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Abstract

This paper presents a learning-based method for multi-
view depth estimation from posed images. Our core idea is
a “learning-to-optimize” paradigm that iteratively indexes
a plane-sweeping cost volume and regresses the depth map
via a convolutional Gated Recurrent Unit (GRU). Since the
cost volume plays a paramount role in encoding the multi-
view geometry, we aim to improve its construction both at
pixel- and frame- levels. At the pixel level, we propose to
break the symmetry of the Siamese network (which is typi-
cally used in MVS to extract image features) by introducing
a transformer block to the reference image (but not to the
source images). Such an asymmetric volume allows the net-
work to extract global features from the reference image to
predict its depth map. Given potential inaccuracies in the
poses between reference and source images, we propose to
incorporate a residual pose network to correct the relative
poses. This essentially rectifies the cost volume at the frame
level. We conduct extensive experiments on real-world MVS
datasets and show that our method achieves state-of-the-art
performance in terms of both within-dataset evaluation and
cross-dataset generalization.

1. Introduction

Multi-view stereo (MVS) aims to recover dense 3D ge-
ometry from multiple images captured from different view-
points with calibrated cameras [29]. It is a fundamen-
tal problem in computer vision and has wide applications
ranging from autonomous driving [13, 58], remote sens-
ing [3], augmented reality [53], to robotics [23]. Follow-
ing the seminal MVSNet [62], many learning-based meth-
ods [18, 41, 42, 55, 56, 61, 63] have been proposed, achiev-
ing great improvements against their traditional counter-
parts [6, 15, 20, 47], in terms of accuracy or efficiency.

Most of the learning-based MVS methods [18,41,42,55,
61,63] rely on traditional plane-sweeping [15,20] approach
to generate a cost volume by comparing the CNN features
of reference image and source images at several depth hy-
potheses, and then apply 2D or 3D convolutional encoder-
decoders to aggregate and regularize the cost volume. The

2D CNN methods [18] use multi-level features as skip con-
nections to help decode the cost volume for depth regres-
sion. Even though the skip connections improve the depth
maps, they weaken the role of cost volume and the geome-
try knowledge embedded therein to some extent. Hence, 2D
CNN methods suffer from degraded generalization when
testing on unseen domains. The 3D CNN methods [33]
use soft-argmin to regress the depth map as the expectation
from the cost volume distribution, and hence cannot predict
the best candidate but instead an averaged one when dealing
with a flat or multi-modal distribution caused by textureless,
repeated, or occluded regions, etc. To mitigate these prob-
lems, we propose RIAV-MVS, a new paradigm to predict
the depth via learning to recurrently index an asymmetric
cost volume, obtaining improved accuracy and generaliza-
tion. As depicted in Fig. 1, our RIAV-MVS features several
nontrivial novel designs.

First, we learn to index the cost volume by approach-
ing the correct depth planes per pixel via an index field (a
grid of indices to identify the depth hypotheses), as shown
in Fig. 1-(e). The proposed recurrent estimate of the index
field enables the learning to be anchored at the cost volume
domain. Specifically, it recurrently predicts the residual in-
dex field in a descent direction of matching cost to retrieve
cost values for the next iteration. The newly updated index
field is used to directly index (i.e., sampling via linear in-
terpolation) depth hypotheses to render a depth map, which
is iteratively optimized to approach the ground truth depth,
making the system end-to-end trainable.

Second, to facilitate the optimization, we propose to im-
prove the cost volume at pixel- and frame- levels, respec-
tively. At the pixel level, a transformer block is asymmet-
rically applied to the reference view (but not to the source
views). By capturing long-range global context via a trans-
former and pixel-wise local features via CNNs, we build an
asymmetric cost volume to store more accurate matching
similarity cues. At the frame level, we propose a residual
pose net to rectify the camera poses that are usually ob-
tained via Visual SLAM [10, 17, 31] and inevitably contain
noise. The rectified poses are used to more accurately back-
ward warp the reference features to match the counterparts
in source views.
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Figure 1. Our pipeline versus RAFT [52] and IterMVS [55]. Our recurrent processing of a plane-sweep cost volume by the iteratively
refined index field serves as a new design for multi-view depth estimation.

Our RIAV-MVS is depicted versus two related works
RAFT [52] and IterMVS [55] as in Fig. 1. First, our method
is developed using RAFT’s GRU-based iterative optimiza-
tion. However, RAFT operates an all-pair correlation vol-
ume (no multi-view geometry constraints) for optical flow
(Fig. 1-(a) and (c)), our method is proposed for multi-view
depth estimation by constructing a plane-sweep cost vol-
ume (Fig. 1-(b)). Second, IterMVS [55] iteratively predicts
the depth and reconstructs a new plane-sweep cost volume
using updated depth planes centered at the predicted depth
(Fig. 1-(d)). Instead, as shown in Fig. 1-(e), our proposed
index field serves as a new design that bridges the cost vol-
ume optimization (i.e., by learning better image features via
back-propagation) and the depth map estimation (i.e., by
sampling sweeping planes). It makes forward and back-
ward learning differentiable. We conduct extensive exper-
iments on indoor-scene datasets, including ScanNet [16],
DTU [28], 7-Scenes [21], and RGB-D Scenes V2 [34]. We
also performed well-designed ablation studies to verify the
effectiveness and the generalization of our approach.

2. Related Work

Depth can be accurately predicted from stereo match-
ing, which can be broadly divided into binocular stereo
and multi-view stereo (MVS). The former requires cali-
brated setups of rectified stereo pairs, and many traditional
[4, 25, 26, 46] and deep learning-based methods [8, 9, 11,
33, 35, 36, 43, 64, 65] have been proposed. Compared with
binocular stereo, MVS methods estimate depth from a set of
images or a video, where the camera moves and the scene
is assumed static. In this section, we briefly review deep
learning-based MVS methods.
3D-CNN MVS Depth Estimation: Learning-based MVS
methods [18,41,42,55,56,61–63] rely on traditional plane-
sweeping [15, 20] to generate a cost volume by associat-
ing reference frame and source frames for similarity match-
ing, followed by encoder-decoder architectures for cost vol-
ume aggregation and depth map prediction. Among them,
MVSNet [62], R-MVSNet [63], and DPSNet [27] leverage

3D convolutions to regularize 4D cost volumes and regress
depth maps via soft-argmin [33]. Different strategies have
been introduced for cost volume construction. MVSNet
[62] proposes a variance-based cost volume for multi-view
similarity measurement. Cas-MVSNet [22] builds cascade
cost volumes based on multi-scale feature pyramid and re-
gresses the depth map in a multi-stage coarse-to-fine man-
ner. Similarly, Cheng et al. propose UCS-Net [14] to build
cascade adaptive thin volumes by leveraging variance-based
uncertainty. CVP-MVSNet [61] builds a cost volume pyra-
mid via multi-scale images to reduce to memory footprint.
This cost volume mechanism is also adopted to other re-
lated tasks, e.g., 3D plane reconstruction in PlaneMVS [40],
which leverages slanted plane sweeping to help plane recon-
struction and accurate depth predictions.

