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Abstract

Self-supervised learning can extract representations of
good quality from solely unlabeled data, which is ap-
pealing for point cloud videos due to their high labelling
cost. In this paper, we propose a contrastive mask pre-
diction (PointCMP) framework for self-supervised learn-
ing on point cloud videos. Specifically, our PointCMP em-
ploys a two-branch structure to achieve simultaneous learn-
ing of both local and global spatio-temporal information.
On top of this two-branch structure, a mutual similarity
based augmentation module is developed to synthesize hard
samples at the feature level. By masking dominant tokens
and erasing principal channels, we generate hard samples
to facilitate learning representations with better discrimi-
nation and generalization performance. Extensive experi-
ments show that our PointCMP achieves the state-of-the-art
performance on benchmark datasets and outperforms exist-
ing full-supervised counterparts. Transfer learning results
demonstrate the superiority of the learned representations
across different datasets and tasks.

1. Introduction

Recently, LIDARs have become increasingly popular in
numerous real-world applications to perceive 3D environ-
ments, such as autonomous vehicles and robots. Point
clouds acquired by LiDARs can provide rich geometric in-
formation and facilitate the machine to achieve 3D percep-
tion. Early works focus on parsing the real world from static
point clouds [9,24,64], while recent researches pay more at-
tention to understanding point cloud videos [14, 16,54,55].
Since annotating point clouds is highly time and labor
consuming [, 57], learning from point cloud videos in
a self-supervised manner draws increasing interest. Al-
though contrastive learning and mask prediction paradigms

*These authors contributed equally.
Corresponding author.

Input i Input i
Encoder
| |
. 5 . 5 Mutual Similarity based
[Augmentatlon] : [ Masking J : [ Augmentation ]
Augmented : Masked : Masked Negative
Inputs ! Inputs ! Tokens Tokens
Encoder Encoder
A 1 G 1 Regressor Projector
Projector ! Decoder !
Contrastive ! Masked : e clabd
- H . Contrastive Contrastive
Learning i Prediction i : -
! ! Learning Learning
@ i (b) i (c)
Figure 1. A comparison between (a) contrastive learning

paradigm, (b) mask prediction paradigm, and (c) our method.

[6,19,21,22,58,63] have shown the effectiveness of self-
supervised learning on images or static point clouds, these
methods cannot be directly extended to point cloud videos
due to the following three challenges:

(i) Multiple-Granularity Information Matters. The
contrastive learning paradigm [3,4,6, 19,22, 63] usually fo-
cuses on extracting global semantic information based on
instance-level augmentations. In contrast, the mask pre-
diction paradigm [2, 12,21,23, 58] pays more attention to
modeling local structures while ignoring global semantics.
However, since fine-grained understanding of point cloud
videos requires not only local spatio-temporal features but
also global dynamics [ 16,55], existing paradigms cannot be
directly adopted.

(ii) Sample Generation. The contrastive learning
paradigm is conducted by pulling positive samples while
pushing negative ones [3,6,8,19,22,51,63], and the mask
prediction paradigm learns representations by modeling the
visible parts to infer the masked ones [2,21,39,49,58,62].



Both paradigms rely heavily on the augmented samples at
the input level. Further, as demonstrated in several works
[18, 25,26, 42], self-supervised learning can significantly
benefit from proper hard samples. However, the spatial
disorder, temporal misalignment, and uneven information
density distribution impose huge challenges on hard sample
generation for point cloud videos at the input level.

(iii) Leakage of Location Information. The mask pre-
diction paradigm usually learns to reconstruct masked raw
signals by modeling visible ones [2,21,39,49,58,62]. For
images, the contents are decoupled from the spatial position
such that positional encoding is provided as cues to predict
masked regions. However, for point clouds with only xyz-
coordinates, positional encoding may be used as shortcuts
to infer the masked points without capturing geometric in-
formation [30,39].

In this paper, we propose a contrastive mask predic-
tion framework for self-supervised learning on point cloud
videos, termed as PointCMP. To address challenge (i), our
PointCMP integrates the learning of both local and global
spatio-temporal features into a unified two-branch structure,
and simultaneously conducts self-supervised learning at dif-
ferent granularities (Fig. 1(c)). For challenge (ii), we in-
troduce a mutual similarity based augmentation module to
generate hard masked samples and negative samples at the
feature level. To handle challenge (iii), instead of directly
regressing the coordinates of masked points, token-level
contrastive learning is conducted between the predicted to-
kens and their target embeddings to mitigate information
leakage.

