
ar
X

iv
:2

30
4.

11
31

2v
1 

 [
cs

.A
I]

  2
2 

A
pr

 2
02

3

Lookahead Diffusion Probabilistic Models for Refining Mean Estimation

Guoqiang Zhang

University of Technology Sydney

guoqiang.zhang@uts.edu.au

Kenta Niwa

NTT Communication Science Laboratories

kenta.niwa.bk@hco.ntt.co.jp

W. Bastiaan Kleijn

Victoria University of Wellington

bastiaan.kleijn@vuw.ac.nz

Abstract

We propose lookahead diffusion probabilistic models

(LA-DPMs) to exploit the correlation in the outputs of the

deep neural networks (DNNs) over subsequent timesteps

in diffusion probabilistic models (DPMs) to refine the

mean estimation of the conditional Gaussian distributions

in the backward process. A typical DPM first obtains

an estimate of the original data sample x by feeding the

most recent state zi and index i into the DNN model

and then computes the mean vector of the conditional

Gaussian distribution for zi−1. We propose to calculate

a more accurate estimate for x by performing extrap-

olation on the two estimates of x that are obtained by

feeding (zi+1, i + 1) and (zi, i) into the DNN model. The

extrapolation can be easily integrated into the backward

process of existing DPMs by introducing an additional

connection over two consecutive timesteps, and fine-tuning

is not required. Extensive experiments showed that plug-

ging in the additional connection into DDPM, DDIM,

DEIS, S-PNDM, and high-order DPM-Solvers leads to a

significant performance gain in terms of Fréchet inception

distance (FID) score. Our implementation is available at

https://github.com/guoqiang-zhang-x/LA-DPM .

1. Introduction

As one type of generative model, diffusion probabilis-

tic models (DPMs) have made significant progress in recent

years. The pioneering work [17] applied non-equilibrium

statistical physics to estimating probabilistic data distribu-

tions. In doing so, a Markov forward diffusion process is

constructed by systematically inserting additive noise in the

data until essentially only noise remains. The data distribu-

tion is then gradually restored by a reverse diffusion pro-

cess starting from a simple parametric distribution. The

main advantage of DPMs over classic tractable models (e.g.,

HMMs, GMMs, see [5]) is that they can accurately model

both the high and low likelihood regions of the data distribu-

tion via the progressive estimation of noise-perturbed data

distributions. In comparison to generative adversarial net-

works (GANs) [1, 8, 9], DPMs exhibit more stable training

dynamics by avoiding adversarial learning.

The work [10] focuses on a particular type of DPM,

namely a denoising diffusion probabilistic model (DDPM),

and shows that after a sufficient number of timesteps (or

equivalently iterations) in the backward process, DDPM

can achieve state-of-the-art performance in image genera-

tion tasks by the proper design of a weighted variational

bound (VB). In addition, by inspection of the weighted VB,

it is found that the method score matching with Langevin dy-

namics (SMLD) [19,20] can also be viewed as a DPM. The

recent work [21] interprets DDPM and SMLD as search of

approximate solutions to stochastic differential equations.

See also [15] and [7] for improved DPMs that lead to better

log-likelihood scores and sampling qualities, respectively.

One inconvenience of a standard DPM is that the asso-

ciated deep neural network (DNN) needs to run for a suf-

ficient number of timesteps to achieve high sampling qual-

ity while the generative model of a GAN only needs to run

once. This has led to an increasing research focus on re-

ducing the number of reverse timesteps in DPMs while re-

taining a satisfactory sampling quality (see [22] for a de-

tailed overview). Song et al. proposed the so-called de-

noising diffusion implicit model (DDIM) [18] as an exten-

sion of DDPM from a non-Markov forward process point of

view. The work [11] proposed to learn a denoising schedule

in the reverse process by explicitly modeling the signal-to-

noise ratio in the image generation task. [6] and [12] consid-

ered effective audio generation by proposing different noise

scheduling schemes in DPMs. Differently from the above

methods, the recent works [4] and [3] proposed to estimate

the optimal variance of the backward conditional Gaussian

distribution to improve sampling qualities for both small

and large numbers of timesteps.

