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Abstract

This paper presents an end-to-end neural mapping
method for camera localization, dubbed NeuMap, encod-
ing a whole scene into a grid of latent codes, with which a
Transformer-based auto-decoder regresses 3D coordinates
of query pixels. State-of-the-art feature matching methods
require each scene to be stored as a 3D point cloud with per-
point features, consuming several gigabytes of storage per
scene. While compression is possible, performance drops
significantly at high compression rates. Conversely, co-
ordinate regression methods achieve high compression by
storing scene information in a neural network but suffer
from reduced robustness. NeuMap combines the advantages
of both approaches by utilizing 1) learnable latent codes
for efficient scene representation and 2) a scene-agnostic
Transformer-based auto-decoder to infer coordinates for
query pixels. This scene-agnostic network design learns
robust matching priors from large-scale data and enables
rapid optimization of codes for new scenes while keeping
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Figure 1. The paper presents neural coordinate mapping (NeuMap) for camera localization. NeuMap encodes a scene into a set of codes
and uses a scene-agnostic transformer to decode the coordinates of key-points in a query image. The right compares the localization
accuracy and the data size for Aachen Night benchmark. The accuracy is averaged over three translation/rotation error thresholds (0.25m,
2°), (0.5m, 5°), or (5m, 10°). NeuMap and Squeezer control representation sizes and are illustrated by curves with multiple data points.

the network weights fixed. Extensive evaluations on five
benchmarks show that NeuMap significantly outperforms
other coordinate regression methods and achieves compa-
rable performance to feature matching methods while re-
quiring a much smaller scene representation size. For ex-
ample, NeuMap achieves 39.1% accuracy in the Aachen
night benchmark with only 6MB of data, whereas alterna-
tive methods require 100MB or several gigabytes and fail
completely under high compression settings. The codes are
available at https://github.com/Tangshitao/NeuMap.

1. Introduction

Visual localization determines camera position and ori-
entation based on image observations, an essential task for
applications such as VR/AR and self-driving cars. Despite
significant progress, accurate visual localization remains a
challenge, especially when dealing with large viewpoint and
illumination changes. Compact map representation is an-
other growing concern, as applications like delivery robots
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may require extensive maps. Standard visual localization
techniques rely on massive databases of keypoints with 3D
coordinates and visual features, posing a significant bottle-
neck in real-world applications.

Visual localization techniques generally establish 2D-
3D correspondences and estimate camera poses using
perspective-n-point (PnP) [22] with a sampling method like
RANSAC [15]. These methods can be divided into two cat-
egories: Feature Matching (FM) [11,34,37,49] and Scene
Coordinate Regression (SCR) [3, 5, 7, 40]. FM methods,
which are trained on a vast amount of data covering vari-
ous viewpoint and illumination differences, use sparse ro-
bust features extracted from the query image and matched
with those in candidate scene images. This approach ex-
ploits learning-based feature extraction and correspondence
matching methods [13, 35,42, 44] to achieve robust local-
ization. However, FM methods require large maps, mak-
ing them impractical for large-scale scenes. Many meth-
ods [11,27,49] have been proposed to compress this map
representation, but often at the cost of degraded perfor-
mance. On the other hand, SCR methods directly regress
a dense scene coordinate map using a compact random for-
est or neural network, providing accurate results for small-
scale indoor scenes. However, their compact models lack
generalization capability and are often restricted to lim-
ited viewpoint and illumination changes. Approaches such
as ESAC [5] handle larger scenes by dividing them into
smaller sub-regions, but still struggle with large viewpoint
and illumination changes.