Our contributions are summarized as follows:

* We develop a unified self-supervised learning frame-
work for point cloud videos, namely PointCMP.
Our PointCMP integrates the learning of multiple-
granularity spatio-temporal features into a unified
framework using parallel local and global branches.

* We propose a mutual similarity based augmentation
module to generate hard masked samples and nega-
tive samples by masking dominant tokens and princi-
pal channels. These feature-level augmented samples
facilitate better exploitation of local and global infor-
mation in a point cloud video.

» Extensive experiments and ablation studies on several
benchmark datasets demonstrate the efficacy of our
PointCMP on point cloud video understanding.

2. Related Work

In this section, we first briefly review two mainstream
self-supervised learning frameworks. Then, we present re-
cent advances for point cloud video understanding.

2.1. Contrastive Learning

Contrastive learning has greatly promoted the develop-
ment of self-supervised learning [3, 4, 6-8, 19,22, 52, 63].
Usually, semantically consistent sample pairs are separately
encoded by an asymmetric siamese network, and then con-
trastive loss aligns them to facilitate the encoder to learn
discriminative representations [45, 50,51]. For contrastive
learning on images, data augmentation has been widely in-
vestigated to generate positive and negative samples to im-
prove the discriminability of representations [6, 18,32, 40].

Recently, contrastive learning has also been studied on
static point clouds. Specifically, Xie et al. [57] used ran-
dom geometric transformations to generate two views of
a point cloud and associated matched point pairs in these
two views using contrastive loss. Zhang et al. [66] con-
structed two augmented versions of a point cloud and used
their global features to setup an instance discrimination task
for pre-training.

2.2. Mask Prediction

Mask prediction has demonstrated its effectiveness in
numerous computer vision tasks and draws increasing in-
terest [2,12,21,23,49,58]. Bao et al. [2] proposed a BERT-
style framework [27] to predict token identities of masked
patches based on visible ones. Then, Zhou et al. [68] de-
veloped an online tokenizer for better image BERT pre-
training. Later, Feichtenhofer et al. [1 7] and Tong et al. [46]
introduced mask prediction to videos and obtained repre-
sentations rich in local details by inferring masked spatio-
temporal tubes.

Recently, several efforts have been made to extend
the mask prediction paradigm to point clouds. Specifi-
cally, Yu et al. [62] proposed PointBERT and introduced
a masked point modeling task for point cloud pre-training.
Pang et al. [39] proposed Point-MAE to reconstruct masked
point coordinates using high-level latent features learned
from unmasked ones. Liu ef al. [30] proposed to use binary
point classification as a pretext task for point cloud masked
autoencoding.

Most existing contrastive learning and mask prediction
methods rely on input-level augmentation to conduct self-
supervised learning on static point clouds. Nevertheless,
it is intractable to directly extend these methods to point
cloud videos as more complicated augmentation operations
are required to cover the additional temporal dimension. To
remedy this, we propose to synthesize samples at the fea-
ture level based on mutual similarities, which enables rea-
sonable sample generation without considering the unstruc-
tured data formats of point cloud videos.

2.3. Point Cloud Video Understanding

Spatial disorder and temporal misalignment make point
cloud videos more challenging to be parsed using a neu-
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Figure 2. An overview of our PointCMP.

ral network than structured data like images. To leverage
the advanced techniques developed for structured data, pre-
vious methods transform point clouds into a sequence of
bird’s eye views [33], voxels [10,61], and pillar grids [60].
However, these transformations inevitably lead to the loss of
geometric details. Recently, more attention has been paid to
learning directly on raw points using attention-based mod-
els [13, 14,54, 55], convolution-based models [15, 16, 31],
and hand-crafted temporal descriptors [53, 67]. Specifi-
cally, Fan et al. [15] proposed a spatio-temporal decoupled
encoder, which alternately performs spatial and temporal
convolution to model raw point sequences hierarchically.
Then, they further developed P4Transformer [13] that uti-
lizes point spatio-temporal tubes to aggregate local neigh-
borhoods into tokens.