2D-CNN MVS Depth Estimation: Even though 3D con-
volutional methods usually deliver high accuracy, they de-
mand a large memory footprint and computational cost. In-
stead, some methods, e.g., MVDepthNet [57] and Deep-
VideoMVS [18], generate 3D volumes by computing cor-
relation or dot production between the extracted features of
multi-view input images. The 3D cost volumes are further
regularized by 2D convolutions. DeepVideoMVS [18] ex-
tracts multi-scale features. It uses the feature at half scale
to construct the cost volume, and other features as the skip
connections to a series of decoders for depth regression.
PatchmatchNet [56] proposes an adaptive procedure mim-
icking PatchMatch [6] to achieve superior efficiency. 2D
convolutions are much faster and more memory efficient
than the 3D counterparts, making them better suitable for
lightweight networks in real-time applications.

Iterative Depth Estimation: Several methods adopte an
iterative depth estimation paradigm. R-MVSNet [63] iter-
atively regularizes each slice of the cost volume with GRU
along the depth dimension. Unlike the above mentioned
cost volume-based approaches, Point-MVSNet [12] directly
processes the target scene as point clouds. It first generates
a coarse depth map, converts it into a point cloud and refines
the point cloud iteratively to reduce the residual between the
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estimated depth and the ground truth depth. IterMVS [55]
encodes a pixel-wise probability distribution of depth in the
hidden state of a GRU-based estimator. During each iter-
ation, the multi-scale matching information is injected into
the GRU to predict the depth and confidence maps to fa-
cilitate the following 3D reconstruction. The depth maps
are predicted via a combined classification and regression
through the probability distribution. It uses arg-min to finish
“classification”, which is not differentiable and must be de-
tached first before the following regression operation. Un-
like IterMVS, our method learns to recurrently index the
cost volume to directly find the best depth candidates in an
end-to-end differentiable fashion.

3. Method
Our learning-based end-to-end multi-view stereo system,

RIAV-MVS, aims to predict depth maps from a set of im-
ages, which are different views of the same scene with
known camera poses, denoted by I = {Ii}N−1

i=0 . More
specifically, RIAV-MVS uses one as the reference image
and others as source images to infer the depth map of the
reference image. Without loss of generality, we refer to the
first image I0 as the reference image and others as source
views IS , where S = 1, 2, ..., N − 1. An overview of
our approach is illustrated in Fig. 2. It consists of feature
extraction (Sec. 3.1), cost volume construction via plane-
sweeping stereo [15, 20] (Sec. 3.2), and cost volume opti-
mization and depth prediction (Sec. 3.3). Details will be
discussed below.

3.1. Feature Extraction

Given a reference image I0 and source images IS , we
extract matching features of I0 and each of the IS by F-Net
(see below), and a context feature for I0 by C-Net (see the
supplementary material for C-Net), as shown in Fig. 2.
Local Matching Feature Extraction: Our feature extrac-
tor F-Net is based on PairNet [18]. It is a lightweight Fea-
ture Pyramid Network (FPN) [37] on top of the first four-
teen layers of MnasNet [50]. Specifically, the reference in-
put image I0 ∈ RH×W is spatially scaled down until 1/32
scale, and recovered up to 1/2 scale, resulting in multi-scale
features {f0,s ∈ R

H
s ×

W
s ×F0} (s=2,4,8,16 and F0=32 for

feature channels). In PairNet, f0,2 is used to construct the
cost volume, and other features are used in the skip connec-
tions to a series of decoders for depth regression. Unlike
this, we add an extra fusion layer G to aggregate them into
a matching feature f0 at 1/4 scale, as

f0 = G(〈f0,2 ↓2, f0,4, f0,8 ↑2, f0,16 ↑4〉) (1)

where the fusion layer G is a sequence of operations of
Conv3×3, batch normalization, ReLU, and Conv1×1, ↓x
and ↑x are downsampling and upsampling by scale x,
〈·〉 is concatenation along channel dimension, and f0 ∈

RH/4×W/4×F1 with F1=128. Similarly, F-Net (with shared
weights as that for I0) is also applied to source images IS
to extract a set of matching features fS = {fi | i ∈ S}.
Global Matching Feature of Reference View: Besides
the local pixel-wise features extracted from CNNs, we also
leverage global long-range information to better guide the
feature matching. Towards that, a transformer layer (four-
head self-attention with positional encoding) [54] is applied
to the local feature f0 of the reference image, to construct
an aggregated feature fa0 ∈ RH/4×W/4×F1 as

fa0 = f0 + ωασ

(
(f0W

Q)(f0W
K)T√

F1

(f0W
V )

)
(2)

where σ(·) is the softmax operator, ωα is a learned scalar
weight that is initialized to zero, andWQ,WK ∈ RF1×hF1 ,
and WV ∈ RF1×F1are the projections matrices for query,
key and value features, with h=4 for multi-head attention.
The final output fa0 contains both local and global informa-
tion, which are balanced by the parameter ωα, to enhance
the following cost volume construction.

It is worth noting that this transformer self-attention is
only applied to the reference image, while the source fea-
tures still possess the local representations from CNNs. Our
asymmetric employment of this transformer layer provides
the capability to better balance the high-frequency features
(by high-pass CNNs) and the low-frequency features by
self-attention [44,49]. The high-frequency features are ben-
eficial to image matching at local and structural regions,
while the low-frequency ones, with noisy information sup-
pressed by the transformer’s spatial smoothing (serving as
a low-pass filter), provide more global context cues for ro-
bust matching, especially for the areas full of low-texture,
repeated patterns, and occlusion, etc. This way, our net-
work can learn where to rely on global features over local
features, and vice versa.

3.2. Cost Volume Construction

We use the global matching feature map fa0 of I0 and lo-
cal matching features fS of IS to build a cost volume. The
cost (or matching) volume is defined on a 3D view frustum
attached to the camera in perspective projection. It is gener-
ated by running the traditional plane-sweep stereo [15, 20]
which uniformly samples M0=64 plane hypotheses in the
inverse depth space, s.t. 1/d ∼ U(dmin, dmax). Here dmin
and dmax are the near and far planes of the 3D frustum, re-
spectively. Following [18], we set dmin=0.25 and dmax=20
meters for indoor scenes (e.g., ScanNet [16]).

For a given depth hypothesis d and known camera in-
trinsic matrices K = {Ki}Ni=0 and relative transformations
Θ = {R0,i | t0,i}Ni=1 from reference image I0, to source
image Ii, a cost map is computed by i) warping source im-
age feature fi into the reference image and ii) calculating
the similarity between the reference global feature fa0 and
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Figure 2. Architecture of our proposed network. It consists of a feature extraction (i.e., F-Net, a Transformer, and C-Net) block, a cost
volume construction and index field GRU-based optimization block, and a residual pose block.

the warped feature f̃i. To generate f̃i, we implement the
homography H as a backward 2D grid sampling. Specifi-
cally, a pixel p = (u, v, 1)T in the reference image will be
warped to its counterpart p̃i in source image i as follows:

p̃i = H(p | d,K,Θ) = Ki

(
R0,i

(
K−1

0 pd
)

+ t0,i
)

(3)

Then f̃i is bilinearly sampled from fi as f̃i(p) =
fi(p̃i). Given the warped source feature f̃i and the refer-
ence feature fa0 , the cost volume is formulated as C0(d) =

1
N−1

∑
i∈S

fa
0 ·f̃

T
i√

F1
. This way, we can construct a cost vol-

ume for all depth candidates B0={di}M0−1
i=0 , resulting in a

3D tensor, denoted as C0 ∈ RH/4×W/4×M0 .