We design our method to enjoy the benefits of compact
scene representation of SCR methods and the robust per-
formance of FM methods. Similar to FM methods, we
also focus on a sparse set of robustly learned features to
deal with large viewpoint and illumination changes. On
the other hand, we exploit similar ideas to SCR methods
to regress the 3D scene coordinates of these sparse fea-
tures in the query images with a compact map represen-
tation. Our method, dubbed neural coordinate mapping
(NeuMap), first extracts robust features from images and
then applies a transformer-based auto-decoder (i.e., auto-
transdecoder) to learn: 1) a grid of scene codes encoding
the scene information (including 3D scene coordinates and
feature information) and 2) the mapping from query im-
age feature points to 3D scene coordinates. At test time,
given a query image, after extracting image features of its
key-points, the auto-transdecoder regresses their 3D coor-
dinates via cross attention between image features and la-
tent codes. In our method, the robust feature extractor and
the auto-transdecoder are scene-agnostic, where only latent
codes are scene specific. This design enables the scene-
agnostic parameters to learn matching priors across scenes
while maintaining a small data size. To handle large scenes,
we divide the scene into smaller sub-regions and process

them independently while applying a network pruning tech-
nique [25] to drop redundant codes.

We demonstrate the effectiveness of NeuMap with a di-
verse set of five benchmarks, ranging from indoor to out-
door and small to large-scale: 7scenes (indoor small), Scan-
Net (indoor small), Cambridge Landmarks (outdoor small),
Aachen Day & Night (outdoor large), and NAVER LABS
(indoor large). In small-scale datasets (i.e., 7scenes and
Cambridge Landmarks), NeuMap compresses the scene
representation by around 100-1000 times without any per-
formance drop compared to DSAC++. In large-scale
datasets (i.e., Aachen Day & Night and NAVER LABS),
NeuMap significantly outperforms the current state-of-the-
art at high compression settings, namely, HLoc [34] with a
scene-compression technique [49]. In ScanNet dataset, we
demonstrate the quick fine-tuning experiments, where we
only optimize the codes for a new scene while fixing the
scene-agnostic network weights.

2. Related work

Visual localization with feature matching (FM). FM-
based localization has achieved state-of-the-art perfor-
mance [13,14,32,34,35,37,42,49]. Torsten et al. [37] match
query images exhaustively with all 3D points in structure-
from-motion models. However, as scenes grow larger,
this matching becomes ambiguous, compromising local-
ization robustness. Paul-Edouard [35] proposes a coarse-
to-fine strategy: 1) coarsely localizing query images us-
ing a global image feature [1], and 2) computing camera
poses through local key-point matches. This pipeline has
demonstrated significant improvements, with most follow-
up works focusing on enhancing feature matching capa-
bility [35,42,49,50]. SuperGlue [35] utilizes Transform-
ers to match key-point sets, achieving impressive results.
LoFTR [42] and its variants [9,44] propose dense matching
frameworks without key-points. Nevertheless, these meth-
ods require storing large databases of key-point features or
images. SceneSqueezer [49] offers a compression mech-
anism for FM-based methods by removing redundant im-
ages and key-points, but performance drops significantly at
high compression settings. Our approach employs latent
codes to store and retrieve key-point information, naturally
achieving high compression rates.

Scene coordinate regression (SCR). Convolutional neural
networks have been used to regress dense coordinate maps
from RGB images for localization [3,5-7,23,47]. Due to
limited network capacity, this approach does not scale well
to large scenes. ESAC [5] addresses scalability by divid-
ing large scenes into smaller sub-regions, training a separate
network for each. HSCNet [23] classifies pixels into corre-
sponding sub-regions to reduce ambiguity. Although SCR-
based methods have a smaller representation size than FM-
based methods, they are less robust against large viewpoint



changes or illumination differences. This is because ac-
quiring SCR training data is expensive, whereas FM train-
ing data is easily accessible from extensive databases of
feature correspondences in challenging conditions [12,24].
Furthermore, SCR approaches require model training for
each new scene, which is undesirable in many applications.
While SANet [48] and DSM [43] generalize this approach
to unseen scenes, they also result in reduced localization
accuracy. Our approach is SCR-based, utilizing a scene-
agnostic feature extractor and transformer trained as in FM-
based methods, offering both robustness and compact rep-
resentation.

