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Abstract

Indoor 360 panoramas have two essential properties. (1)
The panoramas are continuous and seamless in the hori-
zontal direction. (2) Gravity plays an important role in in-
door environment design. By leveraging these properties, we
present PanelNet, a framework that understands indoor envi-
ronments using a novel panel representation of 360 images.
We represent an equirectangular projection (ERP) as consec-
utive vertical panels with corresponding 3D panel geometry.
To reduce the negative impact of panoramic distortion, we in-
corporate a panel geometry embedding network that encodes
both the local and global geometric features of a panel. To
capture the geometric context in room design, we introduce
Local2Global Transformer, which aggregates local informa-
tion within a panel and panel-wise global context. It greatly
improves the model performance with low training overhead.
Our method outperforms existing methods on indoor 360
depth estimation and shows competitive results against state-
of-the-art approaches on the task of indoor layout estimation
and semantic segmentation.

1. Introduction
Understanding indoor environments is an important topic

in computer vision as it is crucial for multiple practical appli-
cations such as room reconstruction, robot navigation, and
virtual reality applications. Early methods focus on mod-
eling indoor scenes using perspective images [9, 10, 19].
With the development of CNNs and omnidirectional pho-
tography, many works turn to understand indoor scenes us-
ing panorama images. Compared to the perspective images,
panorama images have a larger field-of-view (FoV) [43] and
provide the geometric context of the indoor environment in
a continuous way [24].

There are several 360 input formats used in indoor scene
understanding. One of the most commonly-used formats is
the equirectangular projection (ERP). Modeling the holistic
scene from an ERP is challenging. The ERP distortion in-
creases when pixels are close to the zenith or nadir of the
image, which may decrease the power of the convolutional
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Figure 1. An overview of the proposed system. We present Panel-
Net, a network that learns the indoor environment using a novel
panel representation of ERP. We formulate the panel representation
as consecutive ERP panels with corresponding global and local
geometry. By slightly modifying the network structure, PanelNet is
capable of tackling major 360 indoor understanding tasks such as
depth estimation, semantic segmentation and layout prediction.

structures designed for distortion-free perspective images.
To eliminate the negative effects of ERP distortion, recent
works [8, 21, 28] focus on decomposing the whole panorama
into perspective patches, i.e., tangent images. However, par-
titioning a panorama into discontinuous patches breaks the
local continuity of gravity-aligned scenes and objects which
limits the performance of these works. To reduce the im-
pact of distortion while preserving the local continuity, we
present PanelNet, a novel network to understand the indoor
scene from equirectangular projection.

We design our PanelNet based on two essential properties
of equirectangular projection. (1) The ERP is continuous
and seamless in the horizontal direction. (2) Gravity plays an
important role in indoor environment design, which makes
the gravity-aligned features crucial for indoor 360 under-
standing [24, 31]. Following these two properties, we tackle
the challenges above through a novel panel representation of
ERP. We represent an ERP as consecutive panels with cor-
responding global and local 3D geometry, which preserves
the gravity-aligned features within a panel and maintains
the global continuity of the indoor structure across panels.
Inspired by Omnifusion [21], we design a geometry embed-
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ding network for panel representations that encodes both
local and global features of panels to reduce the negative
effects of ERP distortion without adding further explicit dis-
tortion fixing modules. We further introduce Local2Global
Transformer as a feature processor. Considering the nature
of panel representation, we design this Transformer with
Window Blocks for local information aggregation and Panel
Blocks for panel-wise context capturing. The main contribu-
tions of our work are:

• We represent the ERP as consecutive vertical panels
with corresponding 3D geometry. We introduce Panel-
Net, a novel indoor panorama understanding pipeline
using the panel representation. Following the essential
geometric properties of the indoor equirectangular pro-
jection, our framework outperforms existing methods
on the task of indoor 360 depth estimation and shows
competitive results on other indoor scene understand-
ing tasks such as semantic segmentation and layout
prediction.

• We propose a panel geometry embedding network that
encodes both local and global geometric features of pan-
els and reduces the negative impact of ERP distortion
implicitly while preserving the geometric continuity.

• We design Local2Global Transformer as a feature pro-
cessor, which greatly enhances the continuity of geo-
metric features and improves the model performance by
successfully aggregating the local information within a
panel and capturing panel-wise context accurately.

2. Related Work
We aim to design a general framework to tackle the major

tasks of indoor scene understanding using 360 images. We
briefly review the related works.

