
E2PN: Efficient SE(3)-Equivariant Point Network

Minghan Zhu
University of Michigan
minghanz@umich.edu

Maani Ghaffari
University of Michigan
maanigj@umich.edu

William A Clark
Cornell University
wac76@cornell.edu

Huei Peng
University of Michigan

hpeng@umich.edu

Abstract

This paper proposes a convolution structure for learn-
ing SE(3)-equivariant features from 3D point clouds. It can
be viewed as an equivariant version of kernel point convo-
lutions (KPConv), a widely used convolution form to pro-
cess point cloud data. Compared with existing equivari-
ant networks, our design is simple, lightweight, fast, and
easy to be integrated with existing task-specific point cloud
learning pipelines. We achieve these desirable properties
by combining group convolutions and quotient representa-
tions. Specifically, we discretize SO(3) to finite groups for
their simplicity while using SO(2) as the stabilizer subgroup
to form spherical quotient feature fields to save computa-
tions. We also propose a permutation layer to recover SO(3)
features from spherical features to preserve the capacity to
distinguish rotations. Experiments show that our method
achieves comparable or superior performance in various
tasks, including object classification, pose estimation, and
keypoint-matching, while consuming much less memory and
running faster than existing work. The proposed method
can foster the development of equivariant models for real-
world applications based on point clouds.

1. Introduction
Processing 3D data has become a vital task today as de-

mands for automated robots and augmented reality tech-
nologies emerge. In the past decade, computer vision has
significantly succeeded in image processing, but learning
from 3D data such as point clouds is still challenging. An
important reason is that 3D data presents more variations
than 2D images in several aspects. For example, the rigid
body transformations in 2D only have 3 degrees of freedom
(DoF) with 1 for rotations. In 3D space, the DoF is 6, with 3
for rotations. The 2D translation equivariance is a key fac-
tor in the success of convolutional neural networks (CNNs)

Figure 1. Our method achieves higher efficiency by working with smaller
feature maps defined on S2′ × R3 rather than SO(3)′ × R3 (′ denotes
discretization). R3 is omitted in the figure. The black arrows in each space
represent elements. The top and bottom paths are equivalent, showing the
relations among different representations.

in image processing, but it is not enough for 3D tasks.
Generally speaking, equivariance is a property for a map

such that given a transformation in the input, the output
changes in a predictable way determined by the input trans-
formation. It drastically improves generalization as the vari-
ance caused by the transformations is captured via the net-
work by design. Take CNNs as an example, the equiv-
ariance property refers to the fact that a translation in the
input image results in the same translation in the feature
map output from a convolution layer. However, conven-
tional convolutions are not equivariant to rotations, which
becomes problematic, especially when we deal with 3D
data where many rotational variations occur. In response,
on the one hand, data augmentations with 3D rotations are
frequently used. On the other hand, equivariant feature
learning emerges as a research area, aiming to generalize
the translational equivariance to broader transformations.

A lot of progress has been made in group-equivariant
feature learning. The term group encompasses the 3D rota-
tions and translations, which is called the special Euclidean

1

ar
X

iv
:2

20
6.

05
39

8v
3

 [
cs

.C
V

]
 1

4
Ju

n
20

23

group of dimension 3, denoted SE(3), and also other more
general types of transformations that represent certain sym-
metries. While many methods have been proposed, equiv-
ariant feature learning has not yet become the default strat-
egy for 3D deep learning tasks. From our understanding,
two major reasons hinder the broader application of equiv-
ariant methods. First, networks dealing with continuous
groups typically require specially designed operations not
commonly used in neural networks, such as generalized
Fourier transform and Monte Carlo sampling. Thus, incor-
porating them into general neural networks for 3D learning
tasks is challenging. Second, for the strategy of working on
discretized (finite) groups [6, 19], while the network struc-
tures are simpler and closer to conventional networks, they
usually suffer from the high dimensionality of the feature
maps and convolutions, which causes much larger memory
usage and computational load, limiting their practical use.

This work proposes E2PN, a convolution structure for
processing 3D point clouds. Our proposed approach can
enable SE(3)-equivariance on any network with the KP-
Conv [35] backbone by swapping KPConv with E2PN. The
equivariance is up to a discretization on SO(3). We leverage
a quotient representation to save computational and mem-
ory costs by reducing SE(3) feature maps to feature maps
defined on S2 × R3 (where S2 stands for the 2-sphere).
Nevertheless, we can recover the full 6 DoF information
through a final permutation layer. As a result, our proposed
network is SE(3)-equivariant and computationally efficient,
ready for practical point-cloud learning applications.

Overall, this work has the following contributions:

• We propose an efficient SE(3)-equivariant convolution
structure for 3D point clouds.

• We design a permutation layer to recover the full
SE(3) information from its quotient space.

• We achieve comparable or better performance with
significantly reduced computational cost than existing
equivariant models.

• Our implementation is open-sourced at https://
github.com/minghanz/E2PN.

Readers can find preliminary introductions to some re-
lated background concepts in the appendix.

2. Related work
Group convolutions: In 2016, Cohen and Welling pro-

posed G-CNN [6], enabling equivariance beyond transla-
tions on 2D images with generalized G-convolutions (group
convolutions) over the group of 90-degree rotations, which
is one of the earliest efforts in equivariant deep learning.
Group convolution is similar to conventional convolutions
but has an extended domain for feature maps and kernels.

The idea was then applied to different networks to enable
equivariance for SE(2) [6,19], SO(3) [5], SE(3) [2,42], and
E(3) [41] groups up to some discretization. The idea mainly
works with finite (discretized) groups, as it is convenient to
parameterize feature maps and kernels on the discretized
group elements just as on pixel grids. Group convolutions
have a relatively simple structure, making them straightfor-
ward to apply, but a major downside is that the lifted domain
of features and kernels causes higher computational and
memory costs, and the problem is more prominent when the
group is large. Groups convs can also work with continuous
groups, for example, with the help of Monte Carlo (MC) es-
timation as in [13], but they suffer from a large memory bur-
den in MC sampling when the number of layers grows [30].

Steerable CNNs: Another line of work is steerable
CNNs. Instead of augmenting the domain of feature maps,
steerable CNNs generalize the space of feature values to
be steerable, i.e., the feature values transform predictably
as the input transforms. The way the feature transforms is
called the group representation in the feature space, gov-
erned by the feature type. Features of scalar type are kept
unchanged under group actions, and we call the group rep-
resentation trivial. For vector or tensor feature types, the
representation is not trivial, and the features will change
with group actions, for example, through rotation matrix
multiplication. Steerable CNNs work for both discretized
and continuous groups. One may freely design the feature
types based on pre-determined basic types and correspond-
ing representations (irreducible representations, i.e., irreps)
as building blocks for a given group. Group convolutions
can be viewed as a special case of steerable CNNs with reg-
ular representations, i.e., channels of a feature vector un-
dergo permutations when transformed. Examples of steer-
able CNNs include [4,9,36,40,43]. While the framework of
steerable CNNs generalizes group convolutions with more
flexibility, it requires a good understanding of representa-
tion theory and involves generalized Fourier analysis when
working with a continuous group, which makes the struc-
ture complicated and challenging to apply in real-world ap-
plications broadly. The work of [21, 39] also found empiri-
cally that steerable CNNs with irreps underperform regular
representations in certain tasks.

Theoretical progress: There has been a lot of progress
in the theoretical development of equivariant networks that
are not group-specific. [24] developed a general formula-
tion for steerable CNNs with scalar type features, and [7,8]
generalized it to arbitrary feature types. It is proven that
all equivariant linear maps can be written as convolutions.
The formulation from the perspective of Fourier analysis
was presented in [46]. [39] found the general form of solu-
tion for the equivariant kernels for E(2) group, later gen-
eralized to any compact group [26]. [14] proposed an algo-
rithm to solve for the equivariance constraint for arbitrary

2

matrix group. The formulation of group convolution based
on MC estimation was proposed for any Lie group with [13]
or without [30] surjective exponential maps. Equivariant
non-linear layers like transformers [15, 21] and equivariant
set and graph networks [14, 22, 32] are also proposed, but
they are not the focus of this paper.

