The effectiveness of our method is
also validated on our real-world THuman-CloSET dataset.
The sparse training poses and loose clothing make this
dataset very challenging for clothed human modeling.
Tab. 2 reports the quantitative comparisons of different
methods on three representative outfits. Fig. 4 also shows
example results of different methods, where we follow pre-
vious work [40] to obtain meshed results via Poisson sur-
face reconstruction. We can see that our method gener-
alizes better to unseen poses and produces more natural
pose-dependent wrinkles than other methods. In our ex-
periments, we found that SNARF [10] fails to learn correct
skinning weights due to loose clothing and limited training
poses. As discussed in FITE [33], there is an ill-posed issue
of jointly optimizing the canonical shape and the skinning
fields, which becomes more severe in our dataset.

4.2. Ablation Study

Evaluation of Continuous Surface Features. The point
features in our method are learned on the body surface,
which provides a continuous and compact feature learning
space. To validate this, Tab. 4 summarizes the feature learn-
ing space of different approaches and their performances on
two representative outfits from CAPE [39]. Here, we only
include the proposed Continuous Surface Features (CSF) in
Tab. 4 by applying the continuous features on POP [40] for
fair comparisons with SCALE [37] and POP [40]. As dis-
cussed previously, existing solutions learn features either in
a discontinuous space (e.g., CAPE [39] on the fixed resolu-
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SCANimate [61] SNARF [10] POP [40] POP [40], meshed Ours Ours, meshed Ground Truth

Figure 4. Comparison of different clothed human modeling methods on the proposed real-world scan dataset.

POP [40] Ours POP [40] Ours

Figure 5. Comparison of the approach learned on UV planes
(POP [40]) and the approach learned on continuous surfaces
(Ours). Our solution alleviates the seam artifacts of POP.

tion mesh, POP [40] on the 2D UV plane) or in a space that
is too flexible (e.g., NASA [16] in the implicit 3D space),
while our approach learns features on continuous and com-
pact surface space. Though SCALE [37] has also inves-
tigated using the point-based encoder (PointNet [53]) for
pose-dependent feature extraction, it only uses the global
features which lack fine-grained information. In contrast,
we adopt PointNet++ [54] (PN++) to learn hierarchical sur-
face features, so that the pose-dependent features can be
learned more effectively. Fig. 5 shows the qualitative re-

Table 4. Comparison of the modeling ability of different ap-
proaches and their feature learning space on the CAPE dataset.

Methods Features
Chamfer-L2 ↓ Normal diff. ↓

blazerlong shortlong blazerlong shortlong

CAPE [39] Mesh 1.96 1.37 1.28 1.15
NASA [16] 3D space 1.37 0.95 1.29 1.17
SCALE [37] Global 1.46 1.03 1.34 1.16
SCALE [37] UV plane 1.07 0.89 1.22 1.12
POP [40] UV plane 0.78 0.57 1.29 1.24

CSF Surface 0.71 0.54 1.15 1.09

Table 5. Ablation study on the effectiveness of continuous surface
features (CSF) and Explicit Template Decomposition (ETD) on a
dress outfit (felice-004 from ReSynth [40]).

Method POP POP + ETD CSF CSF + ETD

CD 7.34 7.05 6.53 6.01
NML 1.24 1.17 1.16 1.16

sults of the ablation approaches learned on UV planes and
continuous surfaces. We can see that our solution clearly
alleviates the seam artifacts of POP.

Evaluation of Explicit Template Decomposition. The
decomposed templates help to capture more accurate pose-
dependent deformations and produce more natural wrinkles
in unseen poses, especially for outfits that differ largely
from the body template. To validate the effectiveness of
our decomposition strategy, Tab. 5 reports the ablation ex-
periments on a dress outfit (felice-004) of the ReSynth [40]
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POP POP+ETD POP, meshed POP+ETD, meshed POP POP+ETD POP, meshed POP+ETD, meshed

Figure 6. Comparison of the clothing deformation in unseen poses. Explicit template decomposition (ETD) helps to capture more natural
pose-dependent wrinkle details than POP [40].

Ours Ours,
Meshed

FITE Ours Ours,
Meshed

FITE

Figure 7. Comparison of the learned templates with FITE [33].

dataset. We can see that the proposed Explicit Template
Decomposition (ETD) brings clear performance gains over
baseline methods. Fig. 6 shows the visual improvements of
pose-dependent wrinkles when applying the explicit tem-
plate decomposition. Note that the templates are decom-
posed in an end-to-end manner in our method. Compared
with the implicit template learned in the recent approach
FITE [33], the explicit templates in our method contain
more details, as shown in Fig. 7.