2.1. Monocular depth estimation

Estimating the depth from an image is an essential prob-
lem in computer vision. Early works tackle this problem
via stereo matching [29] and motion clues in a video [18].
With the flourishment of deep learning, researchers develop
monocular depth estimation methods via deep neural net-
works. Eigen et al. [10] first develop a multi-scale deep
neural network to regress depth from a single image. Their
later work [9] introduces a more general multi-scale network
with a VGG encoder for predicting depth, surface normal
and semantic labels. Laina et al. [19] design a fully convolu-
tional residual network with upsampling layers. They also
introduce Berhu Loss for network training. Cao et al. [2] for-
mulate the depth regression task as a classification task and
apply fully-connected Conditional Random Fields (CRF) to
obtain the final depth prediction. Other works address this
problem with different strategies. Fu et al. [11] introduce

dilated convolutions to enlarge receptive fields and utilize an
ordinary regression loss for network optimization. Geomet-
ric constraints are also often exploited to enhance potential
geometry relationships [26, 38].

2.2. Panorama depth estimation

One key limitation for understanding the scene via a per-
spective image is the lack of geometric context due to the
small FoV. Recently, the development of 360 imagery and the
popularity of 360 cameras encourage researchers to address
the scene understanding tasks directly on panoramas. Com-
pared to perspective images, panoramas preserve the struc-
tural context of the room while introducing distortion. Recent
works estimate the depth from panoramas by jointly learning
the room structure [17, 40], planes and normals [6, 13]. By
leveraging the gravity-aligned features in indoor panoramas,
Pintore et al. [25] and Sun et al. [31] design networks that
directly work on the equirectangular projections. However,
directly applying convolution-based structures designed for
distortion-free perspective images on panoramas may lead
to sub-optimal results [45]. To reduce the negative impact of
panorama distortion, several works design distortion-aware
CNNs [4, 7, 32, 44] based on the nature of ERP distortion.
Other methods handle this problem via less-distortion repre-
sentations instead of directly modeling the distortion. Wang
et al. [34] and Jiang et al. [15] fuse the cubemap projection
with ERP to mimic peripheral and foveal vision as the human
eye. Recently, Eder et al. [8] propose to handle panoramic
distortion with tangent representation, which inspires further
studies on tangent-based depth estimation such as Omnifu-
sion [21] and 360MonoDepth [28]. However, these methods
introduce discrepancies between the patches that are hard
to be removed by the fusion modules. We tackle these chal-
lenges by introducing the panel representation of ERP. The
panels are directly extracted from the original panorama
via a sliding window mechanism similar to CNNs, which
preserves the gravity-aligned information of indoor scenes
within panels. Rather than fixing panoramic distortion in an
explicit way, we add a panel geometry embedding network
to learn the distortion for panels and reduce the negative
impact of distortion with minimal computation cost.

2.3. Other indoor understanding tasks

360 semantic segmentation is another important dense
prediction task for indoor understanding. Similar to 360
depth estimation, most of the recent panorama semantic
segmentation works focus on reducing the negative impact
of ERP distortion [14,20,32]. Other approaches try different
strategies such as joint learning the semantic labels with
layout [41] and unsupervised transfer learning [42].

For layout estimation, previous approaches model this
task as a dense prediction task. Zou et al. [46] design a net-
work in U-Net structure to jointly learn the layout boundaries
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Figure 2. The architecture of the network. Given the stride and interval, an ERP is first partitioned into consecutive panels by a sliding
window. Meanwhile, for each pixel on every panel, the corresponding global coordinates are represented as its absolute 3D coordinates
(xs, ys, zs). Its local coordinates are represented as its relative 3D coordinates to the panel (x′s, y′s). The local and global coordinates are
used as input of an MLP to generate geometric features. The Local2Global Transformer is applied to aggregate local information (Window
Blocks) and capture global dependencies (Panel Blocks). In each Transformer block, we stack LayerNorm (LN), multi-head self-attention
module (W/P-MSA) and Forward Feed Network (FFN) with skip connection as shown in (b).

and corner positions from the input RGB image and Manhat-
tan line map. Yang et al. [37] introduce a two-branch network
that incorporates both equirectangular projection and per-
spective ceiling view to learn different layout clues. Sun et
al. [30] simplify the layout estimation task from dense pre-
diction to three 1-D boundary predictions. They also propose
a panorama stretch method that can diversify the panorama
data as data augmentation. Wang et al. [35] transform lay-
out estimation to depth prediction on the horizon line of a
panorama. They design a layout-to-depth transformation to
convert the layout into horizon-depth via ray casting. Jiang
et al. [16] represent the room layout as the floor boundary
and height. We follow this representation when predicting
room layouts using our modified PanelNet.