Auto-decoder. An auto-decoder optimizes latent codes di-
rectly via back-propagation within a decoder-only frame-
work [2,30,41]. Piotr et al. [2] employ an auto-decoder
for generative adversarial networks. DeepSDF [30] and
SRN [41] store shape representations into latent codes.
However, MLP or CNN-based auto-decoders have lim-
ited capacity using a single code. Transformer-based
auto-decoders (i.e., auto-transdecoders) employ an arbitrary
number of codes to increase capacity. Recently, Sandler
et al. [33] augment a transformer with learnable mem-
ory tokens (codes) that allow the model to adapt to new
tasks while optionally preserving its capabilities on previ-
ously learned tasks. The transformer weights are first pre-
trained with a large-scale dataset, and the tokens (codes) are
then fine-tuned in downstream tasks. This memory mecha-
nism resembles our auto-transdecoder, but we optimize both
transformer and codes simultaneously during training. To
the best of our knowledge, this work is the first to use an
auto-transdecoder for mapping and localization tasks.

3. Method

Given a scene represented by a set of reference im-
ages {I,,} with known camera calibrations {T,, } expressed
in a (scene-specific) coordinate frame, we devise a tech-
nique that encodes these images into a compact scene rep-
resentation S. We employ this scene representation to per-
form visual localization, a task of predicting the camera T,
of a query image I, that was never seen before — with a van-
tage point and/or appearance different from the one in the
reference image set.

3.1. Overview

We achieve visual localization by solving the proxy task
of scene coordinate regression on sparse features, where
given a set of 2D key-point {k;} extracted from I,, we
predict its corresponding 3D scene coordinate {K;} (Sec-
tion 3.2). As shown in Figure 2, our method extracts 2D
key-points {k;} following HLoc [34] with a pre-trained
backbone, R2D2 [32]. In order to determine their scene
coordinates, we first compute a feature map of the im-
age I, with a trainable CNN backbone F, which is a

ResNet18 [17] and bilinearly interpolates the feature, and
then solve the scene coordinate by a decoder D as,

K;, =D(F(4, ki), S) (1)

Here, S is the learned scene representation. Finally, we
obtain camera localization by solving a perspective-n-point
(PnP) problem [22] (Section 3.4) with 2D-3D correspon-
dences from {k; +> K;}.

3.2. Sparse Scene Coordinate Regression

Scene Representation. We first build a scene model to fa-
cilitate localization. Given a set of reference images, we ex-
tract 2D key-points by R2D2 [32] and compute their corre-
sponding 3D scene coordinates by COLMAP (Section 3.3).
Some of the key-points are not successfully triangulated, so
their 3D coordinates are invalid. We cache 3D scene points
in a sparse grid with voxels of uniform side length [ as
shown in Figure 2. We denote the v-th voxel as V,,. We then
model the reference scene as a set of latent codes S={S,, } —
one per voxel — and modify Equation 1 to reflect this design
choice as:

(K7, ¢) = D(F(I4, ki), Sy) )
Here, the scalar parameter c; is the confidence that the key-
point k; is in the voxel V,,, and K} is the scene coordinate
under the voxel attached coordinate frame, i.e., K; = K7 +
0, and O, is the mean of all the coordinates in V/,,.

This formulation simultaneously solves a classification
and regression problem: 1) classifying whether a 2D key-
point belongs to a 3D voxel and 2) regressing its 3D position
locally within the voxel.

Sparsity. Inspired by network pruning [25], we apply code
pruning to remove redundant codes. Specifically, we mul-
tiply each voxel code in S,, with a scaling factor w,,, and
jointly learn the codes with these scaling factors, with L1
loss imposed on w,. After finishing training, we prune
codes whose weights are below a threshold and finetune the
remaining codes.
Scene Coordinate Regression. We use a set of per-voxel
latent codes S, to facilitate the learning of scene coordi-
nate regression. The decoder D is a stacked transformer to
regress the scene coordinates of the 2D image key-points.
We include T transformer blocks, (6 blocks in our imple-
mentation), defined by the inductive relationship (see Fig-
ure 2) as,