Applications of equivariant learning in perception
tasks: We want to highlight a few equivariant networks that
gain attention in perception applications due to their sim-
plicity and practicality. Vector Neurons [10] is a PointNet-
like SO(3)-equivariant network for 3D point cloud learn-
ing, later applied to point cloud registration [49] and ma-
nipulation [34]. It can be viewed as a special case of
TFN [36] with type-1 features and self-interactions only.
E2CNN [39] as an SE(2)-equivariant framework was ap-
plied in several image processing tasks [27, 33], given its
generality and user-friendly library. DEVIANT [25] ap-
plied scale-equivariant convolutions in monocular 3D ob-
ject detection. EPN [2] is a group convolution network with
SE(3)-equivariance for 3D point cloud learning based on
KPConv [35] and was used in practice, for example in place
recognition task [29]. We also position this proposed work
in this category, aiming to promote the application of equiv-
ariant learning with our efficient and easy-to-use design.
Our work is developed based on EPN, which also serves
as a major baseline in this paper.

3. Methodology

3.1. Overview of the idea

We first explain why our proposed method is more ef-
ficient. Then we discuss how we gain efficiency without
sacrificing expressiveness.

3.1.1 Improved efficiency with quotient features

Following the idea of group convolutions, one needs to ex-
tend the domain of feature maps from the Euclidean space
to the group space, from R3 to SE(3) ∼= SO(3) × R3 in
our case, where we want SE(3)-equivariant features for 3D
point clouds. We then discretize SO(3) to a finite group
denoted as SO(3)′ (we use ′ to denote discretization in this
paper). The discretization of R3 is taken care of by KPConv,
which is the non-equivariant counterpart of our method,
thus, not discussed here. Up to now, we can obtain a SE(3)-
equivariant version of KPConv [35] realized through group
convolution, which is what EPN [2] presents.

The specific form of the finite group SO(3)′ is intro-
duced later in Sec. 3.2, but it can be geometrically under-
stood as the set of all rotations that keep a Platonic solid
(i.e., a convex and regular 3D polyhedron) unchanged. As
illustrated at the bottom of Fig. 1, the set of rotations can
be enumerated by counting the number of vertices, repre-

Figure 2. Illustration of recovering SO(3)′ features from S2′ features
through permutations. The left and right subplots are from the geometric
and algebraic views. See Sec. 3.1.2 for more explanation.

senting rotations taking a given vertex to any vertices, mul-
tiplied by the number of edges connected to a single vertex,
representing the rotations that keep a vertex fixed. The same
result can be achieved by counting the faces or the edges,
but we stick with vertices in the following discussion.

In comparison, we propose to define feature maps on
S2 × R3, where S2 is the sphere space. We have S2 =
SO(3)/SO(2), meaning that it is the quotient space of
SO(3) given the stabilizer subgroup SO(2). To understand
the quotient space intuitively, we can see that all rotations
can be grouped by the destination of a point on the sphere
(e.g., the north pole) after the rotation. All rotations bring-
ing the north pole to the same destination point form a
coset. They are related by rotations around the axis pass-
ing through that point, forming a subgroup isomorphic to
SO(2). Thus S2 is the quotient of SO(3) and SO(2). In the
discretized setup, as depicted in Fig. 1, SO(2)′ is discretized
by the number of edges connected to a single vertex. The
quotient S2′ = SO(3)′/SO(2)′ corresponds to the vertices
on the Platonic solid.

In general, |S2′|= |SO(3)′|/|SO(2)′|< |SO(3)′|, thus
the size of feature maps and kernels defined on S2′ × R3 is
much smaller than those on SO(3)′ × R3. The convolution
operation on the former space also requires smaller costs.
It is the major reason our method is much more efficient
than EPN. There is another design, called symmetric kernel,
which further improves the efficiency of our method, but we
will refer to Sec. 3.2.3 for details.

3.1.2 Information recovery with permutations

With the quotient feature map, all rotations moving the
north pole to the same point on a sphere are represented
by the same point. Thus we immediately lose the ability
to distinguish among these rotations, which is a problem if
our task is to learn the pose, for example, in the point cloud
registration tasks.

However, with our proposed permutation layer, we can
distinguish every element in SO(3)′ from the feature maps
on S2′. The key observation is that the action of SO(3) on
S2 is faithful, i.e., ∀R ∈ SO(3) and R ̸= I , ∃x ∈ S2,

3

s.t. Rx ̸= x. It means that an action of SO(3) other than
identity will always cause a change on the S2 feature map
when looking at all points on S2 simultaneously. In the
discretized setup, it means that there is an injective map
ϕ : SO(3)′ → Sym(|S2′|), where Sym(|S2′|) stands for
the symmetric group, i.e., the collection of all permutations
of a set of size |S2′|. An element in Sym(n) is a bijec-
tive map {1, ..., n} → {1, ..., n}, permuting the indices. In
other words, each rotation corresponds to a unique permu-
tation of the S2′ elements, from which we can distinguish
each rotation from the feature map defined on S2′.

Here we provide the specific form of the permutation
layer. Given ϕ mentioned above and a feature map f :
S2′ → Rm, we can build a feature map f̃ : SO(3)′ → Rmn

defined as:

f̃(R) = [f(x[ϕR(1)]), f(x[ϕR(2)]), ..., f(x[ϕR(n)])] (1)

where R ∈ SO(3)′, n = |S2′|, and x[i] ∈ S2′ for i =
1, ..., n. Given that ϕ is injective, f̃(R1) ̸= f̃(R2) when
R1 ̸= R2. Thus we can distinguish SO(3)′ rotations from
f̃ . See Fig. 2 for an illustration.

3.2. Specific form of convolution

3.2.1 Recap of KPConv

A conventional 3D convolution can be written as:

[κ∗f](x) =
∫

R3

κ(t)f(x+ t)dt =
∑

t∈R3′

κ(t)f(x+ t), (2)

where x ∈ R3, and the right hand side is after discretiza-
tion. We use correlations to implement convolutions in this
paper following conventions in deep learning. For process-
ing point clouds, Eq. (2) could be tricky in implementation
because it is challenging to align κ with f when there is
no grid. The strategy of KPConv is to have a set of kernel
points for κ and to gather features to the kernel point co-
ordinates from the input points where f is defined so that
they are aligned before the convolution. It is depicted in
Fig. 3 (a), and we need to replace f with f̂ in Eq. (2) where
f̂(x) =

∑
y∈Nx

w(|y − x|)f(y) and w is a scalar weight
function based on distance. f̂ is the features gathered from
neighboring input points to align with the kernel points. In
this case, the input and output feature map f and [κ ∗ f]
are defined on R3, while the kernel κ is defined on R3′, i.e.,
coordinates of the set of kernel points. The gathered feature
f̂ when calculating the convolution at x ∈ R3 is defined
at x + R3′. Notice that we do not consider the deformable
mode of KPConv in this paper.

Figure 3. Illustration of different versions of KPConv. (a) original KPConv
(see Sec. 3.2.1). (b) KPConv on finite group or quotient space without the
symmetric kernel (see Sec. 3.2.2). (c) KPConv on group or quotient space
with the symmetric kernel (see Sec. 3.2.3). (b,c) compared with (a): the
convolution kernel is larger because it is defined on a higher dimension.
(c) compared with (b): the feature gathering is more efficient because the
kernel points are symmetric to the rotations in the rotation group.

3.2.2 KPConv on group and on quotient space

To extend KPConv to a group convolution [6] with finite
group G′, we modify Eq. (2) to

[κ ∗ f](g) =
∑

gt∈G′

κ(gt)f̂(g · gt), (3)

where in our case, G′ = SE(3)′ = SO(3)′ × R3′ is
where κ is defined, g ∈ G† = SO(3)′ × R3 is where
the input and output feature map is defined. f̂ is defined
on g · G′ when calculating the convolution at g. Denote
an element g ∈ SE(3) as (R, t) where R ∈ SO(3) and
t ∈ R3, the binary operation · for SE(3) can be specified
as (R1, t1) · (R2, t2) = (R1R2, t1 + R1t2), same for the
discretized case. EPN [2] follows this form of convolu-
tion. However, as discussed in Sec. 3.1.1, the size of group
|SE(3)′|= |SO(3)′||R3′|, making it expensive to store the
feature map and compute the convolution. To alleviate this
issue, EPN has to conduct convolutions in SO(3)′ and R3′

separately (i.e., separable convolutions [2, 3]), so that the
computational cost is reduced.

We use quotient feature maps to address this issue.
To conduct convolutions on the quotient space X =

4

Figure 4. Visualization of the symmetric kernel κ used in our work, where
R3′ = {rS2′ ∪ 0 | r > 0}.