2.4. Vision Transformer

Transformers are originally proposed in the field of natu-
ral language processing [33] and soon become very popular
due to their superior performance on NLP tasks. ViT [5] and
its following works [22, 23, 27, 39] demonstrate that Trans-
formers are suitable for capturing long-range dependencies
for vision tasks by achieving superior results against CNN
based models on image classification, image segmentation
and dense prediction. Transformers are also used for 360
indoor understanding tasks such as depth estimation [21],

layout estimation [16] and semantic segmentation [42]. We
design a Local2Global Transformer as a feature processor,
which contains Window Blocks to aggregate local informa-
tion within a panel and Panel Blocks to capture the long-
range relationships among the panels. Our proposed Lo-
cal2Global Transformer greatly improves the model perfor-
mance on 360 indoor understanding tasks.

3. Method
3.1. Network architecture

As illustrated in Figure 2, we implement our network
in an encoder-decoder fashion. We incorporate a panel ge-
ometry embedding network to reduce the negative impact
of panorama distortion and Local2Global Transformer to
aggregate local and global information.
Panel Representation of ERP Given the stride S and the
interval I of the panels, an input RGB ERP in resolution
He ×We is divided into N consecutive panels by a vertical
sliding window in size He × I . Since an ERP is continuous
and seamless in the horizontal direction, we extract the pan-
els across the left and right edges of the ERP. So N = We

S .
The corresponding local and global geometric features are
generated together given I and S, details discussed in Sec-
tion 3.3.
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Backbone We use a ResNet-34 [12] based architecture as
the feature extractor of our model. It takes the ERP panels
as input and generates the feature maps of each panel in 4
different scales. We apply a 1×1 convolution layer to reduce
the dimensions of the final feature map of each panel to fb ∈
RCb×Hb×Wb , where Hb = He

32 , Wb = I
32 , Cb = D

Hb×Wb

and D = 512 for any interval and stride. The feature maps
are then used as input of the Local2Global Transformer for
information aggregation, discussed in Section 3.2.
Decoder As illustrated in Figure 2. For each decoder layer,
we concatenate the feature map with the feature map gen-
erated by the corresponding encoder layer. We apply up-
convolutions to gradually recover the feature map to the
RGB input resolution. Similar to Omnifusion [21], we pre-
dict a learnable confidence map by the decoder to improve
the final merging result. For the final merge, we take the
average of the prediction of all panels. By slightly modifying
the network structure, our model is capable of other indoor
360 dense prediction tasks such as semantic segmentation.
For 360 layout estimation, we follow the layout represen-
tation of LGT-Net [16] and represent the room layouts as
floor boundary and room height. We add one linear layer to
generate floor boundary after the last decoder layer and two
linear layers to generate room height. The default length of
the output 1-D floor boundary is 1024.

3.2. Local2Global Transformer

Although partitioning the ERP into consecutive panels
via a sliding window preserves the continuity of indoor struc-
ture, capturing the long-range dependencies is still crucial.
Since the ERP is seamless in the horizontal direction, two
distant panels on a panorama have a closer realistic distance.
To address this problem and further improve local infor-
mation aggregation, we present Local2Global Transformer,
which consists of two major important components. Win-
dow Blocks to enhance the geometry relations within a local
panel and Panel Blocks for capturing long-range context.

In Window Blocks, we compute the window multi-head
self-attention similar to ViT [5]. For each panel, we reshape
the input feature map fb ∈ RCb×Hb×Wb into a sequence
of flattened 2D feature patches fw ∈ RNw×(P 2·Cb), where
(P × P ) is the size of the feature patch and Nw = HbWb

P 2 is
the number of feature patches in current Window Block. In
our experiment, P = 1, 2, 4 for Window Blocks in different
resolutions. Similar to ViT [5], we apply a learnable position
embedding Ew ∈ RNw×(P 2·Cb) to maintain the positional
information of feature patches.