5. Conclusions and Future Work
In this work, we present CloSET, a point-based clothed

human modeling method that is built upon a continuous sur-
face and learns to decompose explicit garment templates for
better learning of pose-dependent deformations. By learn-

ing features on a continuous surface, our solution gets rid
of the seam artifacts in previous state-of-the-art point-based
methods [37, 40]. Moreover, the explicit template decom-
position helps to capture more accurate and natural pose-
dependent wrinkles. To facilitate the research in this di-
rection, we also introduce a high-quality real-world scan
dataset with diverse outfit styles and accurate body model
fitting.

Limitations and Future Work. Due to the incorrect
skinning weight used in our template, the issue of the non-
uniform point distribution remains for the skirt and dress
outfits. Combining our method with recent learnable skin-
ning solutions [38, 61] could alleviate this issue and further
improve the results. Currently, our method does not lever-
age information from adjacent poses. Enforcing temporal
consistency and correspondences between adjacent frames
would be interesting for future work. Moreover, incorpo-
rating physics-based losses into the learning process like
SNUG [63] would also be a promising solution to address
the artifacts like self-intersections.
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tional Key R&D Program of China (2022YFF0902200),
the National Natural Science Foundation of China
(No.62125107 and No.61827805), and the China Postdoc-
toral Science Foundation (No.2022M721844).
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[17] Zhantao Deng, Jan Bednařı́k, Mathieu Salzmann, and Pascal
Fua. Better patch stitching for parametric surface reconstruc-
tion. In 3DV, pages 593–602, 2020. 2

[18] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir
Kim, Bryan Russell, and Mathieu Aubry. Learning elemen-
tary structures for 3D shape generation and matching. In
NeurIPS, pages 7433–7443, 2019. 2

[19] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3D object reconstruction from a sin-
gle image. In CVPR, pages 2463–2471, 2017. 2

[20] Andrew Feng, Dan Casas, and Ari Shapiro. Avatar reshap-
ing and automatic rigging using a deformable model. In Pro-
ceedings of the ACM SIGGRAPH Conference on Motion in
Games, pages 57–64, 2015. 1, 3

[21] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In ICML, pages 3569–3579, 2020. 2

[22] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. 3D-CODED: 3D cor-
respondences by deep deformation. In ECCV, pages 230–
246, 2018. 2

[23] Peng Guan, Loretta Reiss, David A Hirshberg, Alexander
Weiss, and Michael J Black. DRAPE: DRessing Any PEr-
son. ACM TOG, 31(4):35–1, 2012. 1, 2, 3

[24] Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini,
Minh Dang, Mathieu Salzmann, and Pascal Fua. GarNet: A
two-stream network for fast and accurate 3D cloth draping.
In CVPR, pages 8739–8748, 2019. 1, 2, 3

[25] Boyan Jiang, Xinlin Ren, Mingsong Dou, Xiangyang Xue,
Yanwei Fu, and Yinda Zhang. LoRD: Local 4d implicit rep-
resentation for high-fidelity dynamic human modeling. In
ECCV, pages 307–326. Springer, 2022. 2

[26] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang
Liu, and Hujun Bao. BCNet: Learning body and cloth shape
from a single image. In ECCV, pages 18–35. Springer, 2020.
2

[27] Hyomin Kim, Hyeonseo Nam, Jungeon Kim, Jaesik Park,
and Seungyong Lee. LaplacianFusion: Detailed 3D clothed-
human body reconstruction. ACM TOG, 41(6):1–14, 2022.
2

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2014. 12

[29] Zorah Lahner, Daniel Cremers, and Tony Tung. Deepwrin-
kles: Accurate and realistic clothing modeling. In ECCV,
pages 667–684, 2018. 2, 3

[30] Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhöfer,
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The appendix provides additional details about our ap-
proach and more experimental results that were not in-
cluded in the main manuscript due to limited space. In
Section A, we present more descriptions of our newly in-
troduced THuman-CloSET dataset. In Section B, we pro-
vide more details about the implementation of our approach.
Finally, we report more experimental results in Section C.
More results are also presented in the Supplementary Video
and the project page.

Table 6. Comparison of the scan data used in our experiments.

Datasets # Outfits Outfit type
Average # poses

per outfit

CAPE [39] 14 real-world, common 1806
ReSynth [40] 12 synthetic, loose 984
THuman-CloSET 15 real-world, loose 140

A. THuman-CloSET Dataset
We introduce THuman-CloSET for the reason that exist-

ing pose-dependent clothing datasets [39,40] are with either
relatively tight clothing or synthetic clothing via physics
simulation. THuman-CloSET contains more than 2,000
high-quality human scans captured by a dense camera rig.
There are 15 different outfits with a large variation in cloth-
ing style, including T-shirts, pants, skirts, dresses, jackets,
and coats, to name a few. All subjects are guided to perform
different poses by imitating the poses in CAPE [39]. For
each outfit, there is also a scan of the same subject in min-
imal clothing so that we can obtain a more accurate body
shape. In our dataset, the body model is firstly estimated
from the rendered multiview images of the clothed human
and further refined with the ICP optimization between the
body model and the scan. As shown in Fig. 8, the loose
clothing makes the fitting of the underlying body models
quite challenging. For more accurate fitting of the body
models, we first fit a SMPL-X [51] model on the scan of
the subject in minimal clothing and then adopt its shape
parameters for the fitting of the outfit scans in different
poses. In this way, we ensure that the fitted SMPL-X mod-
els of our dataset are overall of good quality. Fig. 11 shows
several outfit scans and example scans in various poses
of THuman-CloSET. The comparison with CAPE [39],
ReSynth [40], and our THuman-CloSET datasets are sum-
marized in Tab. 6. We make THuman-CloSET publicly
available for research purposes and hope it can open a
promising direction for clothed human modeling and ani-
mation from real-world scans.