SE(3)/SO(2) = S2 × R3, we cannot directly use Eq. (3),
because the · operation is not defined between two elements
in X since X is not a group. It is pointed out in [7, 8] that
we can write convolutions on the quotient space as

[κ ∗ f](x) =
∑

xt∈X′

κ(xt)f̂(s(x) · xt), (4)

where X ′ = S2′ ×R3′ is the domain of κ, X† = S2′ ×R3

is the domain of f and [κ∗f], and f̂ is defined on s(x) ·X ′.
s(x) is called the section map, s : X ′ → G′ (or X → G
in the continuous case), mapping x ∈ X ′ to an element of
G′ in the corresponding coset. With the section map, the
· operation denotes the action of the group G on quotient
space X , i.e., · : G×X → X . Denote an element in S2×R3

as (Rn, t), where R ∈ SO(3),n is the north pole point
on the unit sphere (0, 0, 1). Then Rn represents arbitrary
points on the sphere S2. The action · can then be written as
(R1, t1) · (R2n, t2) = (R1R2n, t1 +R1t2).

3.2.3 Symmetric kernels

Now we introduce the specific form of R3′, i.e., the location
of kernel points in KPConv. In our design, R3′ = {rS2′∪0 |
r > 0} , i.e., the set of vertices of the Platonic solid with
radius r and the origin point. R3′ is very similar to S2′,
because we want to make the kernel symmetric to SO(3)′.
More precisely, we desire R3′ to be closed under the action
of SO(3)′. There are two reasons as follows.

Steerability constraint To make the convolution on quo-
tient space equivariant, defining a valid form of convolution
as Eq. (4) is not the whole story. The kernel values must sat-
isfy a condition called the steerability constraint, which is
required for all steerable CNNs. More background knowl-
edge can be found in [8]. In our case, the steerability con-
straint is

κ(x) = κ(Rz · x),∀x ∈ X ′,∀Rz ∈ SO(2)′, (5)

where Rz is a z-axis rotation. The derivation of Eq. (5) from
the general form of steerability constraints can be found in

Figure 5. Illustration of all five types of Platonic solids and their corre-
sponding finite rotation groups.

the appendix. Here the · operation inherits from the action
of G′ on X ′ since SO(2)′ ⊂ SO(3)′ ⊂ G′. Specifically,
we have Rz · (Rn, t) = (Rz, 0) · (Rn, t) = (RzRn, Rzt).
Replace x with (Rn, t) in Eq. (5), and we have

κ(Rn, t) = κ(RzRn, Rzt), (6)

∀Rn ∈ S2′,∀t ∈ R3′,∀Rz ∈ SO(2)′. Notice that it im-
plies that we need Rzt ∈ R3′,∀t ∈ R3′,∀Rz ∈ SO(2′),
so that κ is defined on the right hand side of Eq. (6). In
other words, the kernel points R3′ need to be closed under
SO(2)′. Obviously, having R3′ closed under SO(3)′ is a
sufficient condition for this.

For the S2′ dimension, since S2′ is symmetric (closed)
to SO(3)′ by definition and SO(2)′ ⊂ SO(3)′, we always
have RzRn ∈ S2′ and κ is always defined.

Efficient feature gathering Another important reason for
the design choice of SO(3)′-symmetric kernels is that it en-
ables more efficient feature gathering. Consider a spatial
location t0 ∈ R3, the convolution feature output at this
point is a stack of [[κ ∗ f](xi)]i with xi ∈ (S2′, t0) ⊂ X†.
As shown in Eq. (4), it involves feature gathering for f̂ at
s(xi) · xjk for every xjk ∈ X ′ = S2′ × R3′. Denote
an instance of s(xi) = (Ri, t0), xjk = (Rjn, tk), then
s(xi) · xjk = (RiRjn, t0 + Ritk). If R3′ is closed under
SO(3)′, then we have

{Ritk|tk ∈ R3′} = R3′,∀Ri ∈ SO(3)′, (7)

which implies that the feature gathering for all S2′ channels
can be done once at the same set of spatial positions speci-
fied by R3′. An illustration is shown in Fig. 3. Without the
symmetric kernel, the KPConv on group or quotient space
looks like Fig. 3 (b), where the kernel is rotated for each
SO(3)′ (for group KPConv) or S2′ (for quotient KPConv)
channel separately to gather input features. However, with
symmetric kernels, as shown in Fig. 3 (c), the rotations keep
the position of kernel points unchanged up to a permutation
so that the feature-gathering step is simplified. Specifically,
the number of spatial positions needed for feature gathering
without symmetric kernels is |SO(3)′||R3′| for group KP-
Conv or |S2′||R3′| for quotient KPConv, while the number

5

Table 1. Efficiency comparison in terms of GPU memory consumption and the computation speed between EPN [2] and our method on three tasks. Two
numbers are reported for training/inference respectively. ↓ means lower is better. ↑ means higher is better. The best is shown in bold font.

Tasks ModelNet40 Pose ModelNet40 Classification 3DMatch Keypoint Matching

Methods Memory (GB) ↓ Speed (fps) ↑ Memory (GB) ↓ Speed (fps) ↑ Memory (GB) ↓ Speed (fps) ↑
EPN [2] 22.2 / 16.9 1.1 / 1.6 13.4 / 12.7 1.9 / 1.5 37.4 / 8.5 0.6 / 3.1
Ours (w/o symmetric kernels) 4.8 / 3.7 5.1 / 10.1 4.1 / 3.2 7.8 / 7.8 7.5 / 2.8 2.6 / 16.7
Ours (w/ symmetric kernels) 4.3 / 2.8 6.7 / 11.1 3.9 / 2.7 9.1 / 10.3 6.5 / 2.4 3.7 / 23.6

is |R3′| with symmetric kernels. The convolution kernels in
Fig. 3 is an abstract illustration, while the actual symmetric
kernel in our work is visualized in Fig. 4.

3.2.4 Choices of the discretization of SO(3) and S2

In Sec. 3.1.1, we mentioned that the discretization of SO(3)
is the rotation group that respects the symmetry of a Pla-
tonic solid. There are five types of Platonic solids, corre-
sponding to 3 finite rotation groups, as shown in Fig. 5.
Choosing SO(3)′ to be any of them is valid, representing
a discretization of SO(3) to different resolutions. The dif-
ferent Platonic solids with the same rotation group SO(3)′

represents different discretizations of S2′ and SO(2)′.
If we use a small SO(3)′ (for example, T), the strategy

of using R3′ = {rS2′ ∪ 0 | r > 0} could be problematic
because the number of kernel points could be too few to
learn representative features. In this case, we are free to de-
sign the kernel points differently, as long as they are closed
under SO(3)′. For example, one may add kernel points at
the center of all edges and/or faces. One may even use a
combination of several polyhedrons with different radii r.

In this paper, we only choose the icosahedron as the Pla-
tonic solid to conduct experiments for three reasons. First,
it has the finest discretization of SO(3). Second, it has a
smaller size of S2′ compared with the dodecahedron, maxi-
mizing the benefit of working with quotient features. Third,
it is consistent with existing methods [1, 2], enabling direct
comparison with the baselines.

3.2.5 Other aspects of the network

We use element-wise scalar nonlinearity (ReLu and leaky
ReLu) in the network. The spatial pooling is done by sub-
sampling the input points and aggregating the features of
neighboring input points to the subsampled points. Batch
normalization is applied to normalize over the batch, S2′,
and R3 dimensions. All these choices follow the common
practice of conventional CNNs (KPConv [35]) and group
convolutions (EPN [2]). We also adopted the group atten-
tive pooling in EPN to pool over the S2′ dimension and
generate SO(3)′-invariant features.

Depending on the specific task in the experiment, the
prediction head has a slightly different design, composing

the last few layers of the network. The loss functions are in-
herited from EPN [2], including cross-entropy loss for clas-
sifications, L2 loss for residual pose regression, and batch-
hard triplet loss for keypoint matching. We refer to the ap-
pendix for more details about the prediction heads and the
loss functions.

3.3. Relation to existing work

In the context of literature on group-equivariant neural
networks, our method is under the theoretical framework
of equivarant CNNs on homogeneous spaces [8, 24, 46].
Our work is a new form of realization when working with
3D point clouds and adapting the convolution structure of
KPConv. We explore a balance of simplicity, efficiency,
and expressiveness by finding the proper quotient space and
discretization. Our method is an extension of group con-
volutions, leveraging their clean structure enabled by dis-
cretization. Our method can also be viewed as a steer-
able CNN with homogeneous space S2 × R3 and stabilizer
subgroup SO(2) with scalar-type features or with homoge-
neous space R3 and stabilizer subgroup SO(3) with S2 fea-
tures. The proposed work paves the way for efficiency im-
provement using quotient representation learning on finite
groups. We also emphasize the group-variant side of equiv-
ariant models with the permutation layer to distinguish rota-
tions, while existing work focuses on the benefit of getting
group-invariant features from equivariant models.