Despite the huge success of self-supervised learning
methods in video understanding [5, 20, 29, 38, 41, 44, 48,

, 65], self-supervised point cloud video understanding is
still under-investigated. Recently, Wang et al. [47] designed
a pretext task, namely recurrent order prediction (ROP),
to predict the temporal order of shuffled point cloud seg-
ments for self-supervised learning. However, this method
can only capture clip-level temporal structures and cannot
exploit finer spatio-temporal details. To parse a point cloud
video, it is important for a self-supervised method to capture
both spatio-temporal local structures and global semantics.
To this end, we develop a unified PointCMP framework that
can enable networks to simultaneously learn information
with different granularities.

3. Method

The architecture of our PointCMP is illustrated in Fig. 2.
Given a point cloud video, it is first uniformly divided into
L segments. Then, these segments are fed to an encoder to
produce tokens Z € REXNXC by aggregating local spatio-
temporal information, where N means the token number

aggregated from each segment and C' is the number of chan-
nels. Meanwhile, a global token Z jiopq1 € R with global
semantics is also obtained following [15]. Next, Z gopa
and Z are passed to a mutual similarity based augmenta-
tion module for online sample generation. Afterwards, a
local contrastive learning branch and a global contrastive
learning branch are employed to capture multi-granularity
information.

3.1. Mutual Similarity based Augmentation

Hard samples have been demonstrated to be critical to
the performance of self-supervised learning [18, 26, 42].
However, it is challenging to generate hard samples for
orderless and unstructured point cloud videos at the input
level. To address this issue, we introduce a mutual similar-
ity based augmentation module to synthesize hard samples
at the feature level.

Hard Masked Samples. Our intuition is that reconstruc-
tion is easier when tokens sharing higher similarities with
the global token are visible. Therefore, we are motivated
to mask these tokens to synthesize hard masked samples.
Specifically, the similarity s* between the i-th token z* and

the global token Z g;0pq1 is calculated as:

z Zglobal

1212 1 Zgtobarll2
Then, the top 40% tokens with the highest similarities are
selected as dominant ones. Note that, point patches cor-
responding to adjacent tokens usually share overlapped re-
gions [62]. That is, token-level masking may introduce
shortcuts for mask prediction. To remedy this, segment-
level masking is adopted as different segments are isolated.
Specifically, L,,, segments with the most dominant tokens
are selected with all tokens (REm >N *€) being masked. By
masking these tokens that share high similarity with the
global token, the difficulty of mask prediction is largely in-
creased. It is demonstrated in Sec. 4.6 that our hard masked
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samples can facilitate the encoder to achieve much higher
accuracy.

Hard Negative Samples. Our major motivation is that
different channels contain information of various impor-
tance, and the channels with higher correlation with the
global token are more discriminative. Consequently, we
synthesize hard negative samples by erasing these channels.
Specifically, the correlation of the c-th channel in the i-th
token s’ is calculated as:

si _ Z; . zglobal ,
22 [1Zgiobarll2

2

where z9'°%! is the c-th channel of the global token. Then,
we rank s, to obtain the order of each channel o, and sum
up the resultant ranks across all tokens:

A=Y o, 3)

Next, the top 20% channels are selected as principal chan-
nels and erased to produce hard negative samples.

3.2. Local Contrastive Learning Branch

In the local branch, we first generate positional embed-
ding for each token by feeding its spatio-temporal coordi-
nate (z,y, 2, t) to a linear layer. Then, these positional em-
beddings are summed with their tokens and fed to a regres-
sor to predict masked tokens using the context and posi-
tion cues. Next, the predicted tokens Z,,, € RLm*NxC
are passed to a spatio-temporal matching module, as shown
in Fig 3. Specifically, Z,,. is pooled to obtain a global
representation REm*C which is then added to Z pre- Af-
terwards, the resultant token is fed into a decoder to pre-
dict their position P,,.. € REm*N>3 Here, a three-layer
Transformer [13] is adopted as the regressor and FoldingNet
[59] is used as the decoder.

As discussed in Sec. 1, the positional embeddings may
lead to leakage of location information when inferring the
coordinates for masked points. To remedy this, we adopt
a contrastive loss to associate the representations of pre-
dicted tokens Z,,. and corresponding groundtruth tokens
Z 4 learned by the encoder. Specifically, the tokens lo-
cated at Pg; are obtained through trilinear interpolation by
querying Z,,. located at P,,.., resulting in Zpre. For the
i-th token z; € Zpre, the corresponding token in Z 4 is
adopted as the positive sample z,. Meanwhile, other to-
kens are regarded as negative samples. This avoids directly
using the token position correspondence to construct sam-
ple pairs. The InfoNCE loss [37] is used for training:
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Figure 3. Network Architecture of our spatio-temporal matching
module.

where 7 is a temperature parameter and ® is a negative sam-
ple set. Through token-level contrastive learning, the en-
coder can alleviate the shortcuts of positional encoding to
capture fine-grained local information.