3.3. GRU-based Iterative Optimization

We solve the depth prediction as learning to optimize
the dense stereo matching problem [6, 25, 51, 60]. Given
the generated cost volume C0 as in Sec. 3.2, the depth esti-
mation of the reference image is formulated as finding the
best solution D∗ = argminD E(D,C0), which minimizes
an energy function E(D,C0) (including a data term and a
smoothness term). Unfortunately, such a global minimiza-
tion is NP-complete due to many discontinuity preserving
energies [7]. Approximate solutions are proposed by loos-
ening the energy function, e.g., the binocular stereo match-
ing solved by Semi-Global Matching (SGM) [25]. In SGM,
the matching cost C0 is iteratively aggregated by summing
the costs (of all 1D minimum cost paths that end in pixel p
at disparity d1) when traversing from pixel p−r to pixel p in
a direction r (out of sixteen directions) and the best dispar-
ity at each pixel p is given by d∗(p) = argmind(C

′(p, d)),
with C ′ being the aggregated cost volume. Similar to SGM,

1Abuse of notation d for depth in MVS or disparity in binocular stereo

we do not directly optimize the energy functionE, but learn
to process the cost volume C0.

However, several major problems still need to be solved.
SGM is not differentiable due to its winner-take-all (WTA)
by argmin, making it unable to train the system in an end-
to-end manner. Its differentiable counterpart, SGA [65],
was proposed by changing the min to sum when aggre-
gating the cost volume, and replacing the argmin with
softargmin when predicting the disparity from the opti-
mized cost volume, but still i) the update direction r when
traversing from pixel p-r to p needs to be predefined, and
ii) the softargmin focuses on measuring the distance of the
expectation of disparity map to the ground truth disparity,
and hence cannot handle multi-modal distributions in C0

well [55].

Therefore, towards an end-to-end, differentiable solu-
tion, we propose to use a GRU-based module to implic-
itly optimize the matching volume. It estimates a sequence
of index fields {φt}Tt=1 by unrolling the optimization prob-
lem to T iterative updates (in a descent direction), mim-
icking the updates of a first-order optimizer according to
[1,2,38,52]. At each iteration t, the index field φt ∈ RH×W

is estimated as a grid of indices to iteratively better approach
(i.e., closer to the ground truth) depth hypotheses having a
lower matching cost. Specifically, a residual index field δφt
is predicted as an update direction for next iteration, i.e.,
φt+1 = φt + δφt, (analogous to the direction r in SGM),
which is explicitly driven by training the system (e.g., fea-
ture encoders, the transformer layer, and the residual pose
net, etc.) to minimize the loss between the predicted depth
maps and the ground truth. The recurrent estimate of the
index field enables the learning to be directly anchored at
the cost volume domain. This indexing paradigm differen-
tiates our approach from other depth estimation methods,
such as the depth regression which fuses cost volume and
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the skipped multi-level features by 2D CNNs [18, 55, 56],
and soft-argmin [33] after cost volume aggregation and reg-
ularization by 3D CNNs [22, 41, 62, 63].
Index Field Iterative Updates: We use a 3 chained
GRUs [38] to estimate a sequence of index fields, {φt ∈
RH/4×W/4}Tt=1 from an initial starting point φ0. We use
a softargmin-start from the cost volume C0, i.e., φ0 =∑M1−1
i=0 iσ(C0), where σ(·) is the softmax operator along

the last dimension of cost volumeC0, to convert it to a prob-
ability of each index i. This setup facilitates the conver-
gence of our predictions. A four-layer matching pyramid
{Ci0 ∈ RH/4×W/4×M0/2

i}4i=1 is built by repeated pooling
the cost volume C0 along the depth dimension with kernel
size 2 as in [52]. To index the matching pyramid, we define
a lookup operator analogous to the one in [38]. Given a cur-
rent estimate of index field φt, a 1D grid is constructed with
integer offsets up to r = ±4 around the φt. The grid is used
to index from each level of the matching pyramid via linear
interpolation due to φt being real numbers. The retrieved
cost values are then concatenated into a single feature map
Cφt

0 ∈ RH/4×W/4×F2 . Then the index field φt, the retrieved
cost features Cφt

0 , and context features f c0 are concatenated,
and fed into the GRU layer, together with a latent hidden
state ht. The GRU outputs a residual index field δφt, and a
new hidden state ht+1:

δφt, ht+1 ⇐ GRU(〈φt, Cφt

0 , f c0〉, ht);φt+1 ⇐ φt + δφt

Upsampling and Depth Estimation: The depth map at
iteration t is estimated by sampling the depth hypotheses
via linear interpolation given the index field φt. Since φt is
at 1/4 resolution, we upsample it to full resolution using a
convex combination of a 3×3 neighbors as in [52]. Specifi-
cally, a weight maskW0 ∈ RH/4×W/4×(4×4×9) is predicted
from the hidden state ht using two convolutional layers and
softmax is performed over the weights of those 9 neigh-
bors. The final high resolution index field φut is obtained
by taking a weighted combination over the 9 neighbors, and
reshaping to the resolution H×W. Convex combination can
be implemented using the einsum function in PyTorch.

When constructing the cost volume, we use M0 = 64
depth hypotheses, B0 = {di}M0−1

i=0 . A small M0 helps
reduce the computation and space. If we use the upsam-
pled index field φut to directly sample the planes B0, we see
discontinuities in the inferred depth map, even though the
quantitative evaluation is not hindered. To mitigate this, we
propose a coarse-to-fine pattern, and to use M1=256 depth
hypotheses B1 = {di}M1−1

i=0 . Analogous to upsampling in
optical flow or disparity in binocular stereo, the flow or dis-
parity values themselves have to be scaled when implement-
ing the spatial upsampling. Our depth index fields are ad-
justed by a scale sD=M1

M0
=4. To mimic the convex combina-

tion before mentioned, we apply a similar weighted summa-
tion along the depth dimension when sampling depth from

B1. Specifically, another mask W1 ∈ RH×W×sD×M0 is
predicted from the hidden state using three convolutional
layers, and further reshaped to H×W ×M1. Given a pixel
p, and the upsampled index field φut , the final depth Dt is
estimated as

Dt(p) =

∑
i∈Ω(p) B1 [i]W1(p, bic)∑

i∈Ω(p)W1(p, bic)
(4)

where, we aggregate the neighbors within a radius r = 4
centered at the index φut (p) for a given pixel p, and bic
gives a greatest integer less than or equal to i, and [i] means
to index the depth planes B1 via linear interpolation, due to
index i being a real number.