£ = CrAu(f!, §) 3)

8, = w,s, @)

where the feature fi(l):]-' (I;.k;), w! is the scaling fac-
tor enforcing sparsity.  Each transformer block con-
tains a set of codes s

¢, and the final per voxel codes

v
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Figure 2. Overview — We divide a scene into sub-regions and assign codes to each region. A shared convolutional neural network extracts
image features, and a Transformer network decodes coordinates from the codes. Code-pruning further reduces the data size.

are S, ={s!, 1<t<T}. The function CrAtt(-,-) is classical
cross-attention from transformers [45]:

Q=Wq L K=W/ -5, V=W & (5
fi(t'H) = MLP(softmax(Q - K) - V) ©)

At the end of the stacked transformer, we apply another
MLP to compute the scene coordinate and confidence as,

(K?,c?) = MLP(£\") 7

3.3. Training

At training time, we learn the weights of the feature en-
coder F, the decoder D, and the compressed scene repre-
sentation for all training scenes {Ss} via generative latent
optimization / auto-decoding [30] with the following loss:

‘C:)\x"cx+Ac'£c+)\Ll'£Ll- (8)

We set the loss weights Ay, A, and Ap; to 1.
The scene coordinate loss is defined as,

Le=>3" ) KV +0,)—Ki[l. (9

where K is the scene coordinate triangulated by COLMAP
for key-point k;, the binary variable y} indicates whether
the triangulated scene coordinate K belongs to the
voxel V,.. The key-points with no valid 3D coordinates (not
successfully triangulated) do not belong to any voxel.

The second term is a classification loss, i.e., a binary
cross entropy, for the confidence c},

Le=Y Y BCE(d,y) (10)
The third term enforces sparsity and produces a com-
pressed representation, which is defined as,

T
L= |wh], (11)
t=1

v

where w! is the sparsity factor in Equation 4.

Training strategy. We learn the decoder D, the CNN back-
bone F, and the scene representation S with voxel sam-
pling. At each iteration, we randomly choose B voxels,
where B is the batch size. Each voxel V), has a set of ref-
erence images I,,, each of which contains at least 20 scene
points in V,,. We then sample one training image for each
voxel and optimize D, F, and the scene codes of sampled
voxels by minimizing the training loss in Equation 8. We
sample voxels without replacement, so all scene codes are
updated once at each epoch.

Similarly to network pruning [25], we minimize the

training loss to convergence, set sparsity factors w! whose
values are below a certain threshold to zero, and fine-tune
our model while keeping w! frozen.
Scene adaption. Given a new scene (i.e., not in the training
data), we simply optimize the scene code S, while keeping
decoder D and CNN backbone F fixed. In this way, our
scene representation S is scene specific, but the decoder D
and feature extractor J are scene agnostic.



3.4. Inference

Given a query image I, we use an existing deep image
retrieval method [ 1,3 1] to retrieve the most similar reference
images, which activate a subset of voxels; see Figure 2. A
voxel V), is activated if one of the retrieved reference im-
ages contains at least 20 scene points in V,,. For large-scale
scenes, we typically get around 100-200 voxels, while for
small-scale scenes, we consider all the voxels without im-
age retrieval. We then extract a set of 2D key-points {k;}
within I, and for each of them, regress their per-voxel con-
fidence and positions via Equation 2. We discard points
with confidence ¢<0.5. All the remaining points are used
to compute the camera pose with the PnP algorithm com-
bined with RANSAC, implemented in Pycolmap [28].

4. Experiments

We conduct extensive evaluations with twelve competing
methods on five benchmarks.

4.1. Datasets

We use 7scenes [40], Cambridge landmarks [20],
Aachen Day & Night [39], NAVER LABS datasets [21],
and ScanNet [12] (See Fig. 3). For 7scenes, Cambridge,
Aachen, and ScanNet, we train a separate model for each
dataset. Within each dataset, all the scenes share the same
network parameters. For NAVER, we train one model for
one scene due to the large size of the scene codes, which
cannot fit in GPU memories.