3.3. Global Contrastive Learning Branch

In the global branch, we focus on learning discrimina-
tive representations at the video level. We take the global
token Z g;0pq1 as the query v;, and the resultant tokens pro-
duced by the regressor are pooled to obtain the positive sam-
ple v, as shown in Fig. 2. Meanwhile, the hard negative
sample v_ in addition with samples from other videos in
batch B are passed to a max-pooling layer, resulting in neg-
ative samples. Then, all samples are projected into the latent
space and the InfoNCE loss [37] is adopted for training:

exp (vivy/T)

Lo, =~log T i#] T :
exp (v} v_/T)+Evje{BUv+} exp (v} v;/T)
%)
Opverall, the total loss of our PointCMP is defined as:
Liotar = LS + LYCH | 6)

where £5¢4L refers to the InfoNCE loss in the local branch

(Eq. 4), and E%(’Cbgl refers to the InfoNCE loss in the global
branch (Eq. 5). With both loss terms, our PointCMP can
simultaneously learn both local and global information.

4. Experiments

In this section, we first present the datasets and im-
plementation details used in the experiments. Then, we
compare our PointCMP to previous methods under four



Table 1. Action recognition accuracy (%) on MSRAction-3D.

Methods \ #Frames
| 4 8 12 16 24
MeteorNet [31] 78.11 81.14 86.53 88.21 88.50
Kinet [67] 79.80 83.84 88.53 91.92 93.27
PST? [54] 81.14 86.53 88.55 89.22 -
Supervised Learning PPTr [55] 80.97 84.02 89.89 90.31 92.33
P4Transformer [13] 80.13 83.17 87.54 89.56 90.94
PST-Transformer [14] 81.14 83.97 88.15 91.98 93.73
PSTNet [15] 81.14 83.50 87.88 89.90 91.20
PSTNet++ [16] 81.53 83.50 88.15 90.24 92.68
End-to-end Fine-tuning PSTNet + PointCMP 84.02 89.56 91.58 92.26 93.27
Linear Probing PSTNet + PointCMP 78.11 88.55 90.24 91.92 92.93

widely used protocols, including end-to-end fine-tuning,
linear probing, semi-supervised learning, and transfer learn-
ing. Finally, we conduct ablation studies to demonstrate the
effectiveness of our method.

4.1. Datasets and Implementation Details

Datasets. We conduct experiments on 3D action recog-
nition and 3D gesture recognition tasks. Four bench-
mark datasets are employed, including NTU-RGBD [43],
MSRAction-3D [28], NvGesture [36], and SHREC’ 17 [1 1].

* NTU-RGBD. The NTU-RGBD dataset consists of
56,880 videos with 60 action categories performed by
40 subjects. Following the cross-subject setting of
[43], this dataset is split into 40,320 training videos
and 16,560 test videos.

¢ MSRAction-3D. The MSRAction-3D dataset contains
567 videos with 23k frames. It consists of 20 fine-
grained action categories performed by 10 subjects.
Following [15], this dataset is split into 270 training
videos and 297 test videos.

* NvGesture. The NvGesture dataset is comprised of
1532 videos with 25 gesture classes. Following [35],
this dataset is split into 1050 training videos and 482
test videos.

* SHREC’17. The SHREC’17 dataset consists of 2800
videos in 28 gestures. Following [1 1], 1960 videos are
used as the training set and 840 videos are adopted as
the test data.

Pre-training Details. During pre-training, 16 frames were
sampled as a clip from each point cloud video, with 1024
points being selected for each frame. The frame sampling
stride was set to 2 and 1 on NTU-RGBD and MSRAction-
3D, respectively. Then, we divided each clip into 4 seg-
ments and random scaling was utilized for data augmen-
tation. Our model was pre-trained for 200 epochs with a

batch size of 80, and linear warmup was utilized for the first
5 epochs. The initial learning rate was set to 0.0003 with a
cosine decay strategy. The spatial search radius was initially
set to 0.5/0.1 on NTU-RGBD/MSRAction-3D and the num-
ber of neighbors for the ball query was set to 9. The tem-
perature parameter T was set to 0.01/0.1 in the local/global
InfoNCE loss term.