http://arxiv.org/abs/2304.11312v1
https://github.com/guoqiang-zhang-x/LA-DPM


Another approach for improving the sampling quality

of DPMs with a limited computational budget is to exploit

high-order methods for solving the backward ordinary dif-

ferential equations (ODEs) (see [21]). The authors of [13]

proposed pseudo numerical methods for diffusion models

(PNDM), of which high-order polynomials of the estimated

Gaussian noises {ǫ̂θ(zi+j , i + j)|r ≥ j ≥ 0} are intro-

duced to better estimate the latent variable zi−1 at iteration

i, where ǫ̂θ represents a pre-trained neural network model

for predicting the Gaussian noises. The work [23] further

extends [13] by refining the coefficients of the high-order

polynomials of the estimated Gaussian noises, and proposes

the diffusion exponential integrator sampler (DEIS). Re-

cently, the authors of [14] considered solving the ODEs of a

diffusion model differently from [23]. In particular, a high-

order Taylor expansion of the estimated Gaussian noises

was employed to better approximate the continuous solu-

tions of the ODEs, where the developed sampling methods

are referred to as DPM-Solvers.

We note that the computation of zi−1 at timestep i in

the backward process of existing DPMs (including the high-

order ODE solvers) can always be reformulated in terms of

an estimate x̂ for the original data sample x in combination

with other terms. In principle, as the timestep i decreases,

the estimate x̂ would become increasingly accurate. In this

paper, we aim to improve the estimation accuracy of x at

each timestep i in computation of the mean vector for the la-

tent variable zi−1. To do so, we propose to make an extrap-

olation from the two most recent estimates of x obtained at

timestep i and i+1. The extrapolation allows the backward

process to look ahead towards a noisy direction targeting

x, thus improving the estimation accuracy. The extrapola-

tion can be realized by simply introducing additional con-

nections between two consecutive timesteps, which can be

easily plugged into existing DPMs with negligible computa-

tional overhead. We refer to the improved diffusion models

as Lookahead-DPMs (LA-DPMs).

We conducted an extensive evaluation by plugging in the

additional connection into the backward process of DDPM,

DDIM, DEIS, S-PNDM, and DPM-Solver. Interestingly, it

is found that the performance gain of LA-DPMs is more

significant for a small number of timesteps. This makes it

attractive for practical applications as it is computationally

preferable to run the backward process in a limited number

of timesteps.

2. Background of Markov Diffusion Models

We revisit the standard Markov DPMs being studied in

[11]. In the following, we first briefly review the forward

diffusion process. We then investigate its backward process.

The notation in this paper is in line with that of [11].

2.1. Forward diffusion process

Suppose we have a set of observations of x that are

drawn from a data distribution q(x). A forward diffusion

process can be defined as a sequence of increasingly noisy

versions zt, t ∈ [0, 1], of x, where zt=1 indicates the nois-

iest version (we will discretize t later on). For a Gaussian-

driven process, the latent variable zt can be represented in

terms of x being contaminated by a Gaussian noise as

zt = αtx+ σtǫt, (1)

where ǫt ∼ N (0, I), and αt and σt are strictly positive

scalar-valued functions of t, and I is the identity matrix. To

formalise the notion of zt being increasingly noisy, zt can

be alternatively represented in terms of zs, s < t, as

zt = αt|szs + σt|sǫt|s, (2)

where ǫt|s is the additional Gaussian noise being added to a

scaled version of zs, and (αt|s, σ
2
t|s) are given by

αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s , (3)

where the conditional variance σ2
t|s is assume to be positive,

i.e., σ2
t|s > 0. One major advantage of the above formula-

tion is that it includes both the variance-preserving process

with αt =
√

1− σ2
t [10, 17] and variance-exploding pro-

cess with αt = 1 [20, 21].