Additionally, for 7scenes, Cambridge, and NAVER, we
train models from scratch. For Aachen, with images that
have significant view and illumination differences, we use a
feature extractor from LoFTR [42], pretrained with images
containing such variations. Although ScanNet is not a stan-
dard localization dataset, it shares similarities with 7scenes.
To illustrate our scene-agnostic network and scene-specific
code design, we use 80 scenes to train the scene-agnostic
network and fine-tune the codes on 1 scene (scene0708) for
ScanNet.

We demonstrate code pruning for 7scenes, Cambridge,
and Aachen, with pruning thresholds of 0.00003, 0.05, and
0.2, respectively. We use median translation/rotation errors
to evaluate 7scenes, Cambridge, and ScanNet. For Aachen
and NAVER, the accuracy under different thresholds is the
standard metric used.

4.2. Implementation details

We employ ResNet-18 [17] to extract image features
and train models with 8 V100 GPUs using a batch size of
256. We set the initial learning rate to 0.002 for training
the scene-agnostic parameters and 0.0001 for training the
scene-specific codes. After every 30 epochs, we multiply
the learning rate by 0.5. We train the model for 200 epochs

Size Aachen Day Aachen Night

AS [38] 0.75 | 57.3/83.7/ 28.6/37.8/51.0
HLoc [34] 7.82 | 89.6/95.4/98.8 | 86.7/93.9/100
i Cascaded [11] | 0.14 | 76.7/88.6/95.8 | 33.7/48.0/62.2
QP+R.Sift [27] 62.6/76.3/84.7 | 16.3/18.4/245
Squeezer [49] | 0.24 | 75.5/89.7/96.2 | 50.0/67.3/78.6
PixLoc [36] 213 | 64.3/69.3/717.4 /55.1/67.3
ESAC(50) [5] | 1.31 | 42.6/59.6/75.5 6.1/10.2/184

& Ours (8m, 100) | 1.26 / /95.6 | 48.0/ /
Ours (10m, 1) | .006 | 49.3/752/93.9 | 143/26.5/76.5
Ours (10m, *) | 0.17 | 76.2/88.5/95.5 | 37.8/62.2/87.8

Table 1. Results of Aachen Day & Night. We report accuracy un-
der different error thresholds. The first number in the bracket is the
sub-region length. The second number is the number of codes for
each transformer block, and the notation (*) indicates the applica-
tion of code pruning. Data sizes in the ”Size” column are reported
in Gigabytes. The red texts show methods with scene compres-
sion. FM means feature matching. E2E means end-to-end. The
same applies to the following figures. We outperform all the other
E2E methods by a large margin, achieving similar performance as
Squeezer, which applies scene compression to HLoc. The cyan
and colors indicate the best and the second best methods,
respectively, in each column.

in the first stage and fine-tune the model for 100 epochs
in the second stage. For training data generation, we use
r2d2 [32] to extract keypoints and perform triangulation to
obtain coordinates in Cambridge, Aachen, and NAVER. We
use depth images to acquire 3D coordinates in 7scenes and
ScanNet.

4.3. Main results with code-pruning

We present the results after code-pruning for 7scenes,

Cambridge, and Aachen datasets.
Aachen Day & Night. Table 1 compares NeuMap with
other methods on this large-scale outdoor dataset. We im-
plement three versions of NeuMap by varying the size of
voxels (either 8 or 10 meters) with or without code-pruning.
The version with 8 meters without code-pruning serves as
the performance upper-bound.

Existing coordinate regression methods (i.e., ESAC or
DSAC++) perform poorly on this dataset. DSAC++ can-
not fit the whole scene into a single network. ESAC is
not robust to view and illumination differences. NeuMap
is the first coordinate regression method with competitive
results in large-scale outdoor datasets. NeuMap also outper-
forms another non-feature matching-based method, PixLoc,
by a significant margin. Cascaded [|1], QP+R.Sift [27],
and Squeezer [49] are scene compression methods based
on feature matching. NeuMap outperforms Cascaded and
QP+R.Sift by a considerable margin. Both methods utilize
numeric quantization for compression (converting 32-bit
floats to 8-bit integers), which is orthogonal to our scheme
and would likely further improve our performance once



ScanNet

Cambridge

Figure 3. Sample images from 7scenes, ScanNet, Cambridge, Aachen Day & Night, and NAVER LABS datasets.