4.2. End-to-end Fine-tuning

We first evaluate our representations by fine-tuning the
pre-trained encoder with a linear classifier in a supervised
manner. The MSRAction-3D dataset was used for both pre-
training and fine-tuning. During fine-tuning, 2048 points
were selected for each frame and the pre-trained model was
trained for 35 epochs with a batch size of 24. The initial
learning rate was set to 0.015 with a cosine decay strategy.
Following [15], the initial spatial search radius was set to
0.5 and the number of neighbors for the ball query was set
to 9. Quantitative results are presented in Table 1.

As we can see, our PointCMP introduces significant ac-
curacy improvements over the baseline trained in a fully
supervised manner. Especially, the accuracy achieved
using 8/12 frames is improved from 83.50%/87.88% to
89.56%/91.58%. This shows that our PointCMP can learn
beneficial knowledge from point cloud videos in a self-
supervised manner, which contributes to higher accuracy
after fine-tuning.

4.3. Linear Probing

We then conduct experiments to validate the effective-
ness of our PointCMP via linear probing. The MSRAction-
3D dataset was used for both pre-training and linear prob-
ing. Specifically, the pre-trained encoder is frozen and an
additional linear classifier is added for supervised training.
The experimental settings are the same as Sec. 4.2.

From Table 1, we can see that the pre-trained encoder
using PointCMP outperforms the fully supervised baseline



Table 2. Action recognition accuracy on NTU-RGBD under cross-
subject setting.

Table 4. Gesture recognition accuracy (%) of transfer learning on
NvGesture (NVG) and SHREC’17 (SHR).

Methods Accuracy (%)
Kinet [67] 92.3
P4Transformer [13] 90.2
PST-Transformer [14] 91.0
PSTNet [15] 90.5
PSTNet++ [16] 91.4
PSTNet+PointCMP (50% Semi-supervised) 88.5

Table 3. Action recognition accuracy (%) of transfer learning on
MSRACction-3D. Accuracy improvements against the supervised
baseline are shown in subscript.

‘ #Frames
Methods ‘ Input ‘ 3 6
4D MinkNet [10]+ROP [ Point+RGB | 86.31 -
MeteorNet [31]+ROP [ Point+RGB | 85.40,4.6 -
PSTNet + PointCMP | Point | 88.5345.03 91.58,1.68

even under the linear probing setting. Our method surpasses
the baseline under most frame settings with notable mar-
gins (e.g., 88.55%/90.24% vs. 83.50%/87.88% under 8/12
frames). This clearly demonstrates the high quality of the
representations learned by PointCMP.

4.4. Semi-supervised Learning

We also conduct experiments to evaluate our PointCMP
under the setting of semi-supervised learning. The cross-
subject training set of NTU-RGBD was used for pre-
training. Specifically, we used only 50% training set of
NTU-RGBD to fine-tune the pre-trained encoder in a su-
pervised manner. Following [15], the initial spatial search
radius was set to 0.1, the number of neighbors for the ball
query was set to 9, and 2048 points were samples for each
frame. The model was fine-tuned for 50 epochs with a batch
size of 24. The initial learning rate was set to 0.015 with a
cosine decay strategy.

Table 2 compares the quantitative results produced by
our PointCMP and previous fully supervised approaches.
Averaged accuracy over 3 experiments is reported for our
method. It can be observed that our PointCMP achieves
comparable performance to the fully supervised baseline
even with only 50% data (88.5% vs. 90.5%). This further
demonstrates the superiority of the representations learned
by our PointCMP.

4.5. Transfer Learning

To evaluate the generalization performance of our
PointCMP, we conduct experiments by transferring pre-
trained encoder to other datasets or tasks. Specifically, the
encoder was first pre-trained on the cross-subject training
set of NTU-RGBD, and then fine-tuned with an additional

Methods NvG SHR
FlickerNet [34] 86.3 -

PLSTM-base [35] 859 87.6
PLSTM-early [35] 879 935
PLSTM-PSS [35] 87.3 93.1
PLSTM-middle [35] 86.9 94.7
PLSTM-late [35] 87.5 935
Kinet [67] 89.1 952
PSTNet (35 Epochs) [15] 789 87.0
PSTNet (100 Epochs) [15] 88.4 92.1

PSTNet + PointCMP (35 Epochs) 84.0 90.8
PSTNet + PointCMP (100 Epochs) 89.2 933

MLP head on MSRAction-3D, NvGesture, and SHREC’17.