It is worth mentioning that our method embeds both re-
gression (similar to softargmin in existing methods [41, 62,
63]) and classification (similar to argmin), which make it
robust to multi-modal distributions, and achieving sub-pixel
precision thanks to linear interpolation. Combining both
classification and regression has been seen in [55], but ours
does not use the argmax operator when achieving the “clas-
sification” purpose, thanks to our proposal of index fields
estimation, which differentiably bridges the cost volume in-
dexing and depth hypotheses sampling directly in a sub-
pixel precision.
Residual Pose Net: An accurate cost volume benefits the
GRU-based iterative optimization. The quality of the gener-
ated cost volumeC0 is not only determined by the matching
features (fa0 and fS ) (for which we have proposed asym-
metric employment of the transformer layer), but also by
the homography warping as in Eq. 3. However, the camera
poses are, in practice, usually obtained by Visual SLAM
algorithms [10,17,31], and inevitably contain noise. There-
fore, we propose a residual pose net to rectify the camera
poses for accurately backward warping the reference fea-
tures to match the corresponding features in source images.
We use an image-net pretrained ResNet18 [24] backbone as
in [30, 59] to encode the reference image and the warped
source images. Specifically, given the current estimated
depth mapDt at iteration t, and the ground truth depthDgt,
we warp a source image Ii into the reference image through
the homography defined in Eq. 3 with (noisy) ground truth
camera poses Θ and the Dt or Dgt. We randomly select
Dt or Dgt with a probability prob(Dt)=0.6 during network
training, but always use the predicted depth Dt during net-
work inference. The input to the pose net is the concate-
nated I0 and the warped Ĩi, and the output is an axis-angle
representation, which is further converted to a residual rota-
tion matrix ∆θi, for an updated one θ′i= ∆θi · θi. This way,
we predict the residual poses ∆Θ = {∆θi}N−1

i=1 for each
of the source and reference pair, and perform the rectifica-
tion as Θ′ = ∆Θ · Θ. We leverage the updated poses Θ′

to calculate a more accurate cost volume C1 using Eq. 3,
followed by the remaining iterations of GRU.
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3.4. Loss Function

Our network is supervised on the inverse L1 loss be-
tween the predicted depths {Dt}Ti=1 and the ground truth
Dgt. It is evaluated over valid pixels (i.e., with non-zero
ground truth depths). Following the exponentially increas-
ing weights as in [38, 52], this depth loss is defined as

LD =

T∑
t=1

γT−t
1

Nv

Nv−1∑
i=0

‖ 1

Dt(i)
− 1

Dgt(i)
‖1 (5)

where, ‖ · ‖1 measures the l1 distance, Nv is the number of
valid pixels, and γ = 0.9. We also apply the photometric
loss LP (as defined in [59]) to supervise the residual pose
network. The total loss is then defined as L = LD + LP .

4. Experiments
4.1. Datasets

Our experiments use four indoor-scene datasets, which
have RGB-D video frames with ground truth depths and
known camera poses. ScanNet [16] and DTU [28] are
used in training and testing, and 7scenes [21] and RGB-
D Scenes V2 [34] are evaluated for zero-shot generaliza-
tion. (1) ScanNet. Our network is trained from scratch on
ScanNet [16] using the official training split. We use 279k
training samples and 20k validation ones. (2) DTU. Follow-
ing [56,62,63], the depth range for sampling depth hypothe-
ses is set to dmin = 0.425 and dmax = 0.935 meters. We
use 27k training samples, 6k validation ones, and 1k ones
for evaluation. Each sample has 5 frames. (3) 7-Scenes.
We select 13 sequences from 7-Scenes for zero-shot gener-
alization. (4) RGB-D Scenes V2. We select 8 sequences
for testing. Details about train/val/test splits, training, and
implementation are shown in the supplementary material.

4.2. Comparison with Existing Methods

In this section, our method is evaluated and compared
with several state-of-the-art MVS methods. Our network
is strictly compared with two baselines PairNet [18] and
IterMVS [55], following the same training schedule and
training set. We also compare ours with other MVS meth-
ods either by running the provided models or referring to
the available evaluation metrics when testing on the same
datasets, including ESTDepth [41], Neural RGBD [39],
MVDepthNet [57], DPSNet [27], and DELTAS [48].
Quantitative Evaluation. We evaluate the depth maps
using the standard metrics in [19], including mean absolute
relative error (abs-rel), mean absolute error (abs), squared
relative error (sq-rel), root mean square error in linear scale
(rmse) and log scale (rmse-log), and inlier ratios under
thresholds of σ <1.25/1.252/1.253. Tab. 1 shows the re-
sults on the ScanNet benchmark of our methods and sev-

eral state-of-the-art MVS methods. We compare two vari-
ants of our models: i) base: a base version with our recur-
rent indexing cost volume, and ii) +pose,atten: a full ver-
sion with residual pose and the asymmetric employment of
transformer self-attention. Our full model achieves the best
performance in most metrics except the inlier ratio under
σ <1.252, outperformed by DELTAS [48] and ESTD [41].
But the inlier ratio is not as essential as abs-rel and abs.
Zero-shot Generalization. We evaluate the generaliza-
tion performance of our method RIAV-MVS from ScanNet
to other indoor datasets without any fine-tuning. Tab. 2
shows the results of the methods trained on ScanNet [16]
and directly tested on 7-scenes [21] and RGB-D Scenes
V2 [34]. Our models outperform the baselines, and our two
variants all have strong generalization performance. Quali-
tative Results. Fig. 3 demonstrates the qualitative results
of our method vs. baselines IterMVS [55] and PairNet [18]
on the test set of ScanNet [16] and DTU [28]. Our method
can make more accurate and sharp depth predictions, espe-
cially for regions near boundaries and edges. For both near
and far objects, our method outperforms the baselines.

4.3. Ablation Study

Efficacy of Proposed Modules: Our design is verified by
ablating the modules to three variants, as shown in Tab. 3-
(a). The base version itself can achieve competitive perfor-
mance on ScanNet and better generalization, verifying the
efficacy of our novel design - cost volume recurrent index-
ing via index field. Further, the performance can be con-
sistently boosted when the residual pose net (i.e., variant
+pose) and transformer self-attention are added (i.e., vari-
ant +pose,atten). Therefore, each of the proposed mod-
ules can consistently help with accurate depth estimation.
Tab. 3-(b) shows the benefit of using asymmetric attention
over symmetric attention. We also see improvements when
applying our asymmetric attention to the MVSNet [62]
backbone on ScanNet and DTU test sets (see the results
in parentheses). Number of GRU Iterations and Con-
vergence: Tab. 4-(a) shows the ablation study on different
number of GRU iterations T . The results are obtained by
running our model (the full version) on the ScanNet test set,
with T =16, 24, 48, 64, 96, and 128. Running more itera-
tions boosts our depth prediction, but after T ≥ 96, the gain
is marginal. View Number: We compare 3-view (i.e., 1
reference + 2 source images) and 5-view (i.e., 1 reference +
4 source images). Tab. 4-(b) shows that the more frames are
used for matching, the better the depth will be. The results
are obtained for the zero-shot generalization from ScanNet
to 7-Scenes. Note that our full model (+pose,atten) with 3-
view input outperforms the other two variants with 5-view
input, showing the asymmetrical employment of the trans-
former self-attention can boost the prediction due to the
mining of more global information. 3-view vs 5-view on
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Method ScanNet Test-Set (m) DTU Test-Set (mm)
abs-rel abs sq-rel rmse rmse-log δ < 1.25 δ < 1.252 abs-rel abs rmse