In Panel Blocks, we aim to aggregate global information
via panel-wise multi-head self-attention. The feature maps
of all panels are compressed to N 1-D feature vectors fp ∈
RN×D and then used as tokens in the Panel Blocks. Similar
to Window Blocks, we add a learnable positional embedding
Ep ∈ RN×D to the tokens to retain patch-wise positional

information. See more discussion of positional embedding
in Section 4.6.

Following the standard Transformer block architecture of
ViT [5], we stack multi-head self-attention module (MSA)
and Feed-Forward Network (FFN). We apply a LayerNorm
(LN) before each MSA and FFN. A Local2Global Trans-
former block is computed as

ẑl = (W/P)-MSA(LN(zl−1)) + zl−1

zl = FFN(LN(ẑl)) + ẑl
(1)

where l is the block number of each stage. ẑl and zl is the
output feature map of the Window/Panel - MSA and FFN.
To aggregate the features from local to global, we stack the
Window Blocks according to the window size from small
to high successively. The Panel Blocks are stacked after
the Window Blocks. For the best performance, we use 12
Transformer blocks and place them in this order: Low-Res
W-Blocks(2), Mid-Res W-Blocks(2), High-Res W-blocks(2),
Panel Blocks(6). We observe a performance drop when shuf-
fling this order because the compress operation in Panel
Blocks reduces the impact of local information aggregation
performed by Window Blocks.

3.3. Panel geometry embedding

Inspired by the geometry fusion pipeline of Omnifu-
sion [21], we develop a panel geometry embedding module
to combine the geometry feature with the image feature to-
gether and reduce the negative impact of the ERP distortion.
For a pixel Pe(xe, ye) located on an ERP, the absolute 3D
world position of its counterpart located on a unit sphere
Ps(ϕ, θ) can be calculated as: xs = sin θ cosϕ

ys = sin θ sinϕ
zs = cos θ

(2)

where ϕ and θ are the azimuth angle and the polar angle of
the point on a sphere, respectively. The 3D world coordi-
nates Ps(xs, ys, zs) are then used to generate global features.
Since each ERP panel has the same distortion, the relative
position of each pixel to the panel where it is located is also
important. Similar to the absolute 3D position, we assign a
relative 3D local position Ps(x

′
s, y
′
s, z
′
s) for each pixel per

panel. We use the global 3D world coordinates of a randomly
selected panel to represent the relative 3D position of all pan-
els, which is unchanged during the entire experiment. Note
that zs = z′s. So the final input of a point on a panel to the
geometry embedding network is the combination of its local
and global coordinates (xs, ys, zs, x′s, y

′
s).

We generate global and local geometric features via a
two-layer MLP. The generated geometry features are added
to the first layer of the backbone to make the network aware
of ERP distortion.
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Dataset Method MRE ↓ MAE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Stanford2D3D

FCRN [19] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731
OmniDepth [45] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578
Bifuse [34] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860
HoHoNet [31] 0.1014 0.2027 0.3834 0.0668 0.9054 0.9693 0.9886
SliceNet [24] 0.1043 0.1838 0.3689 0.0771 0.9034 0.9645 0.9864
Omnifusion [21] 0.1031 0.1958 0.3521 0.0698 0.8913 0.9702 0.9875
Ours 0.0829 0.1520 0.2933 0.0579 0.9242 0.9796 0.9915

Matterport3D

FCRN [19] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617
OmniDepth [45] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429
Bifuse [34] 0.2048 0.3470 0.6259 0.1143 0.8452 0.9319 0.9632
HoHoNet [31] 0.1488 0.2862 0.5138 0.0871 0.8786 0.9519 0.9771
SliceNet [24] 0.1764 0.3296 0.6133 0.1045 0.8716 0.9483 0.9716
Omnifusion [21] 0.1387 0.2724 0.5009 0.0893 0.8789 0.9617 0.9818
Ours 0.1150 0.2205 0.4528 0.0814 0.9123 0.9703 0.9856

Table 1. Quantitative results on real-world indoor panorama depth estimation datasets-Stanford2D3D [1] and Matterport3D [3]. Our model
outperforms existing methods on all metrics.

3.4. Loss function

For depth estimation, we follow the previous works and
train the network by minimizing the Reverse Huber Loss
(BerHu) [19] in a fully supervised way.