Transfer to MSRA ction-3D. We first fine-tuned the pre-
trained encoder on MSRAction-3D following the experi-
mental settings in Sec. 4.2. We compare our PointCMP
with ROP [47] in Table 3. Note that, since the official
code for ROP is unavailable, we report its performance on
4D MinkNet [10] and MeteorNet [31] for comparison. Al-
though PSTNet uses only points as input, our PointCMP
facilitates this baseline to surpass ROP by over 2% accu-
racy. In addition, our PointCMP introduces more signifi-
cant accuracy improvements as compared to ROP (5.03%
vs. 4.26%).

Transfer to NvGesture and SHREC’17. The en-
coder was further transferred from action recognition to
gesture recognition through fine-tuning on NvGesture and
SHREC’17. Specifically, the pre-trained model was fine-
tuned for 100 epochs with a batch size of 16. The initial
learning rate was set to 0.01 with a cosine decay strategy.
During fine-tuning, 32 frames were utilized with 512/256
points sampled for each frame on NvGesture/SHREC’17.
We compare our fine-tuned models to previous supervised
state-of-the-art methods in Table 4. As we can see, after
fine-tuning for 100 epochs, our PointCMP facilitates PST-
Net to produce very competitive accuracy. In addition, our
PointCMP also allows for faster convergence such that more
significant improvements are achieved after fine-tuning for
only 35 epochs (e.g., 78.9% vs. 84.0% on NvGesture). This
also shows the superior generalization capability cross dif-
ferent tasks of the representations learned by our PointCMP.

4.6. Ablation Studies

Architecture Design. Our PointCMP employs a two-
branch structure to simultaneously extract both local and
global information, and adopts the mutual similarity based
augmentation module to generate hard samples. To demon-
strate the effectiveness of these architecture designs, we
developed models Al and A2 with only local and global



(a) Pick up & Throw
Figure 4. Visualization of hard masked samples. Points corresponding to dominant tokens are marked in green.

Table 5. Ablation studies on architecture designs.

(b) Jogging

(c) Tennis Serve

Table 7. Ablation studies on hard negative samples.

Local Global Similarity-based

Branch Branch Augmentation ‘ Accuracy (%)
Al v 89.22
A2 v 49.49
A3 v v 89.76
A4 (Ours) Ve v v 91.92

Table 6. Ablation studies on hard masked samples.

. Masking Ratio
Granularity Mask 5% 50%  75% 90%
Bl Token Random 71.72 71.72 76.77 78.11
B2 Token |Similarity-based | 70.03 81.82 84.18 88.55

B3 Segment Random 90.81 88.15 79.80 -
B4 (Ours) Segment | Similarity-based | 91.92 90.24 86.53 -

branch, respectively. Then, model A3 is introduced by re-
moving the mutual similarity based augmentation module.
Quantitative results are presented in Table 5.

As we can see, with only local or global branch, the
performance of model Al and A2 are limited (89.22% and
49.49%). This is because, both local and global information
contribute to the recognition of point cloud videos. When
these two branches are combined, complementary informa-
tion can be exploited such that better accuracy is achieved
by model A3 (89.76%). However, without the mutual sim-
ilarity based augmentation module, model A3 still suffers
an accuracy drop of 2.16% as compared to A4. This further
validates the effectiveness of our mutual similarity based
augmentation module.

Hard Masked Samples. The masking strategy con-
tributes to the quality of hard masked samples and plays
a critical role in the local branch of our PointCMP. Conse-
quently, we conduct experiments to study different masking
strategies and compare their results in Table 6.

As we can see, segment-wise masking strategy signifi-
cantly outperforms token-wise masking strategy under dif-
ferent masking ratios. As compared to token-wise strategy,
segment-wise strategy can better avoid the leakage of in-
formation caused by overlapped point patches, which fa-
cilitates the network to better exploit local structures in a
point cloud video. Moreover, similarity-based masks in-

Hard Sample \ Strategy Accuracy (%)
Cl1 X - 90.52
Cc2 v Random 91.29
C3 (Ours) v Similarity-based 91.92

Table 8. Ablation studies on the spatio-temporal matching module.

Architecture ‘ Matching Module ‘ Accuracy (%)
D1 Local X 86.20
D2 Local v 89.22
D3 Local & Global X 90.24
D4 (Ours) Local & Global v 91.92

troduce notable performance gains on segment-wise strat-
egy, with accuracy being improved from 90.81%/88.15% to
91.92%/90.24%. This demonstrates the effectiveness of our
hard masked samples.