It is immediate that the process (1)-(3) is Markov. That

is, the conditional distribution q(zu|zt, zs) = q(zu|zt) =
N (αu|tzt, σ

2
u|tI), where 0 ≤ s < t < u ≤ 1. Conse-

quently, it can be shown that q(zs|zt,x), s < t, is Normal

distributed by using Bayes rule (see Appendix A of [11]),

q(zs|zt,x) = N

(

σ2
s

σ2
t

αt|szt +
σ2
t|s

σ2
t

αsx,
σ2
sσ

2
t|s

σ2
t

I

)

. (4)

As will be discussed later on, the backward process heavily

relies on the relation between (zt,x) and zs in the formu-

lation (4).

As one example, the above process includes the forward

process of a DDPM as a special case. One can simply dis-

cretize t ∈ [0, 1] into N uniform timesteps, i.e., ti = i/N ,

and let {αti =
√

1− σ2
ti |N ≥ i ≥ 0} be a strictly decreas-

ing sequence.

2.2. Backward diffusion process

In general, a backward process is designed to reverse

the forward process introduced earlier for the purpose of

approximating the data distribution q(x). Without loss of

generality, we denote a discrete backward process as

p(x, z0:N ) = p(zN )

N∏

i=1

p(zi−1|zi:N )p(x|z0:N ), (5)



where the support region [0, 1] for t is discretized into N
uniform timesteps, i.e., ti = i/N , and ti is replaced by i to

simplify notation. The objective is to find a specific form

of the backward process such that its marginal distribution

with regard to x approaches q(x):

q(x) ≈

∫

p(x, z0:N )dz0 . . . dzN . (6)

To facilitate computation, DDPM makes the following

approximation to the backward process of (4):

p(zi−1|zi:N )

= p(zi−1|zi) (7)

≈ q(zi−1|zi,x = x̂(zi, i))

=N








σ2
i−1

σ2
i

αi|i−1zi+
σ2
i|i−1

σ2
i

αi−1x̂(zi, i)

︸ ︷︷ ︸

µ(zi−1|zi,i)

,
σ2
i−1σ

2
i|i−1

σ2
i

︸ ︷︷ ︸

ϕi

I







,

(8)

where αi|i−1 and σ2
i|i−1 follow from (3) with (t, s) =

(i/N, (i − 1)/N), and x̂(zi, i) denotes the predicted sam-

ple for x by using zi and timestep i. The marginal distribu-

tion of zN is approximated to be a spherical Gaussian, i.e.,

p(zN ) ≈ p(0, βI), where β = 1 for variance-preserving

DPMs. A nice property of (8) is that the conditional distri-

bution is Gaussian. As a result, the computation in the back-

ward process only needs to focus on a sequence of means

µ(zi−1|zi, i) and variances ϕi from i = N to i = 0.

Next, we briefly discuss the computation for x̂(zi, i)
in [10], which is followed by recent, more advanced, DPM

models such as DDIM [18] and DPM-Solver [14]. In [10],

a DNN model ǫ̂θ is designed to make a direct prediction of

the added Gaussian noise ǫt to x in a latent variable zt of

(1). In particular, the model is trained to minimize a sum-

mation of expected squared errors:

min
θ

N∑

i=1

Ex,ǫi

[

‖ǫ̂θ(αix+
√

1− α2
i ǫi, i)− ǫi‖

2

]

. (9)

As ǫ and z share the same dimensionality, the architecture

of the model ǫ̂θ is often selected to be a variant of UNet

[16]. In the sampling process, an approximation of x can be

easily obtained in terms of ǫ̂θ(zi, i) by following (1) under

the condition σi =
√

1− α2
i :

x̂(zi, i) = x̂(zi, ǫ̂θ(zi, i))

= zi/αi −
√

1− α2
i ǫ̂θ(zi, i)/αi. (10)

The expression (10) for x can then be plugged into

µ(zi−1|zi, i) in (8).

o

Figure 1. Illustration of the extrapolation operation for refining the

mean estimation in the backward process of DDPM. At timestep

i, the estimate x̃θ,i is computed by extrapolating from the two tra-

ditional estimates x̂(zi, ǫ̂θ(zi, i)) and x̂(zi+1, ǫ̂θ(zi+1, i+ 1)).
x̃θ,i is taken to replace x in the conditional Gaussian distribution

q(zi−1|zi,x).