MVDepth [57] 0.1167 0.2301 0.0596 0.3236 0.1610 0.8453 0.9639 - - -
MVDepth-FT 0.1116 0.2087 0.0763 0.3143 0.1500 0.8804 0.9734 - - -
DPSNet [27] 0.1200 0.2104 0.0688 0.3139 0.1604 0.8640 0.9612 - - -
DPSNet-FT 0.0986 0.1998 0.0459 0.2840 0.1348 0.8880 0.9785 - - -
DELTAS [48] 0.0915 0.1710 0.0327 0.2390 0.1226 0.9147 0.9872 - - -
NRGBD [39] 0.1013 0.1657 0.0502 0.2500 0.1315 0.9160 0.9790 - - -
ESTD [41] 0.0812 0.1505 0.0298 0.2199 0.1104 0.9313 0.9871 - - -
MVSNet [62] 0.1032 0.18645 0.0465 0.2743 0.1385 0.8935 0.9775 0.0143 10.7235 25.3989
PairNet [18] 0.0895 0.1709 0.0615 0.2734 0.1208 0.9172 0.9804 0.0129 9.4428 21.4650
IterMVS [55] 0.0991 0.1818 0.0518 0.2733 0.1368 0.8995 0.9741 0.0146 10.6225 28.7009
Ours(base) 0.0885 0.1605 0.0380 0.2347 0.1183 0.9211 0.9810 0.0116 8.2887 21.5806
Ours(+pose,atten) 0.0734 0.1381 0.0281 0.2080 0.1030 0.9395 0.9862 0.0092 6.7771 18.5953

Table 1. Quantitative evaluation results on the test set of ScanNet [16] and the test set of DTU [28]. Error metrics (lower is better) are
abs-rel, abs, sq-rel, rmse, rmse-log, while accuracy (higher is better) metrics are δ < 1.25/1.252/1.253. Here -FT denotes finetuned on
ScanNet. Bold is the best score, and underline indicates the second best one.

ScanNet⇒ 7-Scenes RGB-D Scenes V2
Others abs-rel abs sq-rel rmse δ < 1.25 abs-rel abs sq-rel rmse δ < 1.25
NRGBD [39] 0.2334 0.4060 0.2163 0.5358 0.6803 - - - - -
ESTD [41] 0.1465 0.2528 0.0729 0.3382 0.8036 - - - - -
PairNet [18] 0.1157 0.2086 0.0677 0.2926 0.8768 0.0995 0.1382 0.0279 0.1971 0.9393
IterMVS [55] 0.1336 0.2363 0.1033 0.3425 0.8518 0.0811 0.1245 0.0340 0.2133 0.9496
Ours(base) 0.1148 0.1999 0.0552 0.2857 0.8726 0.0967 0.1336 0.0246 0.1836 0.9427
Ours(+pose,atten) 0.1000 0.1781 0.0473 0.2664 0.8967 0.0803 0.1168 0.0200 0.1703 0.9632

Table 2. Zero-shot generalization from ScanNet [16] to 7-scenes [21] and RGB-D Scenes V2 [34]. Our methods achieve better generaliza-
tion. We sample the sequences every 10 frames, and each sample has 5 frames for multi-view stereo depth prediction.

Variants ScanNet Test-Set (m)
abs-rel abs rmse δ < 1.25

Ours(base) 0.0885 0.1605 0.2347 0.9211
Ours(+pose) 0.0827 0.1523 0.2253 0.9277
Ours(+pose,atten) 0.0734 0.1381 0.2080 0.9395

(a) We compare three variants of our models.

Attention ScanNet/DTU Test-Set (m)
abs-rel abs rmse δ < 1.25

Asym atten (ours) 0.0734 0.1381 0.2080 0.9395
Sym. atten 0.0761 0.1496 0.2253 0.9333

MVSNet [62] 0.1032 0.1865 0.2743 0.8935
(0.0143) (10.7235) (25.3989) (0.8936)

MVSNet(+atten) 0.1018 0.1853 0.2734 0.8957
(0.0123) (9.1150) (22.3525) (0.9909)

(b) Asymmetric attention and MVSNet backbone. DTU results are in
parentheses.

Table 3. Ablation study for our proposed modules and a different backbone architecture MVSNet [62].

Itr. T abs-rel abs δ < 1.25
16 0.1413 0.0760 0.9364
24 0.1400 0.0752 0.9375
48 0.1392 0.0747 0.9382
64 0.1392 0.0746 0.9384
96 0.1392 0.0745 0.9385
128 0.1394 0.0745 0.9385

(a) GRU iterations

View No. abs-rel abs δ < 1.25
3 (base) 0.1204 0.2121 0.8603
5 (base) 0.1148 0.1999 0.8726
3 (+pose) 0.1162 0.2061 0.8711
5 (+pose) 0.1096 0.1930 0.8840
3 (+pose,atten) 0.1084 0.1923 0.8833
5 (+pose,atten) 0.1000 0.1781 0.8967

(b) View numbers

Sampling abs-rel abs δ < 1.25
s10 (base) 0.0885 0.1605 0.9211
key (base) 0.0838 0.1598 0.9277
s10 (+pose) 0.0827 0.1523 0.9277
key (+pose) 0.0789 0.1531 0.9339
s10 (+pose,atten) 0.0747 0.1392 0.9382
key (+pose,atten) 0.0697 0.1348 0.9472

(c) Frame sampling

Table 4. Ablation study of design choices. Bold is the best, and underline indicates the second best.

DTU: Tab. 5 shows that our model, i.e., Ours(+pose,atten)
is trained/tested on DTU dataset with 3-view and 5-view
input collections, respectively. We use the same training
scheduling for a fair comparison. The 5-view result is worse

than the last row in Tab. 1 due to the lack of pretraining on
ScanNet. Frame Sampling: We compare the simple view
selection strategy (i.e., sampling by every 10 frames) with
the heuristics [18]. Tab. 4-(c) shows that ours can be im-
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Figure 3. Qualitative results on ScanNet [16] (top two rows) and DTU [28] test set. Left two columns show reference image and ground
truth depth, and other columns are the estimated depth by baseline IterMVS [55], PairNet [18] and ours (the full version), respectively.
Our method outperform the baselines on thin structures, small objects and boundaries, as highlighted in green for ours and in red for the
baselines. The abs-err errors (in meters) are imposed on the depth maps for comparison.

View No. on DTU abs-rel (↓) abs (mm) (↓) rmse (↓)
3 (1 ref + 2 source) 0.0149 11.0689 24.8831
5 (1 ref + 4 source) 0.0119 8.8419 21.4327

Table 5. 3-view vs. 5-view training and testing on DTU [28].