Tscenes size (GB) Chess Fire Heads Office Pumpkin Kitchen Stairs
S Active Search [37] >0.5 1.96,0.04 | 1.53, 1.45, 3.61, 3.10,0.08 | 3.37,0.07 | 2.22,0.03
o HLoc [34] >1.0 0.79, 0.02 ,0.02 s 0.91, 0.03 , , 1.62, 0.06
DSAC++ [4] >0.2 0.5,002 | 09,002 08,001 07,003 11,004 | 1.1, 2.6 ,0.09
= SANet [48] >1.0 0.88, 1.12, 1.48, 1.00,0.03 | 1.21,0.04 | 1.40, 4.59,0.16
= DSM [43] >1.0 ,0.02 | 0.80,0.02 | 0.80,0.01 ,0.03 | 1.11,0.04 | 1.11,0.03 R
Ours <0.002 | 0.81,0.02 | 1.11, 1.17, 0.98,0.03 | 1.11,0.04 | 1.33, 1.12,

Table 2. Results of 7scenes. We report the median translation and rotation errors in (°, m). NeuMap achieves similar performance as other

methods with significantly smaller representation sizes.

combined.

Squeezer [49] is built on HLoc [34], which extracts
and matches keypoints using SuperPoint [13] and Super-
Glue [35]. Squeezer removes redundant keypoints by solv-
ing quadratic programming and achieves impressive com-
pression at the expense of performance. We use Super-
Point [13] features (float32) for Squeezer. The NeuMap
with code pruning (10 meters) achieves similar performance
as Squeezer with a 70 Megabytes smaller representation
size. Even at extremely high compression ratios, NeuMap
obtains good results, where the total mapping size is only 6
Megabytes. Squeezer fails at such ratios, as shown in Fig. 1.

Cambridge. Table 3 compares performance on the Cam-
bridge dataset. We use triangulated points for supervi-
sion and divide each scene into voxels of 200 meters in
length. NeuMap achieves similar performance as DSAC++
with a 100 to 1000 times smaller representation size. Our
compression design is simple (i.e., latent codes with auto-
transdecoder) compared to Squeezer, which has a complex
pipeline.

7scenes. Table 2 shows the results, where we use depth
images for supervision and train models from scratch. A
scene is divided into voxels of 3 meters in length. NeuMap
achieves the same performance as DSAC++, HLoc, and
DSM with a 200-1000 times smaller data size.

4.4. Main results without code-pruning

NAVER is a large-scale indoor localization dataset. Each
scene contains approximately 20,000 images. We use 3
scenes (Dept. B1), (Dept. 1F), and (Dept. 4F) for exper-
iments. We divide each scene into voxels of 4 meters in
length, which results in approximately 2,000 voxels, and
assign 50 x 6 codes to each voxel, and train a model from
scratch without code pruning. Table 4 compares NeuMap
against three methods. Each method is trained with “train-
ing images” and evaluated with “’validation images” of their
dataset. NeuMap outperforms the state-of-the-art coordi-
nate regression method ESAC by a large margin with a
much smaller representation size. In comparison to feature
matching methods (D2Net and R2D2), NeuMap has simi-
lar accuracy when the error thresholds are (0.25m, 2°) and
(1m, 5°), while the representation size is 200 times more
compact even without code pruning.