4. Experiments

Our major baseline to compare with is EPN [2], a
state-of-the-art group convolution network, as we are sim-
ilar in several ways. Both are KPConv-style convolutions
with SE(3)-equivariance. Both use the icosahedral rotation
group I to discretize SO(3). However, EPN has features
defined on I ×R3, compared with S2′×R3 in our method.

Two datasets, ModelNet40 [44] and 3DMatch [47], are
used in the experiments. ModelNet40 is composed of 3D
CAD models of 40 categories of objects. 3DMatch is a
real-scan dataset of indoor scenes. For the ModelNet40
dataset, we conduct the classification and pose estimation
tasks. For the 3DMatch dataset, we conduct the keypoint
matching task. These tasks are also studied in EPN [2].

In Tab. 1, we list the GPU memory consumption and run-

6

Table 2. Experimental result of object classification on ModelNet40. The best is bolded. The best in equivariant models is underlined. Noisy: test using
input with random translation, scaling, jittering, and dropout. Clean: test without above processing. SO(3): random rotations. Id: no rotation. ico: random
rotations in I. ESCNN works with voxelized data, thus not having Noisy results with point-wise augmentations. FLOPs are counted using fvcore, which
does not support DGL used in TFN and SE(3)-T, thus left blank. The efficiency comparison uses the same batch size as in Tab. 1 (see appendix).

Ty
pe

Column # #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14
Metrics ModelNet40 classification performance metric: Acc (%) ↑ Efficiency metrics FLOPs per

training
batch (G)

Trainable
params

(M)

Train rotation SO(3) Id Memory (GB)↓
train/test

Speed (fps)↑
train/testTest rotation SO(3) Id SO(3) Id ico

Test condition Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean

N
on

-e
qu

iv

KPConv [35] 75.71 81.17 76.88 82.02 12.66 12.22 89.46 91.85 - - 0.18/0.25 17.24/18.48 0.74 1.69
PointNet++ [31] 81.31 84.88 83.03 85.76 13.44 13.76 90.67 91.55 - - 1.03/0.5 7.06/7.43 10.59 1.48
DGCNN [38] 79.86 84.77 82.54 85.62 15.36 17.26 91.00 92.18 - - 1.96/1.69 17.90/17.50 32.65 1.81
PT [48] 78.51 79.68 78.83 79.68 16.53 16.77 86.98 88.10 - - 4.16/5.82 4.80/5.03 220.99 9.58
CurveNet [45] 84.72 88.33 85.82 88.94 17.34 18.03 91.53 92.63 - - 1.20/0.33 5.61/7.54 4.22 2.14
PCT [17] 86.91 89.10 87.64 89.83 16.33 17.95 91.69 92.87 - - 1.18/0.80 8.54/20.85 27.41 2.87

E
qu

iv
ar

ia
nt

ESCNN [1] - 82.40 - 77.73 - 29.03 - 88.94 - - 4.71/5.50 3.79/8.38 428.61 0.46
TFN [36] 58.27 62.64 58.06 62.64 57.50 62.28 59.20 62.28 - - 15.95/8.7 1.83/6.08 - 0.06
SE(3)-T [15] 60.37 66.29 61.18 66.29 44.61 50.53 44.81 50.53 - - 19.39/9.65 1.54/5.13 - 0.11
EPN [2] 84.63 87.84 85.34 88.83 30.99 32.32 90.03 91.61 90.04 91.60 13.40/12.72 1.86/1.49 58.95 3.06
Ours (w/ GA pooling [2]) 85.04 87.51 85.49 87.63 41.46 44.43 89.73 90.50 90.00 90.50 3.95/2.70 9.21/10.37 170.68 2.53
Ours (w/ permutation) 86.99 88.62 88.21 89.62 39.54 42.78 90.66 91.77 90.68 91.77 3.95/2.70 9.09/10.28 170.77 2.65

ning speed of our method and EPN [2] in the three tasks.
The comparisons are under the same input size, number of
feature channels, and number of network layers. The sep-
arable convolutions on SO(3) and R3 in EPN are together
considered as one layer. The numbers are not comparable
between training and inference because the batch size could
be different (see the appendix). The specific configurations
in each experiment are introduced later. All experiments
are run on a single NVIDIA A40 GPU. Our network with
quotient space convolutions is much smaller and runs much
faster in all three tasks, indicating the potential value for
real applications. We boost efficiency without sacrificing
performance, as is shown later.

Ablation study: We list two rows of our results in
Tab. 1 to show the effect of efficient feature gathering en-
abled by the symmetric kernels. The results of without sym-
metric kernels are generated using the same kernel points as
with symmetric kernels, but ignoring the fact that they are
symmetric to rotations and gathering features at |S2′||R3′|
locations, instead of at |R3′| locations and permuting them.
The efficient feature gathering brings further efficiency im-
provements, especially in terms of computational speed.

4.1. Object classification on ModelNet40

For this task, given a point cloud of an object, the net-
work predicts its category. The evaluation metric is classifi-
cation accuracy (Acc). In this experiment, we show an ex-
tensive efficiency comparison with more existing networks,
equivariant and non-equivariant. We also examine a wide
combination of input conditions in training and testing to
show the effect of equivariance and robustness against in-
put imperfections. All models are trained with data aug-
mentation, including random translation, scaling, jittering,
and dropout.

Our method has outstanding performance as shown in
Tab. 2. In columns #1-4, all methods are trained with rota-

Table 3. Pose estimation on ModelNet40. Mean, median, and max angu-
lar errors are calculated over the test set. Statistics (average and standard
deviation) over 10 test runs are shown to account for the randomness.

Metrics Mean (◦) ↓ Median (◦) ↓ Max (◦) ↓
Stats Avg µ SD σ Avg µ SD σ Avg µ SD σ
KPConv [35] 13.99 1.53 10.70 0.81 115.19 57.84
EPN [2] 1.10 0.20 1.36 0.13 7.06 2.52
Ours 1.20 0.08 0.96 0.05 6.71 1.28

tional augmentation. Our method performs the best among
listed equivariant models and is on par with PCT [18]
among all models. Our method is intended to work with ro-
tational augmentations so that the equivariance gap caused
by discretization can be interpolated through training. How-
ever, we still experiment with training without rotational
augmentation, as shown in columns #5-10. From columns
#9-10, we can verify the equivariance to the icosahedral
rotation group of our model. Columns #5-6 show the ef-
fect of discretization on the continuous SO(3) if no inter-
polation is trained, in which case the performance lands
between non-equivariant models and continuously SO(3)-
equivariant models. The efficiency of our method out-
performs all equivariant baselines and is similar to non-
equivariant models. The FLOPs and number of trainable pa-
rameters are also listed for reference. We found that FLOPs
do not strictly correlate with running speed, which could be
due to different memory access costs and parallelism.

Ablation study: Since this task requires SE(3)-
invariant features, there are two options in our network: ei-
ther using the group-attentive pooling (GA pooling) intro-
duced in EPN [2] to pool over the S2′ dimensions or using
the permutation layer to find the canonical permutation of
S2′ dimensions. Either way, the canonical pose of objects in
ModelNet40 can be used for supervision. Tab. 2 shows that
the permutation layer yields better performance with neg-
ligible computational overhead. The reason could be that
the permutation layer as in Eq. (1) stacks features from S2′

7

Table 4. Experiment result of keypoint matching on the 3DMatch dataset. The numbers are the average recall (%), and the higher, the better. Notation *
represents the result with the given point normal information.

SHOT [37] 3DM [47] CGF [23] PPFN [12] PPFF [11] 3DSN [16] Li [28] Li [28]* EPN [2] Ours

Kitchen 74.3 58.3 60.3 89.7 78.7 97.5 92.1 99.4 99.0 99.4
Home 1 80.1 72.4 71.1 55.8 76.3 96.2 91.0 98.7 99.4 98.7
Home 2 70.7 61.5 56.7 59.1 61.5 93.2 85.6 94.7 96.2 96.6
Hotel 1 77.4 54.9 57.1 58.0 68.1 97.4 95.1 99.6 99.6 99.1
Hotel 2 72.1 48.1 53.8 57.7 71.2 92.8 91.3 100.0 97.1 98.1
Hotel 3 85.2 61.1 83.3 61.1 94.4 98.2 96.3 100.0 100.0 100.0
Study 64.0 51.7 37.7 53.4 62.0 95.0 91.8 95.5 96.2 95.2
MIT Lab 62.3 50.7 45.5 63.6 62.3 94.1 84.4 92.2 93.5 90.9

Average 73.3 57.3 58.2 62.3 71.8 95.6 91.0 97.5 97.6 97.3

and thus preserves the information better, compared with
weighted averaging over the S2′ dimension as done in GA
pooling.