Methods Time(fps) Mem.(MB) Param.(M) abs-rel (↓)
Ours(T=8) 6.98 4297 27.6 0.0760
Ours(T=12) 5.91 4297 27.6 0.0752
Ours(T=24) 3.77 4297 27.6 0.0734
IterMVS [55] 22.61 2171 0.34 0.0991
ESTD [41] 14.08 1799 36.2 0.0812

Table 6. Comparison of run time, memory consumption, and ac-
curacy on ScanNet [16] test set with frame dimension 320× 256.

proved when the selected views have more overlapping and
the baselines are suitable. Our(+pose,atten) even with sim-
ple strategy outperforms other variants with heuristic sam-
pling, and so are our(+pose) vs our(base). Runtime Over-
head: Tab. 6 shows the run-time and memory consumption
when processing 320 × 256 frames from the ScanNet test
set. Ours (T=8/12/24) means 8, 12, and 24 GRU iterations.

5. Conclusions

We have proposed RIAV-MVS, a novel learning-based
MVS method. Our approach utilizes a convolutional GRU
to iteratively optimize the index fields, which are used to
access the cost volume and regress the depth. The cost vol-
ume is further improved through the application of a trans-
former block to the reference image and a residual pose net-
work to correct the relative poses. Extensive experiments
on ScanNet [16], DTU [28], 7-Scenes [21], and RGB-D
Scenes V2 [34] have demonstrated the superior accuracy
and cross-dataset generalizability of our method. Due to
the plane-sweeping 3D cost volume and transformer self-
attention, our method requires large memory consumption
for high-resolution images. Moreover, the inference time is
not as fast as other lightweight convolutional counterparts,
due to the iterative update paradigm in our approach. In fu-
ture work, we plan to leverage temporal information to fur-
ther enhance depth estimation from posed-video streams.

8



References
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In this supplementary material, we show more details
about datasets, network architectures and hyperparameters,
ablation studies, and additional qualitative results.

A. Datasets
Our experiments use four indoor-scene datasets, which

have RGB-D video frames with ground truth depths and
known camera poses. ScanNet [16] and DTU [28] are used
in training and testing, and 7scenes [21] and RGB-D Scenes
V2 [34] are evaluated for zero-shot generalization.

ScanNet. Our network is trained from scratch on Scan-
Net [16] using the official training split. Following the
frame selection heuristic in [18], considering appropriate
view frustum overlap and sufficient baselines, we sample
279,494 training samples and 20,000 validation ones. Each
sample contains 3 frames, with one as a reference frame
and the others as source frames. For testing, we use Scan-
Net’s official test split (with 100 sequences from scene707
to scene806) and sample every 10 frames following [41], re-
sulting in 20,668 samples for quantitative evaluation. Scan-
Net has images in 640×480 resolution. In training, they are
resized to 256×256 with cropping following [18]. For infer-
ence, the input images are resized to 320×256 without crop-
ping. The predicted depth maps are upsampled with nearest
neighbor interpolation to the original resolution 640×480
before calculating the quantitative metrics.

DTU. DTU [28] is a smaller dataset compared with Scan-
Net, but with accurate ground truth depth and pose ob-
tained by a structured light scanner. Following [56, 62, 63],
the depth range for sampling depth hypotheses is set to
dmin = 0.425 and dmax = 0.935 meters. Based on the
view selection and robust training strategy in [55, 56], we
sample 27,097 training samples, 6,174 validation ones, and
1,078 ones for evaluation. Each sample has 5 frames. Input
image size is 512×256 in network training, and 640×512
for inference and upsampled with nearest neighbor interpo-
lation to the original size 1600× 1152 for evaluation. To
coordinate with ScanNet [16] and 7scenes [21], we use the
same depth evaluation metrics proposed in [19].

7-Scenes. We select 13 sequences from 7-Scenes for zero-
shot generalization. The valid depth range is set the same as
that on ScanNet. We generate a test set with 1,610 samples

(each with 5 frames, at 640×480 resolution) by sampling
the sequences every 10 frames.

RGB-D Scenes V2. It contains indoor scenes, including
chair, sofa, table, bowls, caps, cereal boxes, coffee mugs,
and soda cans, etc. We select 8 sequences for testing. Sim-
ilarly, we sample the video sequence every 10 frames to
generate 610 testing samples (each with 5 frames).

B. Experimental Setup
Implementation Details: Our model is implemented us-
ing PyTorch [45], and trained end-to-end with a mini-batch
size of 8 per NVIDIA RTX A6000 GPU. During train-
ing, we use the AdamW optimizer and clip gradients to
the range of [−1, 1]. When generating the cost volume by
plane-sweep stereo, we set the plane hypotheses number as
M0=64. When predicting the final depth using the index
field, we set the plane hypotheses number as M1=256. The
same hyperparameters as in [38] are adopted for the context
network and 3-level GRU architecture.

Training Schedule: Our network is trained for 20 epochs,
with an initial learning rate of 1e-4 and decayed by half at
epoch 4th and 8th, respectively. For a fair comparison, we
also train the baselines PairNet [18] and IterMVS [55] on
the same training samples of ScanNet for 20 epochs, using
the official codes. For the baseline PairNet we follow the
suggested learning rate scheduler, and for the baseline Iter-
MVS, we use a learning rate of 1e-4, which is decayed by
half at epoch 4th and 8th.

C. Our Modules Improve Existing Backbones
Our proposed residual pose module and asymmetric at-

tention module can help improve existing state-of-the-art
methods. Here we take two baselines - IterMVS [55] and
MVSNet [62] as the backbone. Tab. 7-(a) shows the im-
proved accuracy on the ScanNet test set [16] due to incorpo-
rating our residual pose module (i.e., +pose) and our asym-
metric attention module (i.e., +atten). Results in parenthe-
sis and highlighted by gray, denote the residual pose is only
used for network training but not for inference 2. Note that
they are listed for reference only, and are not used for com-
parison with the numbers on other rows. We can see our
+pose and +atten can always boost the baseline backbones
on the ScanNet test set. Tab. 7-(b) shows the evaluation on
DTU test set [28]. Our +atten always helps improve the
baselines. Our +pose can boost the baseline IterMVS [55],
but achieves no obvious improvement on baseline MVS-
Net [62], probably because the ground truth poses are ac-
curate enough, and the features are concatenated when con-
structing the cost volume, which is different from the dot

2only the ground truth pose is used for feature warping and cost volume
construction.
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production of features in ours and baseline IterMVS.

D. Network Architectures

Multi-scale Feature Fusion Layer. The fusion layer
G aggregates multi-scale features fi,2 ∈ RH/2×W/2×F0 ,
fi,4 ∈ RH/4×W/4×F0 , fi,8 ∈ RH/8×W/8×F0 and
fi,16 ∈ RH/16×W/16×F0 into a matching feature fi ∈
RH/4×W/4×F1 at 1/4 scale. Here F0=32 and F1=128 for
feature channels, i = 0 for the reference image, and i =
1, . . . , N − 1 for the source images. The architecture is
shown in Fig. 4, including up- and down-sampling, concate-
nation along the feature channel, a convolution layer Conv0
(with kernel size 3×3, in- and out- channels 128/128), batch
normalization, ReLU, and another convolution layer Conv1
(with kernel size 1×1, in- and out- channels 128/128).

Context Feature Network C-Net. We use the context
feature network as in [32, 38, 52], which consists of several
residual blocks. It contains around 4.32M parameters.