B(e) =

{
|e| |e| ≤ c,
e2+c2

2c |e| > c.
(3)

where e is the error term and the threshold c determines
where the switch from L1 to L2 occurs. For semantic segmen-
tation, we use Cross-Entropy Loss with class-wise weights
to balance the examples. For layout estimation, we strictly
follow LGT-Net [16] and use the combination of L1 loss
for horizon depth and room height, normal loss and normal
gradient loss to train our network.

4. Experiments
4.1. Datasets

Stanford2D3D [1] is a real-world dataset consisting of
1,413 panoramas collected in 6 large-scale indoor areas. For
depth estimation, we follow the official split and use area1,
area2, area3, area4, area6 for training and area5 for testing.
For semantic segmentation, we follow the previous works
and use the official 3-fold split for training and evaluation.
The resolution used for depth estimation is 512× 1024 and
256× 512 for semantic segmentation.
PanoContext [43] and the extended Stanford2D3D [46]
are two cuboid room layout datasets. PanoContext [43] con-
tains 514 annotated cuboid room layouts collected from
SunCG [36] dataset. Zou et al. [46] collected 571 panoramas
from Stanford2D3D [1] and annotated them with room lay-
outs. The input resolution of both datasets is 512×1024. We

follow the same splits of previous works [16,46] for training
and testing.
Matterport3D [3] is a large-scale RGB-D dataset that con-
tains 10,800 panoramic images collected in 90 scenes. We
use this dataset for our depth estimation experiment. We
follow the official split that takes 7829 panoramas from 61
houses for training and the rest for testing. The resolution
used in our experiment is 512× 1024.

4.2. Implementation details

For depth estimation, we evaluate the performance of our
model using the standard depth estimation metrics, including
Mean Relative Error (MRE), Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), log-based Root Mean
Square Error (RMSE(log)) and threshold-based precision δ1,
δ2 and δ3. For semantic segmentation, we evaluate the per-
formance using the standard semantic segmentation metrics
class-wise mIoU and class-wise mAcc. For layout prediction,
we use 3D Intersection over Union (3DIoU%) to evaluate
the performance.

We implement our model using Pytorch and train it on
eight NVIDIA GTX 1080 Ti GPUs with a batch size of 16.
We train the network using Adam optimizer, and the initial
learning rate is set to 0.0001. For the depth estimation, we
train our model on Stanford2D3D [1] for 100 epochs and
Matterport3D [3] for 60 epochs. We train our model 200
epochs on semantic segmentation datasets, and 1000 epochs
on layout prediction datasets. We adopt random flipping, ran-
dom horizontal rotation and random gamma augmentation
for data augmentation. The default stride and interval for
depth estimation are 32 and 128 while the stride is set to 16
for semantic segmentation.
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Stanford2D3D Matterport3D

Figure 3. Qualitative results on Stanford2D3D [1] and Matterport3D [3]. Our method generates sharp object edges and shows consistent
indoor structure depth prediction in different scenes. The black spots stand for the invalid depth values.

4.3. Evaluation on depth estimation datasets

We evaluate our method against state-of-the-art panorama
depth estimation algorithms in Table 1. The results are aver-
aged by the best results from three training sessions. Note
that the results of SliceNet [24] on Stanford2D3D [1] were re-
produced by the fixed metrics and we retrain and re-evaluate
a 2-iteration Omnifusion [21] model on Matterport3D [3]
dataset. Our model outperforms existing models on all met-
rics on both datasets. Figure 3 shows the qualitative results of
our model on Stanford2D3D [1] and Matterport3D [3]. For
the method that directly works on the panoramas [24, 31],
they predict continuous background while lacking object
details. Fusion-based method [21] generates sharp depth
boundaries while the strange artifacts caused by the patch-
wise discrepancy lead to inconsistent depth prediction, e.g.
the bookshelf in column 1 and the shower glass in column 4.
It is not removable with its patch fusion module or iteration
mechanism. With the help of our proposed Local2Global
Transformer, our model preserves the geometric continuity

of the room structure and shows superior performance even
for some challenging scenarios, e.g. the windows in column
2. Our model also generates sharp object depth edges, e.g.
the floor lamp and sofa in column 3.