We further visualize the points corresponding to domi-
nant tokens with high similarity to the global token in Fig. 4.
As we can see, tokens corresponding to moving body parts
(e.g., arms in Fig. 4(c)) are highlighted, which is consistent
with our intuition. This demonstrates the feasibility of our
mutual similarity based augmentation to synthesize reason-
able hard samples. With these discriminative regions being
masked, the encoder is encouraged to leverage more context
for mask prediction, with representations of higher quality
being learned.

Hard Negative samples. To demonstrate the effective-
ness of hard negative samples in the global branch of our
PointCMP, model C1 is introduced by excluding hard sam-
ples during training. That is, only samples in other videos
are employed as negatives. Furthermore, we conduct exper-
iments to study different channel erasing strategies. Quan-
titative results are presented in Table 7.

It can be observed that model C1 suffers an accuracy
drop of 1.40% as compared to C3 when hard negative sam-
ples are excluded. Using random channel erasing to gener-
ate hard negative samples, model C2 improves C1 with ac-
curacy being increased from 90.52% to 91.29%. With our
mutual similarity based augmentation module, hard neg-
ative samples of higher quality can be synthesized such
that better performance can be achieved. This validates the
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(b) negative samples, and (c) hard negative samples generated by channel erasing.
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Figure 6. The t-SNE visualization of representation distributions
on MSRAction-3D (a) after pre-training only with global con-
trastive learning and (b) after pre-training using our PointCMP.

effectiveness of the hard negatives generated by principal
channel erasing.

Following [ 18], we visualize cosine similarity of repre-
sentations learned from different sample pairs in Fig. 5 to
study the importance of our hard negative samples. A model
pre-trained on MSR Action-3D without using hard negatives
is utilized for analyses. As shown in Fig. 5(a), the similari-
ties of positive pairs are close to 1 with an average value of
0.875. On the contrary, negative pairs are gathered around 0
with an average value of 0.013. For our hard negatives, their
average similarity score is increased to 0.315, which means
these samples remain difficult for the pre-trained encoder if
they are not included for training. This further shows the
necessity of our hard negatives.

Spatio-temporal Matching Module. In the local
branch of our PointCMP, a spatio-temporal matching mod-
ule is adopted to conduct local contrastive learning. To
study its effectiveness, we first developed model D2 with
only the local branch. Then, we introduced model D1 and
D3 by removing this matching module from D2 and D4, re-
spectively. Quantitative results are presented in Table 8. As
we can see, the spatio-temporal matching module facilitates
D4 to produce an accuracy improvement of 1.68% and in-
troduces a more significant improvement of 3.02% to D2.
We further visualize the evolution of the local contrastive
loss (i.e., £59¢4L in Eq. 6) in Fig. 7. Without the spatio-
temporal matching module, the loss decreases rapidly to
near 0 and the networks cannot be further optimized. This
is because the leakage of location information is leveraged
by the network as shortcuts without capturing geometric in-
formation. In contrast, our matching module alleviates po-

20
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—— w/o Spatio-temporal Matching Module
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Figure 7. Evolution of local contrastive learning loss during pre-
training on MSRAction-3D.

o

sitional information leakage and increases the hardness of
learning to help the network ultimately achieve higher ac-
curacy (Table 8).

Representation Visualization. We further visualize the
feature distributions using t-SNE to demonstrate the ef-
fectiveness of our PointCMP. With only global branch as
many previous methods do, the learned representations have
blurred boundaries between different categories with lim-
ited discriminative capability, as shown in Fig. 6(a). In
contrast, the representations extracted using our PointCMP
can better exploit both global and local information with
clearer boundaries between different categories, as shown
in Fig. 6(b). This clearly demonstrates the high discrimina-
tion of the representations learned by our method.

5. Conclusion

In this paper, we develop a self-supervised learning
framework termed PointCMP for point cloud videos. Our
PointCMP unifies the complementary advantages of con-
trastive learning and mask prediction paradigms to simul-
taneously learn both global and local spatio-temporal fea-
tures at different granularities. To promote the training of
PointCMP, we propose a mutual similarity based augmenta-
tion module to generate hard masked and negative samples
at the feature level. Experiments on benchmark datasets
show that our PointCMP achieves state-of-the-art perfor-
mance on both action and gesture recognition tasks.
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