4.2. Pose Estimation on ModelNet40

In this experiment, the network takes a pair of point
clouds of an object and predicts the relative rotation be-
tween them. To avoid the pose ambiguity of objects with
symmetric rotational shapes, only the airplane category is
used in this experiment, with 626 models in the training set
and 100 models in the test set. A point cloud is generated
by randomly subsampling 1,024 points on the surface, and
it is randomly rotated to form a pair.

The experimental result is shown in Tab. 3. We achieved
similar rotation estimation accuracy to EPN [2] overall.
While our mean error is slightly larger, the lower median
error, max error, and standard deviations show that our
method delivers a more reliable registration. It could im-
ply that representing rotations as a permutation of features
is more robust than representing them as a single element in
the feature map. Besides, the equivariant networks outper-
form the non-equivariant KPConv [35] by a large margin.

4.3. Keypoint matching on 3DMatch

In this task, patches of point clouds extracted locally
around keypoints in a large, dense scan are input to the
network, and each is mapped to a feature vector of 64-
dimension as the keypoint descriptor. Each patch has 1,024
points. Then we evaluate the average recall of keypoint cor-
respondence across different scans through nearest neigh-
bor search in the feature space, as proposed in PPFNet [12].

This experiment’s performance in Tab. 4 indicates the
capability of learning distinctive and rotation-invariant fea-
tures for local patches of point clouds. Though not achiev-
ing the best in the list, our method delivers comparable per-
formance to the top methods using only a fraction of the
computational resources as EPN [2] (see Tab. 1). We use
the GA pooling layer [2] in this experiment because the
permutation layer requires supervision on the pose, while

a canonical pose is not defined for local patches of point
clouds, and GA pooling works with or without the pose su-
pervision. However, the result shows that GA pooling over
the

∣∣S2′∣∣ features also provides distinctive features for key-
point matching. This part may be further improved by tak-
ing the information of the global scan [12] or the matching
scan [20] into consideration, in which case the permutation
layer may get hints on the optimal permutation from the
larger context. This topic goes beyond the focus of this pa-
per and is left for future work.

5. Conclusion
This paper presents a new design of SE(3)-equivariant

point cloud convolution network, which is efficient, sim-
ple, and expressive simultaneously by working with feature
maps defined on the quotient space S2×R3 associated with
the stabilizer SO(2). We further improve the efficiency of
the convolutions by designing the kernel points to be sym-
metric to the discretized rotation group SO(3)′. Moreover,
we propose a permutation layer to recover SO(3)′ informa-
tion from S2′ dimensions of the features so that the network
can detect SO(3) rotations. Experiments show that our net-
work delivers state-of-the-art performance in multiple tasks
while consuming only a fraction of memory and computa-
tion resources as a group-convolution network with similar
performance. Our method can open exciting opportunities
to introduce the SE(3)-equivariance property to mainstream
point cloud networks for various tasks.

This work also has limitations. We do not outperform
EPN [2] in the keypoint matching task, implying that the
network, especially the permutation layer, needs improve-
ment when dealing with inputs without a clear pose defi-
nition. Other possibilities for the network design also re-
main open. For example: What if we use a non-scalar type
of feature on the quotient space? How to further allevi-
ate the impact of the discretization of a continuous group?
From a general perspective, extending the discretized quo-
tient space convolution strategy to other groups is also an
attractive direction for future work.

8

References
[1] Gabriele Cesa, Leon Lang, and Maurice Weiler. A program

to build E(N)-equivariant steerable CNNs. In International
Conference on Learning Representations, 2022.

[2] Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Ran-
dall Hill. Equivariant point network for 3D point cloud anal-
ysis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 14514–14523, 2021.

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017.

[4] Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling.
Convolutional networks for spherical signals. arXiv preprint
arXiv:1709.04893, 2017.

[5] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max
Welling. Gauge equivariant convolutional networks and the
icosahedral CNN. In International conference on Machine
learning, pages 1321–1330. PMLR, 2019.

[6] Taco Cohen and Max Welling. Group equivariant convo-
lutional networks. In International conference on machine
learning, pages 2990–2999. PMLR, 2016.

[7] Taco S Cohen, Mario Geiger, and Maurice Weiler. Inter-
twiners between induced representations (with applications
to the theory of equivariant neural networks). arXiv preprint
arXiv:1803.10743, 2018.

[8] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general
theory of equivariant CNNs on homogeneous spaces. Pro-
ceedings of the Advances in Neural Information Processing
Systems Conference, 32, 2019.

[9] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016.

[10] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J Guibas. Vector Neu-
rons: A general framework for SO(3)-equivariant networks.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 12200–12209, 2021.

[11] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPF-
FoldNet: Unsupervised learning of rotation invariant 3D lo-
cal descriptors. In Proceedings of the European Conference
on Computer Vision, pages 602–618, 2018.

[12] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:
Global context aware local features for robust 3D point
matching. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 195–205, 2018.

[13] Marc Finzi, Samuel Stanton, Pavel Izmailov, and An-
drew Gordon Wilson. Generalizing convolutional neural net-
works for equivariance to lie groups on arbitrary continu-
ous data. In International Conference on Machine Learning,
pages 3165–3176. PMLR, 2020.

[14] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A
practical method for constructing equivariant multilayer per-
ceptrons for arbitrary matrix groups. In International Con-
ference on Machine Learning, pages 3318–3328. PMLR,
2021.

[15] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. SE(3)-transformers: 3D roto-translation equivariant

attention networks. Proceedings of the Advances in Neural
Information Processing Systems Conference, 33:1970–1981,
2020.

[16] Zan Gojcic, Caifa Zhou, Jan D Wegner, and Andreas Wieser.
The perfect match: 3D point cloud matching with smoothed
densities. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5545–5554,
2019.

[17] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7:187–199, 2021.

[18] Meng-Hao Guo et al. Pct: Point cloud transformer. Compu-
tational Visual Media, 2021.

[19] Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max
Welling. HexaConv. In International Conference on Learn-
ing Representations, 2018.

[20] Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas
Wieser, and Konrad Schindler. Predator: Registration of
3D point clouds with low overlap. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4267–4276, 2021.

[21] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi,
Emilien Dupont, Yee Whye Teh, and Hyunjik Kim. Lietrans-
former: Equivariant self-attention for lie groups. In Interna-
tional Conference on Machine Learning, pages 4533–4543.
PMLR, 2021.

[22] Nicolas Keriven and Gabriel Peyré. Universal invariant and
equivariant graph neural networks. Proceedings of the Ad-
vances in Neural Information Processing Systems Confer-
ence, 32, 2019.

[23] Marc Khoury, Qian-Yi Zhou, and Vladlen Koltun. Learning
compact geometric features. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 153–161,
2017.

[24] Risi Kondor and Shubhendu Trivedi. On the generalization
of equivariance and convolution in neural networks to the
action of compact groups. In International Conference on
Machine Learning, pages 2747–2755. PMLR, 2018.

[25] Abhinav Kumar, Garrick Brazil, Enrique Corona, Armin
Parchami, and Xiaoming Liu. Deviant: Depth equivariant
network for monocular 3d object detection. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part IX, pages
664–683. Springer, 2022.

[26] Leon Lang and Maurice Weiler. A Wigner-Eckart theorem
for group equivariant convolution kernels. arXiv preprint
arXiv:2010.10952, 2020.

[27] Jongmin Lee, Byungjin Kim, and Minsu Cho. Self-
supervised equivariant learning for oriented keypoint de-
tection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4847–4857,
June 2022.

[28] Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan
Tai. End-to-end learning local multi-view descriptors for
3D point clouds. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1919–
1928, 2020.

9

[29] Chien Erh Lin, Jingwei Song, Ray Zhang, Minghan Zhu, and
Maani Ghaffari. Epn-netvlad: Se (3)-invariant place recogni-
tion for 3d point clouds. In 6th Annual Conference on Robot
Learning.

[30] Lachlan E MacDonald, Sameera Ramasinghe, and Simon
Lucey. Enabling equivariance for arbitrary Lie groups. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8183–8192, 2022.

[31] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. Proceedings of the Advances
in Neural Information Processing Systems Conference, 30,
2017.

[32] Nimrod Segol and Yaron Lipman. On universal equivariant
set networks. arXiv preprint arXiv:1910.02421, 2019.

[33] Ahyun Seo, Byungjin Kim, Suha Kwak, and Minsu Cho.
Reflection and rotation symmetry detection via equivariant
learning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9539–9548,
June 2022.