4.4. Evaluation on semantic segmentation datasets

We evaluate our method against state-of-the-art panorama
semantic segmentation methods in Table 2. Our method im-
proves the mIoU by 6.9% and mAcc by 8.9% against Ho-
HoNet [31]. Note that we only use RGB panoramas as input.
Figure 4 shows the qualitative results of our semantic seg-
mentation model on Stanford2D3D [1]. Our model shows a
strong ability to segment out the objects with a smooth sur-
face, e.g. the whiteboards and windows. The segmentation
edges are natural and continuous. This is because the Lo-
cal2Global Transformer successfully captures the geometric
context of the object. Our model is also good at segmenting
out the small objects from the background, e.g. the computer
in both columns. Note that the segmentation boundaries of

6



Method Input mIoU ↑ mAcc ↑
TangentImg [8] RGB-D 41.8 54.9
HoHoNet [31] RGB-D 43.3 53.9
Ours RGB 46.3 58.7

Table 2. Quantitative results of semantic segmentation on Stan-
ford2D3D [1] dataset.
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Figure 4. Qualitative results of semantic segmentation on Stan-
ford2D3D [1] dataset.

the ceiling and the walls generated by our model are very
smooth against the previous work [31], which shows the
power of our panel geometry embedding network to learn
the ERP distortion. Zoom in to view more details.

4.5. Evaluation on layout estimation datasets

We evaluate our method against state-of-the-art panorama
layout estimation methods in Table 3. By adding linear lay-
ers at the end of our depth estimation network, our model
achieves competitive performance against state-of-the-art
methods designed specifically for layout estimation. Since
our model is initially designed for dense prediction, it suf-
fers an information loss in the process of upsampling and
channel compression. Our layout prediction model shares
the same structure with the depth estimation model before
the linear layers. We can activate this model with the weights
pretrained on depth estimation datasets to reduce the training
overhead. We find that our layout prediction model has the
best performance when the stride is 64 and the interval is
128 so we use this setup for experiments on both datasets.

Method PanoContext Stanford2D3D

LayoutNet v2 [47] 85.02 82.66
DuLa-Net v2 [47] 83.77 86.60
HorizonNet [30] 84.23 83.51
AtlantaNet [25] - 83.94
LGT-Net [16] 85.16 85.76
Ours 84.52 85.91

Table 3. Quantitative results of layout estimation on PanoContext
dataset and Stanford2D3D [1] dataset in 3DIoU (%). Following
the previous works [16, 46], we use the combination of PanoCon-
text [43] and Stanford2D3D [46] for training.

W/ Trans+Geo GTW/ TransBaseline

Figure 5. Qualitative effects of each network element. The baseline
model is the pure CNN model listed in the first row of Table 4.

4.6. Ablation study

In this section, we conduct ablation studies to evaluate the
impact of the elements and hyper-parameters of our model
on Stanford2D3D [1] dataset for depth estimation.
Effects of individual network components We conduct
an ablation study to evaluate the impact of each component
in our model, presented in Table 4. The stride is set to 32
and the interval is 128 for all networks. We conduct our
baseline model with a ResNet-34 [12] encoder and a depth
decoder as illustrated in Section 3.1. Since partitioning the
entire panorama into panels with overlaps greatly increase
the computational complexity, we use ResNet-34 rather than
vision Transformers as backbones. As we observed in Ta-
ble 4, the performance improvement of adding the panel
geometry embedding network to the pure CNN structure
is small since the network’s ability to aggregate distortion
information with image features is low. By applying the Lo-
cal2Global Transformer as a feature processor, our baseline
network gains a significant performance improvement on all
evaluation metrics. Benefiting from the information aggrega-
tion ability of our proposed Local2Global Transformer, the
panel geometry embedding network fully performs its ability
on distortion perception and improves the performance both
quantitatively and qualitatively. As shown in Figure 5, the
combination of Local2Global Transformer and panel geome-
try embedding network leads to the clearest object edges. We
further test panel-wise relative position embedding similar
to LGT-Net [16] for Panel Blocks. However, it brings mini-
mal performance improvements on depth estimation while
increasing the computational complexity.