B. More Implementation Details
Training. Following POP [40], we train our network for
400 epochs on ReSynth [40] and CAPE [39] datasets, us-
ing the Adam [28] optimizer with a batch size of 4 and a

Figure 8. The fitted SMPL-X models (colored with blue) of the
same subject in minimal and loose clothing.

learning rate of 3.0 × 10−4. The loss weights are set to
λp = 2 × 104, λn = 0.1, λrgl = 2 × 103, λpd = 1.0, and
λgc = 5 × 10−4 to balance different loss terms. Note that
the normal loss is turned on from the 250th epoch for more
stable training, as suggested in [40].

Architecture. In the implementation of our network,
the PointNet++ [54] abstracts the point features for
L = 6 levels, and the numbers of the abstracted points
are 2048, 1024, 512, 256, 128, and 64, respectively at each
level. The pose-dependent and garment-related features
have the same length of 64, i.e., Cp = Cg = 64.
The decoders Dg and Dp adopt the same architecture as
POP [40]. Tab. 7 reports the network parameters and run-
time of POP [40] and our method. Note that the pose
and garment encoders in our method can also be replaced
with recent state-of-the-art point-based encoders such as
PointMLP [41] and PointNeXt [55].

Table 7. Comparison of the network parameters and runtime.

Method Encoder # Params Runtime

POP [40] UNet [58] 11.33 M 44 ms
Ours PointNet++ [54] 11.76 M 47 ms

Garment Code. Following POP [40], for a specific out-
fit (e.g., an individual garment), the garment code is ran-
domly initialized with the shape of N × 64 (N is the vertex
number of SMPL(-X)) and shared across all poses. During
training, the code is optimized with the back-propagated
gradients. When trained with multiple outfits, the pose-
dependent deformation should be aware of the outfit type.
Hence, the pose decoder takes as input both the garment
features ϕg(p

t
i) and the pose features ϕp(p

t
i). As shown in

Fig. 9, the qualitative results become worse when the gar-
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(a) (b) (c) (d)

Figure 9. Ablation results on the usage of garment features in the
pose decoder. (a)(b) The temple and clothing deformation results
without using garment features. (c)(d) The temple and clothing
deformation results with the usage of garment features.

(a) using data term (b) using regularization term

Figure 10. The templates learned with (a) the data term and (b) the
regularization term.

ment features are not fed into the pose decoder under the
multi-outfit setting.

C. More Experimental Results.
Template learning. As described in Section 3 in the main
paper, the explicit templates are learned under the regular-
ization term. An alternative strategy for template learning is
applying the data term directly to the generated point clouds
of templates, as done in previous work [38]. However, we
found such a strategy leads to worse template learning. As
visualized in Fig. 10, the template directly learned with the
data term is much nosier than the one learned with the reg-
ularization term.

Effect of Explicit Template Decomposition. In Table 8,
we further augment the ablation experiments with the back-
bones of the default PointNet [53] and PointNet++ [54]. We
can see that i) learning continuous surface features consis-
tently brings improvements over the UV features, though

Table 8. Ablation study of the efficacy of the explicit template de-
composition on different backbones. † denotes the default Point-
Net [53] and PointNet++ [54].

Backbone Size(M) w/o ETD w. ETD

U
V Unet 11.33 7.34 7.05

Su
rf

ac
e PointNet † 7.68 7.14 6.94

PointNet++ † 4.35 7.08 6.71
PointNet++ 11.76 6.53 6.01

the default PointNet and PointNet++ have smaller model
sizes; ii) PointNet++ is more suitable for surface feature
learning than PointNet; iii) ETD consistently improves the
results for all backbones. In Fig. 12, we include more
rendered results of the clothing deformations learned with
and without Explicit Template Decomposition (ETD). In
general cases, ETD helps to capture more natural pose-
dependent wrinkles. For more qualitative comparisons of
SCANimate [61], SNARF [10], POP [40], and our ap-
proach, please refer to the supplementary video.
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(a) (b)

Figure 11. Example scans of our newly introduced THuman-CloSET dataset. (a) Example outfits. (b) Example scans in various poses.

without ETD with ETD without ETD with ETD

Figure 12. Comparison of the pose-dependent deformations learned with and without Explicit Template Decomposition (ETD).
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