[34] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi,
Joshua B Tenenbaum, Alberto Rodriguez, Pulkit Agrawal,
and Vincent Sitzmann. Neural Descriptor Fields: SE(3)-
equivariant object representations for manipulation. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, pages 6394–6400. IEEE, 2022.

[35] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019.

[36] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field
networks: Rotation-and translation-equivariant neural net-
works for 3d point clouds. arXiv preprint arXiv:1802.08219,
2018.

[37] Federico Tombari, Samuele Salti, and Luigi Di Stefano.
Unique shape context for 3d data description. In Proceedings
of the ACM workshop on 3D object retrieval, pages 57–62,
2010.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (TOG), 38(5):1–12, 2019.

[39] Maurice Weiler and Gabriele Cesa. General E(2)-equivariant
steerable CNNs. Proceedings of the Advances in Neural In-
formation Processing Systems Conference, 32, 2019.

[40] Maurice Weiler, Mario Geiger, Max Welling, Wouter
Boomsma, and Taco S Cohen. 3D steerable CNNs: Learn-
ing rotationally equivariant features in volumetric data. Pro-
ceedings of the Advances in Neural Information Processing
Systems Conference, 31, 2018.

[41] Marysia Winkels and Taco S Cohen. 3D G-CNNs for pul-
monary nodule detection. arXiv preprint arXiv:1804.04656,
2018.

[42] Daniel Worrall and Gabriel Brostow. CubeNet: Equivariance
to 3D rotation and translation. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 567–584, 2018.

[43] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-
betov, and Gabriel J Brostow. Harmonic networks: Deep
translation and rotation equivariance. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5028–5037, 2017.

[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1912–1920, 2015.

[45] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 915–924, Oc-
tober 2021.

[46] Yinshuang Xu, Jiahui Lei, Edgar Dobriban, and Kostas Dani-
ilidis. Unified Fourier-based kernel and nonlinearity design
for equivariant networks on homogeneous spaces. In Inter-
national Conference on Machine Learning, pages 24596–
24614. PMLR, 2022.

[47] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:
Learning local geometric descriptors from RGB-D recon-
structions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1802–1811,
2017.

[48] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259–16268, 2021.

[49] Minghan Zhu, Maani Ghaffari, and Huei Peng.
Correspondence-free point cloud registration with so
(3)-equivariant implicit shape representations. In Con-
ference on Robot Learning, pages 1412–1422. PMLR,
2022.

10

E2PN: Efficient SE(3)-Equivariant Point Network (Appendix)

Minghan Zhu
University of Michigan
minghanz@umich.edu

Maani Ghaffari
University of Michigan
maanigj@umich.edu

William A Clark
Cornell University
wac76@cornell.edu

Huei Peng
University of Michigan

hpeng@umich.edu

1. Preliminaries and notation
We first review some basic concepts in group theory and

representation theory briefly. They are highly relevant for
understanding the big picture from a theoretical perspective
of our work and general equivariant deep learning literature.

Groups: A group G is a set equipped with a binary op-
eration ·, satisfying the following conditions: (1) the set is
closed under the operation: x · y ∈ G,∀x, y ∈ G; (2) the
operation is associative: x · (y · z) = (x · y) · z,∀x, y, z ∈
G; (3) there is an identity element e in the set such that
x · e = e · x = x, ∀x ∈ G; (4) there is an inverse x−1 for
each element x in the set such that x · x−1 = x−1 · x = e.
For example, the integer set Z is a group under the addi-
tion operator with identity 0 and inverse −x for any x ∈ Z.
Sometimes we omit the · notation.

Group actions and representations: We say a group
acts on a set X if any element g in G corresponds to a trans-
formation ρ(g) on X , i.e., [ρ(g)](x) ∈ X,∀x ∈ X , such
that ρ(g1) ◦ ρ(g2) = ρ(g1g2),∀g1, g2 ∈ G, where ◦ denotes
function compositions, and [ρ(e)](x) = x, ∀x ∈ X . When
X is a linear space and ρ(g) is linear, we say ρ is a (linear)
representation of G in X . When X is n (finite)-dimensional
linear space, we have a representation ρ : G → GL(n), i.e.,
we can write [ρ(g)](x) as ρ(g)x, where ρ(g) takes the form
of n-by-n invertible matrices and acts by multiplication on
the left. For example, the representations of 2D rotations
SO(2) in R2 are the 2-by-2 orthonormal matrices with de-
terminant 1. We also use (ρ,X) as a shorthand to denote
the representation and space on which it acts.

Equivariance: Given spaces V1 with representation ρ1
of G and V2 with representation ρ2 of G, we say a mapping
ϕ : V1 → V2 is G-equivariant if ϕ◦ρ1(g) = ρ2(g)◦ϕ, ∀g ∈
G. A G-equivariant linear map is also called an intertwiner.
The space of intertwiners is denoted HomG(ρ1, ρ2), homo-
morphisms of group representations ρ1, ρ2 of G.

Subgroups, cosets, and quotient spaces: A subgroup
H of G is a subset of G that is also a group, denoted H ≤ G.

For example, SO(2) ≤ SO(3). Given H ≤ G and g ∈ G,
we can define a (left-)coset as gH = {gh|h ∈ H}. For a
given H , all cosets are either equal or disjoint. Each coset
is of the same size (contains the same number of elements),
and they partition the whole group. The set of cosets forms
a coset space (or quotient space) G/H = {gH|g ∈ G}. In
short, a coset is both a subset in the group and an element
in the quotient space.

Stabilizer subgroup: If a group G acts on set X
by ρ, for x ∈ X , the stabilizer subgroup is defined as
StabG(x) ≜ {g ∈ G|ρ(g)x = x}. By definition, the sta-
bilizer subgroup StabG(eG/H) for the quotient space G/H
is H .

Homogeneous spaces: Assume that a group G acts on a
space X through action ρ, we call X a homogeneous space
of G if G acts transitively on X , i. e., any two elements
in X are connected by a group action, ∀x1, x2 ∈ X,∃g ∈
G, s.t. x1 = ρ(g)x2. A quotient space G/H is a homoge-
neous space of G.

Induced representations: Here is an important known
result [1, 4, 5]: given a representation ρ of subgroup H on
vector space V , one can induce a representation π = IndGHρ
of G for the space of functions F = {f : G/H → V }. It
provides a way to define group actions in function spaces, a
foundation of the research on equivariant feature learning.

2. Definition of the section functions
In Sec. 3.2.2, we define the convolution in a homoge-

neous space as Eq. (4), using the section function s : X →
G, mapping an element in the quotient space to a group el-
ement in the corresponding coset, i.e.,

s(x)H = x, ∀x ∈ X = G/H (8)

In our work, for the continuous case, H = SO(2), G =
SO(3), X = S2, and Eq. (8) can be rewritten as

s(x)n = x,∀x ∈ S2 (9)

11

ar
X

iv
:2

20
6.

05
39

8v
3

 [
cs

.C
V

]
 1

4
Ju

n
20

23

Since there are generally multiple group elements in a
coset, section functions are not unique. Thus we need
to define the section function to make the convolution
well-defined. For any R ∈ SO(3), we can write R =
Rz(α)Ry(β)Rz(γ) using Euler angles α ∈ [0, 2π), β ∈
[0, π], γ ∈ [0, 2π), and the coset it belongs to is Rn =
{RRz(θ)|θ ∈ [0, 2π)} = {Rz(α)Ry(β)Rz(γ + θ)|θ ∈
[0, 2π)} = Rz(α)Ry(β)n. Thus a natural section from S2

to SO(3) is
s(Rn) ≜ Rz(α)Ry(β) (10)

which removes the last z-axis rotation in z-y-z Euler angle
rotations. In the discretized setup, Eq. (10) does not work
because for Rn ∈ S2′ ⊂ S2, s(Rn) ∈ SO(3) may not be
in SO(3)′. In this case, we just arbitrarily select an element
in each coset as the section so that s′ : S2′ → SO(3)′ sat-
isfies Eq. (8). While the selection is arbitrary, it should be
fixed once selected so that the behavior of the function is
deterministic and consistent for different inputs.

3. The derivation of our proposed convolution
3.1. The equivariance of our convolution

The derivation of the convolution in this paper is mostly
built upon [4]. We do not discover new theorems. Our re-
sult is an application of the existing theoretical results in a
specification that is not previously discussed in the litera-
ture. Here we start from the conclusions in [4] and show
how it leads to our design of convolutions.