4.5. Evaluating code fine-tuning

Our scene-agnostic network and scene-specific code de-
sign allows us to fine-tune only the codes for a new scene
while fixing the network weights. We use the ScanNet
dataset for experiments. We train NeuMap with 1, 10, 20,
40, or 80 scenes and choose 1 new testing scene for fine-
tuning and evaluation. For each scene, we randomly sam-
ple 10% of the frames for testing, while the rest becomes



ShopFacade OldHospital College Church Court
Active search [38] | (1.12,0.12)/38.7 | (1.12,0.52) /140 (0.70,0.57) / 275 (0.62,0.22) / 359 (0.60, 1.20) / -
HLoc [34] (0.20,0.04) /316 | (0.30,0.15)/1335 | (0.20,0.12) /1877 | (0.21,0.07) /2007 | (O.16, ) /2295
=) Hybrid [8] (0.54,0.19) / (1.01,0.75) / (0.59,0.81)/ (0.49, 0.50) /

QP+RootSIFT [
Squeezer [49]

]

(1.40,0.72) / 0.41
(0.38,0.11)/ 1.04

(2.17,0.90)/ 1.1
(0.57,0.37) / 4.03

(1.09, 1.53) / 2.20
(0.38,0.27)/ 2.4

(0.89, 0.56) / 3.30
(0.37,0.15)/7.97

DSAC++ [1] (0.3,0.06)/207 | (03,02 )/207

M HSCNet [4] 0.3 ,0.06)/207 | (0.3 ,0.19)/207
& DSM [43] (0.30,0.06)/ 27 | (0.23,0.38)/105
Ours (0.25,0.06)/0.3 | (0.36,0.19)/0.2

(0.3 ,0.18)/207
0.3 ,0.18) /207
(0.35,0.19) / 143
(0.19, 0.14) /0.3

0.4 ,0.13) /207
(0.30, ) /1207
(0.34,0.11) / 174
(0.53,0.17) /1 0.4

04,02 )/207
0.2 ,0.28) /207
(0.43,0.19) /218
(0.10, 0.06) / 1.6

Table 3. Results of Cambridge. Each cell reports the median translation error, the median rotation error, and the scene representation size
in {(°, m) / MB}. Red indicates scene compression methods. NeuMap achieves similar accuracy as coordinate regression and feature
matching-based methods but with significantly smaller representation sizes.

Dept. B1 Dept. IF Dept. 4F
= D2Net [14] ( 178.0/( )/ 505GB | ( / /( )/ 398GB | ( / / )/ 183GB
= R2D2 [32] (71.917¢( /87.9)/210GB | (85.8/(89.9/94.4)/166GB | (72.6/84.6/98.3)/ 76GB
g ESAC (50) [5] (54/ 9.1/142)/ 49.7/71.5/84.1)/ (45.2/69.9/85.1)/1.3GB
o) Ours (46.0/66.5/79.8) / 0.8GB (75.5/88.2/95.8)/0.7GB (70.4/85.4799.0)/0.4GB
Table 4. Results of NAVER LAB. We report accuracy under different error thresholds (0.1m, 1°), (0.25m, 2°), (1m, 5°).
Code num. Day Night
4.0 - 0.10 1 493/75.2/93.9 | 143/26.5/76.5
\\\ Train Trans. Err. 25 72.2/854/954 | 21.4/49.0/82.7
337 Y -~ Finetune Trans. Err. 50 75.6/88.8/95.5 | 33.6/59.1/83.7
30 ) 1% 100 78.0/89.0/95.2 | 42.9/61.2/80.6
\ Pruned (25) | 76.2/88.5/95.5 | 37.8/62.2/87.8
2.5} s lo.06
Sl \\ Table 5. Performance under different code numbers. We use a
| voxel of 10 meters to divide the scene on Aachen day & night
15k | 10.04 dataset and list the code number per transformer block. There are
L ______ 933 voxels and 6 transformer blocks. It is noted that our network
1.0p [N oo can output good results even with 1 code. For code pruning, there
osl ' are 25 tokens on average for each transformer block.
0.0 ‘ 0.00 . . . ..
1 25 5 10 20 40 80 4.6. Ablation studies and visualization

Figure 4. ScanNet results in terms of the median translation and
rotation errors (m, °). We train our model with different numbers
of training scenes and finetune tokens on one new testing scene.

the training set.