Model Capacity. As shown in Tab. 8, the total num-
ber of parameters in our network is 27.6M, where residual
pose network takes up 47.18%, GRU-based optimizer takes
up 25.20%, and the transformer block takes up 1.25%. If
not considering the residual pose net, our model then has
14.57M parameters, and most of them are assigned to GRU-
based updater, and fewer capacities are on feature extrac-
tors. This kind of capacity configuration makes our model
not specialized to one domain (for feature extraction), and
is well generalized to unseen domains due to the learning
to optimize anchored at cost volume via the GRU-based op-
timizer to predict the index fields for iteratively improved
matching.

Network Training and Log Summary. Our network
is trained from scratch on the ScanNet training set (with
279,494 samples). It takes around 2 days on 4 NVIDIA
RTX A6000 GPUs for up to 20 epochs of training. The
GRU iteration number is set to 12 for training. The to-
tal batch size is 32 (i.e., 8 per GPU). Training image size
is 256×256. We show the log summary of network train-
ing at the last logging step (i.e., step=99,609). From the
top to bottom, Fig. 5 shows a batch of input samples (batch
size = 4 for logging), including reference images I0 and two
source images I1 and I2, the ground truth depth maps and
our depth predictions. The residual pose net is supervised
by the photometric loss as shown in Fig. 6. We do one epoch
of warmup training only for the residual pose net with other
layers frozen.

GRU Iterative Updates. Fig. 7 illustrates the iterative
estimation of depth maps. For better visualization, we put
the reference images and the ground truth depths on the first
two rows. The bottom 4 rows show the depth predictions at
iteration step t = 0, 4, 8, 12 for each batch sample. Itr-0

means the softargmin-start we introduced to accelerate the
GRU training and convergence. We can see the depth maps
are progressively improved within T iterations (here T =
12 in network training for the trade-off between the memory
consumption and depth accuracy).

Network Inference. For inference, we set the GRU it-
eration number as T = 24 by default, and we also ablate
other values of T in the main paper. The input image is in
320×256 resolution, and it is upsampled to 640×320 for
ScanNet benchmark evaluation and cross-dataset general-
ization. The GPU memory consumption is 2088MiB from
nvidia-smi, and runtime in inference mode is 8.6 fps when
processing frames with dimension 320 ×256.

E. Additional Ablation Studies
We introduce more ablation studies to verify our design.

Frame Sampling: We compare the simple view selec-
tion strategy (i.e., sampling by every 10 frames), with the
heuristics introduced in [18]. Tab. 9 shows that our meth-
ods can be further improved when the selected views have
more overlapping and the baselines between them are suit-
able. Our(+pose,atten) even with simple strategy outper-
forms other variants with heuristic sampling, and so are
our(+pose) vs our(base), verifying the effectiveness of each
module.

Different Depth Binning. When implementing plane-
sweep stereo [15,20] to construct the cost volume, we need
to sample M0=64 plane hypotheses. In our main experi-
ments, we use the inverse depth bins, i.e., the plane hypothe-
ses are uniformly sampled in the inverse depth space, s.t.
1/d ∼ U(dmin, dmax). Here we set dmin=0.25 and dmax=20
meters for indoor scenes (e.g., ScanNet [16]). We also test
linear depth bins, i.e., d ∼ U(dmin, dmax), and hand-crafted
depth bins by calculating the depth distribution on Scan-
Net. But we found that inverse depth binning achieves the
best results, as we reported in the main paper. We also test
adaptive depth bins as in [5], where the depth bins are dy-
namically generated upon the global feature learned by a
transformer layer. For our(+pose) variant, adaptive depth
bins lead to marginal improvement than the inverse depth
bins. However, for our(+pose,atten) variant, adaptive depth
bins hinder the depth accuracy.

F. Qualitative Results
Depth and Error Maps. More qualitative re-
sults of depth maps and error maps on the Scan-
Net test set [16] are shown in Fig. 9. The sam-
ples shown here are scene0711 00/001050.png,
scene0711 00/002530.png, scene0727 00/001260.png,
and scene0769 00/000720.png. The error maps contain
the absolute errors abs in depth. For the ground truth depth
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Method ScanNet Test-Set
abs-rel (↓) abs(↓) sq-rel(↓) rmse(↓) rmse-log(↓) δ < 1.25/1.252/1.253 (↑)

MVSNet [62] 0.1032 0.1865 0.0465 0.2743 0.1385 0.8935 0.9775 0.9942
MVSNet(+pose) 0.0937 0.1714 0.0401 0.2565 0.1300 0.9072 0.9803 0.9947

(0.0955) (0.1766) (0.0431) (0.2654) (0.1339) (0.9021) (0.9785) (0.9941)
MVSNet(+atten) 0.1018 0.1853 0.0468 0.2734 0.1377 0.8957 0.9779 0.9941
IterMVS [55] 0.0991 0.1818 0.0518 0.2733 0.1368 0.8995 0.9741 0.9915
IterMVS(+pose) 0.0958 0.1813 0.0480 0.2715 0.1343 0.9004 0.9758 0.9923

(0.0943) (0.1777) (0.0472) (0.2687) (0.1336) (0.9037) (0.9764) (0.9923)
IterMVS(+atten) 0.0920 0.1741 0.0431 0.2620 0.1298 0.9066 0.9785 0.9936

(a) Quantitative results on ScanNet Test Set [16].

Method DTU Test-Set
abs-rel (↓) abs(↓) sq-rel(↓) rmse(↓) rmse-log(↓) δ < 1.25/1.252/1.253 (↑)

MVSNet [62] 0.0143 10.7235 1.4193 25.3989 0.0356 0.9882 0.9984 1.0
MVSNet(+pose) 0.0151 11.1539 1.2867 24.3420 0.0337 0.9907 0.9988 1.0

(0.0129) (9.8094) (1.2638) (23.8917) (0.0330) (0.9905) (0.9987) (1.0)
MVSNet(+atten) 0.0123 9.1150 1.1311 22.3525 0.0311 0.9909 0.9986 1.0
IterMVS [55] 0.0146 10.6225 2.1377 28.7009 0.0404 0.9832 0.9960 0.9997
IterMVS(+pose) 0.0129 9.9510 1.8261 28.1695 0.0385 0.9831 0.9978 0.9999

(0.0128) (9.8926) (1.8216) (28.1242) (0.0384) (0.9832) (0.9977) (0.9999)
IterMVS(+atten) 0.0130 9.4121 1.8775 25.6287 0.0357 0.9860 0.9969 0.9993

(b) Quantitative results on DTU Test Set [28].

Table 7. Quantitative evaluation results on the test set of ScanNet [16] and DTU [28] for our modules applied to baseline MVSNet [62]
and IterMVS [55]. Error metrics (lower is better) are abs-rel, abs, sq-rel, rmse, rmse-log, while accuracy (higher is better) metrics are δ <
1.25/1.252/1.253. Bold is the best score, and underline indicates the second best one. The results given in parenthesis and highlighted
by gray, denote that the residual pose is only used for network training, but not for inference. They are listed for reference but not for
comparison with other rows.