We first need to introduce another concept. For any g ∈
G, x ∈ G/H ,

(gs(x))H = g(s(x)H) = g(x) = (s(gx))H (11)

meaning that gs(x) and s(gx) are in the same coset, but
gs(x) and s(gx) are not necessarily equal. We can relate
these two using a function h : G/H ×G → H as:

gs(x) = s(gx)h(x, g) (12)

i.e., h(x, g) ≜ s(gx)−1gs(x). This function h describes
how the representative group element twists beyond jump-
ing to another coset when applied with another group ele-
ment, therefore heavily relying on s. We may denote it as
hs, but we will go with h in the following since we already
selected and fixed s in Sec. 2.

With this h function, we can write down the form of in-
duced representations. Given a space of functions F = {f :
G/H → V }, assuming ρ : H → GL(V) a representation
of subgroup H in V , we define π = IndGHρ : G → GL(F)
as:

[π(g)f](x) ≜ ρ(h(g−1x, g))f(g−1x) (13)

It is shown in [4] that Eq. (13) is a valid representation. De-
note F1 = {G/H → V1} and F2 = {G/H → V2} with

representations (ρ1, V1) and (ρ2, V2) on H , any linear map-
ping F1 → F2 equivariant to the induced representations
IndGHρ1 and IndG

Hρ2 can be written as a cross-correlation
with a twist:

[κ ∗ f](x) =
∫

G/H

κ(s(x)−1y)ρ1(h(y, s(x)−1))f(y)dy

(14)
where the space KC of valid kernels κ : G/H →
Hom(V1, V2) is equivalent to the space:

KD = {κ : H\G/H → Hom(V1, V2)|
κ(x) = ρ2(h)κ(x)ρ

x
1(h)

−1,∀x ∈ H\G/H, h ∈ Hη(x)H}
(15)

where H\G/H = {HgH|g ∈ G} is the set of double
cosets in which HgH = {h1gh2|h1, h2 ∈ H} is called
a double coset. η : H\G/H → G is a section function for
double cosets. Hη(x)H = {h ∈ H|hη(x)H = η(x)H}
is the set of stabilizers for double coset x ∈ H\G/H ,
and ρx1 is the representation of Hη(x)H defined as ρx1(h) =
ρ1(η(x)

−1hη(x)) for h ∈ Hη(x)H .
While the above looks a bit involved, recall that in

this work, we use scalar-type features, meaning that we
choose the trivial identity representation for the subgroup
H = SO(2), i.e., ρ1(h) = IdV1

, ρ2(h) = IdV2
∀h ∈ H ,

which simplifies the equations. The induced representation
π = IndGHρ : G → GL(F) is in the form:

[π(g)f](x) = f(g−1x),∀g ∈ G, x ∈ G/H (16)

The convolution in Eq. (14) now looks like:

[κ ∗ f](x) =
∫

G/H

κ(s(x)−1y)f(y)dy

=

∫

G/H

κ(y)f(s(x)y)dy
(17)

which is consistent with Eq. (4) in the main paper. The
equivalent space of kernels is:

KD = {κ : H\G/H → Hom(V1, V2)} (18)

3.2. The specific form of our kernel

In this paper, we work with G = SE(3) and H = SO(2).
In the following, we derive G/H and H\G/H in this setup
since they do not appear commonly in the literature.

The group SE(3) = SO(3)⋉R3 is the semi-direct prod-
uct of SO(3) and R3 (the latter is a normal subgroup).
We can denote a group element of SE(3) as (R, t) where
R ∈ SO(3), t ∈ R3, such that the group action · is defined
as (R1, t1) ·(R2, t2) = (R1R2, R1t2+ t1), and accordingly
the group inverse is defined as (R, t)−1 = (R−1,−R−1t).

The group SO(3) can be written as a subgroup of
SE(3) as (R, 0). Using Euler angles we have ∀R ∈

12

SO(3),∃α ∈ [0, 2π), β ∈ [0, π], γ ∈ [0, 2π), such that
R = Rz(α)Ry(β)Rz(γ), where Rz represents rotation
around the z-axis, and similarly for Ry . We also have
SO(2) ∼= {(Rz(γ), 0) ∈ SE(3)|γ ∈ [0, 2π)}.

Therefore, a left coset of H = SO(2) in G = SE(3)
is gH = {gh|h ∈ H} = {(Rg, tg) · (Rz(γh), 0)|γh ∈
[0, 2π)} = {(Rz(αg)Ry(βg)Rz(γg + γh), tg)|γh ∈
[0, 2π)}, meaning that a left coset can be parameter-
ized by αg, βg, tg . Then the set of left cosets G/H
is homeomorphic to the Cartesian product S2 × R3 =
{(Rz(α)Ry(β)n, t)|α ∈ [0, 2π), β ∈ [0, π], t ∈ R3},
where S2 is the surface of a sphere, n = t(0, 0, 1) is the
unit vector pointing to the north pole. Here we abuse the
notation (xn, y) as an ordered pair in the set S2 × R3. It
can be understood as a point x on a sphere centered at some
point y in R3. The group G = SE(3) acts on G/H by left
multiplication: (Rg, tg)(Rn, t) = (RgRn, Rgt+ tg).

We further investigate the double coset space H\G/H .
An element in the set can be written as HgH =
{h1gh2|h1, h2 ∈ H} = {(Rz(αg + γh1

)Ry(βg)Rz(γg +
γh2

), Rz(γh1
)tg)|γh1

, γh2
∈ [0, 2π)}. We can use t(x, y, z)

to specify the coordinate of an element in R3, and we
can always rewrite t(x, y, z) = Rz(γt)t(rg, 0, zg) where
rg =

√
x2 + y2 ≥ 0 and γt = arctan 2(y, x). Then we

can rewrite

HgH = {(Rz(αg + γh1)Ry(βg)Rz(γg + γh2),

Rz(γh1 + γt)t(rg, 0, zg))|γh1 , γh2 ∈ [0, 2π)} (19)

Let us rename γ1 ≜ γh1
+γt, θg ≜ αg −γt, γ2 ≜ γg +γh2

,
then we have

HgH =

{(Rz(θg + γ1)Ry(βg)Rz(γ2), Rz(γ1)t(rg, 0, zg))|
γ1, γ2 ∈ [0, 2π)} (20)

Now it is clear that an element in H\G/H can be de-
termined by four parameters (θg, βg, rg, zg), with θg ∈
[0, 2π), βg ∈ [0, π], rg ≥ 0, zg ∈ R. We denote an element
in H\G/H as HgH(θg, βg, rg, zg). We have H\G/H ∼=
S2 × R+ × R. Geometrically, each point (rg, zg) in the
R+×R plane corresponds to a circle around the z-axis with
radius rg at height zg . On the other hand, θg, βg parameter-
izes a point on the sphere S2.

It follows that we can define a kernel κ ∈ KD = {κ :
S2 × R+ × R → Hom(V1, V2)}, and then injectively map
it to κ ∈ KC0 = {κ : S2 × R3 → Hom(V1, V2)}. The fact
that S2×R+×R ⊊ S2×R3 implies that KD ∼= KC ⊊ KC0

.
In other words, there is a certain constraint on KC0

to form
the actual set of valid equivariant kernels KC . As shown
in [4], the general form of the constraint can be written as:

κ(hx) = ρ2(h)κ(x)ρ1(h(x, h)−1), (21)

for κ ∈ KC , x ∈ G/H, h ∈ H . As discussed in Sec. 3.1,
ρ1 and ρ2 are both identity; thus Eq. (21) becomes κ(hx) =
κ(x), which is equivalent to Eq. (6) in the main paper in our
specific case.

4. Equivariance of element-wise non-linear
layers and normalization layers

For a feature map of shape B × C × N × A, where B
is the batch size, C is the feature channel, N is the number
of spatial points in R3, A corresponds to the spherical co-
ordinates in S2′, a batch normalization (BatchNorm [6]) is
to calculate the mean and variance across the B × N × A
channels and apply a constant scaling factor and shift for
each B × N × A tensor. For instance normalization (In-
stanceNorm [8]), one just need to change B × N × A to
N × A. In either case, consider the feature map as a func-
tion f : N × A → RB×C , a BatchNorm or InstanceNorm
(denoted N) behaves like an element-wise operation, i.e.,

[N ·f](x) = af(x)+ b = N ·f(x), ∀x ∈ S2′×R3 (22)

since a, b are constant vectors. Here · denotes applying a
transformation.

Recall that our induced representation Eq. (16) is in a
similar form of a regular representation, which is realized
by a change of coordinate without modifying the func-
tion value. Such a representation π is commutative with
element-wise operations (denoted as E):

[(π(g) ◦ E) · f](x)
= [π(g) · (E · f)](x) = [E · f](g−1x) = E · f(g−1x)

= E · [π(g) · f](x) = [E · (π(g) · f)](x)
= [(E ◦ π(g)) · f](x),∀g ∈ G (23)

Or we can say:

π(g) ◦ E = E ◦ π(g),∀g ∈ G (24)

It shows that element-wise non-linear layers like ReLu
and normalization layers, including BatchNorm and Instan-
ceNorm, are G-equivariant.