Figure 4 shows the median translation and the median
rotation errors for the fully-trained (i.e., optimizing both
network weights and codes) and the fine-tuned NeuMap
models. The fully-trained models’ accuracy does not drop
as the number of training scenes increases, showing that
NeuMap handles an arbitrary number of scenes without a
performance drop. On the other hand, fine-tuned models
improve accuracy as more training scenes are used to learn
a generalizable scene-agnostic network.

We conduct several ablation studies and show visualiza-
tion results for NeuMap.
Code number and code-pruning. Table 5 shows how the
number of codes influences the accuracy of the Aachen Day
& Night dataset. NeuMap obtains good results even with
1 code, while the performance improves as we add more
codes. The table also shows the results of code pruning,
which reduces the number of codes from 100 to 25 on av-
erage while maintaining similar accuracy. The pruned ver-
sion with 25 codes is far superior to the counterpart without
pruning, which was trained with 25 codes from the start.
Attention score visualization. Figure 5 shows the atten-
tion scores between one code and image features in different
views. The score for pixel ¢ and code j is computed as

s7 = [softmax(Q - K)’. (12)



Figure 5. Attention score visualization. We choose one specific code, compute the attention scores for all pixels, and visualize scores by
normalizing all the pixels. Each row is the visualization results for the same code. We can see that each code memorizes a specific area.

Block num. | Day \ Night
1 62.1/82.8/94.4 | 17.3/36.7/76.5
3 68.9/85.7/94.5 | 20.4/40.8/79.6
6 78.0/89.0/95.2 | 42.9/61.2/80.6

Table 6. Localization accuracy under different transformer blocks.
The performance improves as more blocks are utilized.

Figure 6. Visualization of activated regions. Deep blue delineates
larger attention scores, while orange corresponds to smaller scores.

[.)J is the j*" element of the vector. Q, K is the same as
Equation 5. We normalize the scores across an image by

o _ ((s)—a)

Si= . (13)
a and b are the minimum and maximum values in an image.
A code activates and stores information for consistent pixels
corresponding to the same 3D scene structures.
Correlated region visualization. In Fig. 6, we visualize
the most correlated regions using a heat map. We computed
attention scores for each feature point on a dense feature
map. The visualization score for feature point ¢ is deter-
mined by the maximum score among all codes, expressed
as max; s/, where j represents the codes. After normal-
izing the scores across the entire feature map, we blended
them with the RGB image for a comprehensive visualiza-
tion. This heat map highlights the most significant regions
in the scene.
Transformer block number. Table 6 shows the results un-
der different transformer block numbers. The performance
improves as we use more transformer blocks.

5. Future Work and Limitations

NeuMap is a simple yet effective localization method
with many potentials. Since our framework is end-to-end
and fully differentiable, conventional network acceleration
technology can be applied for better efficiency, such as code
pruning [26,29], code quantization [46,51], and knowledge
distillation [16, 18]. Besides, the accuracy could also be
further boosted by pose loss, commonly used in object pose
estimation [10, 19].

A major limitation is the inference speed for large
scenes. For high accuracy, a voxel needs to be smaller, in-
creasing the number of voxels to be retrieved. While the
coordinate regression is end-to-end, our approach runs the
decoder many times for the retrieved voxels and is not nec-
essarily fast (e.g., 5 seconds per image for Aachen). Our
future work is better voxel division and retrieval methods
for speed up. Another future work is cross-dataset training
of NeuMap, which currently degrades performance.

6. Conclusions

This paper proposes a novel camera localization method
that encodes a scene into a grid of latent codes. Our frame-
work consists of a scene-agnostic neural network and scene-
specific latent code. To handle large scenes, we divide a
scene into a grid of voxels and assign codes to each. Our
method outperforms all the other end-to-end methods by
a large margin and achieves similar performance as the
feature-matching methods with a much smaller scene rep-
resentation size. We will share all our code and models.
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