We conduct an ablation study to further validate the use-
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Method Train Mem. MRE MAE RMSE δ1 δ2

Baseline 10231 0.1033 0.1859 0.3212 0.8976 0.9741

Baseline + Geo(G) 10371 0.1029 0.1861 0.3205 0.8980 0.9765
Baseline + Geo(G+L) 10509 0.1000 0.1815 0.3149 0.9012 0.9775

Baseline + Transformer(P) 10359 0.0904 0.1652 0.3058 0.9123 0.9776
Baseline + Transformer(P+W) 10379 0.0854 0.1610 0.3016 0.9164 0.9785

Baseline + Geo(G+L) + Transformer(P) 10639 0.0851 0.1572 0.2954 0.9218 0.9789
Baseline + Geo(G+L) + Transformer(P+W) 10659 0.0829 0.1520 0.2933 0.9242 0.9796

Table 4. Ablation study about the impact of each PanelNet component. ”P” and ”W” stands for the Panel Blocks and Window Blocks in
Local2Global Transformer. ”G” and ”L” stands for the global and local feature embedded by the panel geometry embedding network. ”Train
Mem.” stands for the GPU memory (MB) overhead of training our model on a single GTX-1080Ti GPU, the batch size is 2.

Method MRE MAE RMSE δ1 δ2

Omnifusion w/o Trans. 0.1132 0.1932 0.3248 0.8728 0.9690
PanelNet w/o Trans. 0.1000 0.1815 0.3149 0.9012 0.9775
Omnifusion w/ L2G 0.1054 0.1918 0.3351 0.8870 0.9754
PanelNet w/ L2G 0.0829 0.1520 0.2933 0.9242 0.9796

Table 5. Ablation study on the usefulness of panel representation
against tangent images.

fulness of panel representation against tangent images. We
use Omnifusion [21] as a comparison since it has a similar in-
put format and can be trained via the same encoder-decoder
CNN architecture with our model. As shown in Table 5,
the panel representation with pure CNN architecture outper-
forms the original Omnifusion [21], which demonstrates the
superiority of panel representation. We replace the default
transformer of Omnifusion [21] with Local2Global Trans-
former. However, the Local2Global Transformer doesn’t
bring a huge performance improvement for tangent images
since the discontinuous tangent patches lower the ability of
the Window Blocks to aggregate local information in the ver-
tical direction which reduces the continuity of depth estima-
tion for gravity-aligned objects and scenes. On the contrary,
the vertical continuity is preserved within the vertical panels.
With the panel representation, the Local2Global Transformer
exerts its greatest information aggregation ability.
Effects of panel size and stride We further study the effect
of panel size on the performance and speed, as displayed in
Table 6. The FPSs are obtained by measuring the average
inference time on a single NVIDIA GTX 1080Ti GPU. We
observe that for the models that have the same panel interval,
i.e. width, a smaller stride enhances the performance. For
the same stride, the models with larger panels have better
performance. Theoretically, smaller strides improve perfor-
mance because horizontal consistency is preserved by the
more overlapping area of consecutive panels. Larger panels
also lead to better performance because larger panels provide
larger FoV, which contains more geometric context within a
panel. However, we observe that keep increasing the inter-
val may have a negative impact on performance. The larger

I S #Panel FPS MRE RMSE δ1

64 16 128 6.4 0.0866 0.3040 0.9181
64 32 64 12.4 0.0909 0.3207 0.9102
64 64 32 24.4 0.0952 0.3319 0.9041

128 32 32 6.9 0.0829 0.2933 0.9242
128 64 16 13.5 0.0892 0.3109 0.9172
128 128 8 25.7 0.0920 0.3181 0.9103
256 64 16 7.5 0.0894 0.3047 0.9132
256 128 8 13.9 0.0908 0.3069 0.9182
256 256 4 26.4 0.0986 0.3248 0.8991

Table 6. Ablation study on the impact of panel size and stride.
”I” and ”S” stand for the panel interval and stride mentioned in
Section 3.1. ”#Panel” stands for the number of panels.

panel brings higher computational complexity, which forces
the stride to increase to reduce the computational overhead.
This makes the performance gain brought by the larger FoV
be wiped out by the consistency loss due to fewer overlaps.
To gain the best performance, we set the interval to 128 and
the stride to 32 for most of our experiments.

5. Conclusion

We present PanelNet, a framework that understands in-
door environments from 360 images. Based on the essential
properties of indoor equirectangular projection (ERP), we
introduce a novel panel representation to model the indoor
scene. We design a panel geometry embedding network to
encode both local and global geometric features which re-
duces the negative impact of ERP distortion implicitly. We
introduce Local2Global Transformer for information aggre-
gation, which greatly improves the performance of our model
by successfully aggregating the local information within a
panel and capturing panel-wise global context. Our model
outperforms existing panorama depth estimation approaches
on all evaluation metrics and achieves competitive results on
360 indoor semantic segmentation and layout estimation.
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