5. Prediction heads and loss functions
5.1. Pose estimation task

The pose (rotation) estimation task is fulfilled with a pre-
diction head designed as shown in Fig. 1. The inputs to the
prediction head for each pair of point clouds are two S2′×C
features, where C is the number of feature channels. We
call the S2′ coordinates anchors in this section. We apply
Ri ∈ I to the second point-cloud mentally, correspond-
ing to 60 permutations of the anchors for f2. If the two
point clouds are different exactly by a rotation in I, then

13

Figure 1. Illustration of the prediction head for rotation estimation. The numbers show the sequence of operations. The colors in the top row correspond to
different spherical anchors. The shade of color after step 4 and after step 5 represents the matching scores for pairs of anchors. Darker means higher.

one of the permuted f2 should be exactly the same as f1.
We stack the features together and use several linear layers
to find the match. Notice that the matching is defined as
a binary classification problem for each pair of anchors in-
stead of a multi-class classification problem for the overall
feature corresponding to a certain rotation. It aligns better
with the underlying geometry because a subset of anchors
may align even under a wrong rotation since any rotations
in SO(2) keep the north-pole and south-pole vertices static.
We can find the correct rotation class by summing over all
anchor pairs and picking the rotation with the highest over-
all matching score. After finding the correct permutation
(equivalent to the Ri ∈ I ⊂ SO(3)), we flatten the feature
and regress the residual rotation using quaternions in a way
similar to [3].

Accordingly, the loss functions are the binary cross en-
tropy loss for anchor-pair matching and L2 loss on the resid-
ual rotation regression.

5.2. Object classification task

For the classification task, we follow a similar philoso-
phy as the rotation estimation task. Here we do not have
a pair of inputs from which to find the relative rotation.
Therefore, we imagine that there is a reference object for
each category, with a canonical permutation of the features
representing the underlying canonical pose. We learn the
features of the reference object in each class and use them
to classify input point clouds.

The core learnable parameter is the reference feature X
of shape S2′ × C × N where N is the number of object
classes. We can denote Xn ∈ RS2′×C as the reference
feature for object class n. We directly calculate the inner
product between the reference features and the permuted
input features. The score of rotations under every object-
class hypothesis is calculated by summing over the inner
products across all anchors. The score of each class is de-

14

Figure 2. Illustration of the prediction head for object classification. The numbers show the sequence of operations. The solid colors in the top row correspond
to different spherical anchors. The line colors on the top right represent different semantic classes. Here we only use three classes for illustration. The shade
of color after step 2 represents the scores. Darker means higher. ⟨·, ·⟩ denotes the inner product of finite-dim vectors.

fined as the maximum rotation score in each class hypothe-
sis. We first generate the final prediction of the object class
using the class score. Then we go back to the inner product
matrix corresponding to this class and use it as the anchor-
matching score prediction. Finally, the best rotation in this
class is used to retrieve the specific permutation of the in-
put feature, which forms a rotation-invariant feature for this
object.

The basic assumption here is that only the correct ob-
ject class yields a high-quality matching under the actual
rotation. Thus we first solve for the classification and then
determine the optimal rotation only in this class, which is
used for generating rotation-invariant features.

The loss functions applied are the cross entropy loss for
object classification and the binary cross entropy loss for
anchor-matching prediction.

5.3. Keypoint matching task

For the keypoint matching task, there is no definition of a
canonical pose for a local patch of points around a keypoint.
Because the feature learning in this task does not involve
the corresponding patch in another point cloud, we cannot

define relative poses as well. Therefore, we do not apply
the permutation layer in this task. Instead, we simply follow
the same design as in [3] using GA pooling, except that our
attentive pooling is not over I, but S2′.

The loss function applied here is the batch-hard triplet
loss, also consistent with [3].

6. More specifications in the experiments
The batch size used in the efficiency comparison in

Tab. 1 is specified in Tab. 5. For the keypoint matching task,
the number of global scans processed (ng) and the number
of local patches extracted from each global scan (nl) define
the input size. We use ng × nl as the notation in Tab. 5.

The training optimizer and learning rate schedule follow
the default setup of EPN [3]. The number of feature chan-
nels (i.e., width) and the number of network layers (i.e.,
depth) also follow the settings in EPN, except that for the
object classification task on ModelNet40, we reduced the
backbone width by half compared with the original EPN
setting (first layer width changed from 64 to 32, later layers
in the backbone changed accordingly). The network width
is the same across KPConv [7], EPN, and our E2PN in

15

Table 5. The batch sizes used in the efficiency comparison in terms of the GPU memory consumption and the running speed between EPN [3] and our
method on three tasks as in Tab. 1.

Tasks ModelNet40 Pose ModelNet40 Classification 3DMatch Keypoint Matching

Modes Training Inference Training Inference Training Inference

Batch size 8 8 12 24 1×16 8×24

our experiments, therefore their comparison remains valid.
For all the three networks, the classification accuracy is not
harmed by the width reduction.

Due to the page limit in the main paper, we only men-
tioned ”all results are trained and tested with rotational aug-
mentation” in the classification task section. Here we pro-
vide more details. During training, random rotations are
applied, following the practice in EPN. EPN and our net-
work are equivariant to a discretization of SO(3); therefore,
we apply rotation augmentations to let the network interpo-
late among the discretizations well and regress the residual
rotation adding to the discretized rotations. During testing,
we use fixed rotations for each test input so that results are
repeatable and comparable.

We also provide more details here on the steerable CNN
baseline based on ESCNN [2] in the classification task ex-
periment. [2] established a general framework for steerable
CNNs equivariant to O(3) and its subgroups. It is relevant
to the discussion in our paper and reported results on shape
classification on the ModelNet10 dataset, which is a similar
task to our experiments on ModelNet 40 dataset. Therefore
we include it as one of our baselines. While the library for
this work is open-sourced, the specific implementation of
the network for the tasks mentioned in [2] is not provided.
Therefore we implemented the network using the library ac-
cording to the specifics stated in [2]. We also implemented
the data conversion to transform the shapes into voxel grids
as described in [2]. The Gaussian kernel radius in voxel
generation and the learning rate are not specified in [2], so
we did a hand tuning and reported the result under the best
settings. We applied the final values σ = 0.03 for the Gaus-
sian kernel in voxel generation and lr = 10−3 as the initial
learning rate. The multiplicity of irreps in the backbone
is not specified either, and we found that using band-limited
regular representations yields better results than using equal
proportions of irreps. Thus we use multiple and-limited reg-
ular representations and align the total number of channels
to the numbers specified in [2]. We implemented the SO(3)
equivariant version with frequency up to 3. Among the in-
variant maps discussed in [2], group pooling and norm pool-
ing are implemented in their library. Group pooling is not
recommended for continuous groups in [2]; therefore, we
use norm pooling as the invariant layer.

The result is shown in Table 3 in the main paper. We
did not compare the efficiency because the forms of input

(voxels vs. point clouds) and network structures (number
of layers, channels, and connections) are both quite differ-
ent. We can see that the network of [2] underperforms both
EPN [3] and our network. One of the reasons could be that
both EPN and our model for the classification task are also
trained with the auxiliary task of rotation estimation (for the
GA pooling layer or the permutation layer). In contrast, [2]
is only trained with the classification task as described in
their paper, which may cause more information loss in the
invariant layer. Another reason could be that voxel inputs
lose some details compared with point clouds. Transition-
ing from ModelNet10 to ModelNet40 dataset may require
some scale-up of the network in terms of depth and width
and some other careful tuning.

References
[1] Tullio Ceccherini-Silberstein, A Machı̀, Fabio Scarabotti, and

Filippo Tolli. Induced representations and Mackey theory.
Journal of Mathematical Sciences, 156(1):11–28, 2009.

[2] Gabriele Cesa, Leon Lang, and Maurice Weiler. A program
to build E(N)-equivariant steerable CNNs. In International
Conference on Learning Representations, 2022.

[3] Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall
Hill. Equivariant point network for 3D point cloud analysis.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 14514–14523, 2021.

[4] Taco S Cohen, Mario Geiger, and Maurice Weiler. Inter-
twiners between induced representations (with applications to
the theory of equivariant neural networks). arXiv preprint
arXiv:1803.10743, 2018.

[5] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

[7] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019.

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016.

16