Figure 4. Multi-scale feature fusion layer.

maps and the error maps, invalid regions (i.e., without
ground truth depth annotation) are filled in black. The
color maps of the ground truth depths and predictions are
shown in the depth space (i.e., not in disparity space). The
abs errors (in meters) are superimposed on the error maps

for better comparison. The corresponding color bar to
visualize the error maps is shown in Fig. 8. Comparing
the depth predictions and the error maps for our method
and the baseline IterMVS [55] and baseline PairNet [18],
our method predicts more accurate estimates, especially in
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Ref I0 (b0) Ref I0 (b1) Ref I0 (b2) Ref I0 (b3)

Src I1 (b0) Src I1 (b1) Src I1 (b2) Src I1 (b3)

Src I2 (b0) Src I2 (b1) Src I2 (b2) Src I2 (b3)

GT Depth (b0) GT Depth (b1) GT Depth (b2) GT Depth (b3)

Pred Depth (b0) Pred Depth (b1) Pred Depth (b2) Pred Depth (b3)

Figure 5. Training logs at last logging step on ScanNet [16] training set. Columns show samples and results of mini-batch ones b0, b1, b2,
and b3. For the training logs, we show the color maps of the ground truth depths and predictions in the inverse space (i.e., disparity), so as
to better align with the training loss calculated on the inverse depth domain.
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Layers F-Net C-Net Transformer Residual Pose Net GRUs Total
Parameter (M) 2.9545 4.3212 0.3438 13.0120 6.9501 27.5816

Percentage 10.70% 15.67% 1.25% 47.18% 25.20% 100%

(a) Our model capacity (full version).

Layers F-Net C-Net Transformer Residual Pose Net GRUs Total
Parameter (M) 2.9545 4.3212 0.3438 - 6.9501 14.5696

Percentage 20.28% 29.66% 2.36% - 47.70% 100%

(b) Our model capacity, if without residual pose net.

Table 8. Our model capacity. Parameter numbers are given in million (M) and the percentage of each module is listed.

Ref I0 (b0) Ref I0 (b1) Ref I0 (b2) Ref I0 (b3)

Recon Ref Ĩ0←1 (b0) Recon Ref Ĩ0←1 (b1) Recon Ref Ĩ0←1 (b2) Recon Ref Ĩ0←1 (b3)

Recon Ref Ĩ0←2 (b0) Recon Ref Ĩ0←2 (b1) Recon Ref Ĩ0←2 (b2) Recon Ref Ĩ0←2 (b3)

Figure 6. Residual pose training. The top row shows the reference images, and the bottom two rows show the reconstructed images of the
reference view by warping the source images with the updated poses and predicted depth map of the reference view.

the challenging regions, e.g., the boundary, the ground, the
white wall, and the round desk.

Cross-Dataset Generalization from ScanNet to DTU
Fig. 10 shows the depth maps of DTU dataset when gen-
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Ref I0 (b0) Ref I0 (b1) Ref I0 (b2) Ref I0 (b3)

GT Depth (b0) GT Depth (b1) GT Depth (b2) GT Depth (b3)

GRU Itr-0 (b0) GRU Itr-4 (b0) GRU Itr-8 (b0) GRU Itr-12 (b0)

GRU Itr-0 (b1) GRU Itr-4 (b1) GRU Itr-8 (b1) GRU Itr-12 (b1)

GRU Itr-0 (b2) GRU Itr-4 (b2) GRU Itr-8 (b2) GRU Itr-12 (b2)

GRU Itr-0 (b3) GRU Itr-4 (b3) GRU Itr-8 (b3) GRU Itr-12 (b3)

Figure 7. Iterative depth estimation from GRU layers. The bottom 4 rows show the depth predictions at iteration step t = 0, 4, 8, 12 for
each batch sample (b1, b2, b3 and b4).
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Sampling abs-rel abs δ < 1.25
s10 (base) 0.0885 0.1605 0.9211
key (base) 0.0838 0.1598 0.9277
s10 (+pose) 0.0827 0.1523 0.9277
key (+pose) 0.0789 0.1531 0.9339
s10 (+pose,atten) 0.0747 0.1392 0.9382
key (+pose,atten) 0.0697 0.1348 0.9472

Table 9. Frame sampling comparison. The results are evaluated
on the ScanNet test set [16].

Figure 8. Color scale used for all abs error in depth maps in the
supplementary material.

eralized from ScanNet without fine-tuning, and our method
outperforms IterMVS visibly, and on par with PairNet.

The ScanNet test set in our experiments contains 20,668
samples. As shown in Fig. 11, we report abs error curves
(by plotting values in meters every 100 frames, out of those
20,668 samples) to reflect the distribution of the errors. We
also compare the mean and standard deviation to reflect the
overall performance of our method versus the baselines:
mean error 0.139 (our) < 0.171 (PairNet) < 0.182 (Iter-
MVS), and standard deviation 0.115 (our) < 0.135 (Iter-
MVS) < 0.148 (PairNet), showing that our method consis-
tently outperforms the baselines with smaller average and
lower standard deviation.

G. Quantitative Metrics

We use the metrics defined in [19], including mean ab-
solute error (abs), mean absolute relative error (abs-rel),
squared relative error (sq-rel), RMSE in linear (rmse) and
log (rmse-log) scales, and inlier ratios under thresholds of
1.25/1.252/1.253. For a predicted depth map y and ground
truth y∗, each with n pixels indexed by i, those metrics are
formulated as:

abs :
1

n

∑
i

|yi − y∗i |

abs-rel :
1

n

∑
i

|yi − y∗i |/y∗i sq-rel :
1

n

∑
i

‖yi − y∗i ‖2/y∗i

rmse :

√
1

n

∑
i

‖yi − y∗i ‖2

rmse-log :

√
1

n

∑
i

‖ log yi − log y∗i ‖2

inlier ratio% of yi s.t. max
(
yi
y∗i
,
y∗i
yi

)
= δ < 1.25i,

where i = 1, 2 and 3.
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0.0660 0.0421 0.0245

0.0362 0.0417 0.0210

0.0297 0.0340 0.0189

0.0662 0.0520 0.0217

GT IterMVS PairNet Ours

Figure 9. Qualitative results on ScanNet [16] test set. Every two rows show depth maps (top) and error maps (bottom) for a sample.
The leftmost column shows ground truth depths and reference images. Others columns are the depth predictions and error maps, by
IterMVS [55], PairNet [18] and ours, respectively. The abs-err errors (in meters) are imposed on the depth maps for comparison.
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4.45 6.59 2.18

14.24 6.28 3.28

12.12 12.91 5.27

40.10 12.19 5.31

5.30 6.09 3.35

4.64 4.86 2.04

4.10 5.52 1.97

Ref GT IterMVS PairNet Ours

Figure 10. Cross-dataset generalization qualitative results on DTU [28] trained on ScanNet. Columns from left to right show reference
image, ground truth depth, and the estimated depth for baseline IterMVS [55], PairNet [18] and our method, respectively. Our method
outperforms IterMVS visibly, and on par with PairNet. The abs-err errors (in millimeters) are imposed on the depth maps for comparison.
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Figure 11. Absolute error metric curves evaluated on all the frames of ScanNet [16] test set, for our method and baselines IterMVS [55]
and PairNet [18]. Please enlarge the figures to better view the metrics and legends displayed in the top-left corner.
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