In practice, different approximations have been made to

the variance ϕi of the conditional Gaussian distribution in

(8). For instance, it has been found in [10] that two differ-

ent setups for ϕi lead to similar sampling performance. As

mentioned earlier, the two recent works [4] and [3] propose

to train DNNs to optimally estimate the time-dependent

variance in (8) under different conditions, which is found

to produce considerably high sampling quality.

3. Basic Lookahead Diffusion Models

In this section, we first consider the correlations car-

ried in {x̂(zj , ǫ̂θ(zj , j))|N ≥ j ≥ 0} over consecutive

timesteps. Then, we propose to refine the estimate for x

by performing extrapolation in the backward process of

DDPM, DDIM, and DPM-Solvers, respectively. We refer

to the improved generative models as LA-DPMs. Finally,

we conduct an analysis to study the strengths of the extrap-

olations.

3.1. Inspection of the estimates for x

From the earlier presentation, it is clear that the latent

variables {zi|N ≥ i ≥ 0} form a sequence of progres-

sively noisier versions of the data sample x as index i in-

creases from 0 to N . It is therefore reasonable to assume

that as the index i decreases from N until 0, the estimates

{x̂(zi, ǫ̂θ(zi, i))|N ≥ i ≥ 0} in ( 10) are increasingly ac-

curate. As shown in Fig. 1, as i decreases, the estimate

x̂(zi, ǫ̂θ(zi, i)) becomes increasingly close to x. As the

Gaussian noise ǫi in zi is a random variable, the estimate

x̂θ(zi, i) should also be treated as following a certain distri-

bution. If the model ǫ̂θ is well trained, the variances of the

estimates should be upper-bounded. By following the above



Algorithm 1 Sampling of an LA-DDPM

Input: zN and x̂(zN+1, ǫ̂θ(zn+1, N + 1)) = 0, λN = 0
for i = N, . . . , 1 do

Compute x̂(zi, ǫ̂θ(zi, i))
x̃θ,i(λi) = (1 + λi)x̂(zi, ǫ̂θ(zi, i))

−λix̂(zi+1, ǫ̂θ(zi+1, i+ 1))

µ(zi−1|zi, i, zi+1, i+ 1) =
σ2
i−1

σ2
i

αi|i−1zi

+
σ2
i|i−1

σ2
i

αi−1x̃θ,i(λi)

zi−1 = µ(zi−1|zi, i,zi+1, i+ 1) + ϕiǫ

end for

output: x̂(z0, ǫ̂θ(z0, 0))

guidelines, we make an assumption to the estimates for x

below. We will use the assumption later on to investigate

the strengths of the extrapolation introduced in LA-DPMs.

Assumption 1 The estimates {x̂(zi, ǫ̂θ(zi, i))|N ≥ i ≥
0} are assumed to be represented in terms of x as

x̂θ(zj , j) = γjx+ φiǫb,j , (11)

where φi < M , and for simplicity, the residual noise ǫb,j
is assumed to follow a spherical Gaussian distribution, i.e.,

ǫb,j ∼ N (0, I), and for 0 ≤ j < k ≤ N , we have

1 > γj > γk ≥ 0, 0 ≤ ϕj < ϕk. (12)

Furthermore, the estimate x̂(zi+1, ǫ̂θ(zi+1, i + 1)) can be

represented in terms of x̂(zi, ǫ̂θ(zi, i)) as

x̂(zi+1, ǫ̂θ(zi+1, i+ 1))

= γi+1|ix̂(zi, ǫ̂θ(zi, i)) + φi+1|iǫb,i+1|i, (13)

where γi+1|i = γi+1/γi ∈ (0, 1), φ2
i+1|i = φ2

i+1 −

γ2
i+1|iφ

2
i > 0, and ǫb,i+1|i ∼ N (0, I). That is, the esti-

mates {x̂(zj , ǫ̂θ(zj , j))|N ≥ j ≥ 0} form a Markov pro-

cess.

Next, we briefly consider the two consecutive estimates

x̂(zi, ǫ̂θ(zi, i)) and x̂(zi+1, ǫ̂θ(zi+1, i + 1)). It is clear

from (11)-(12) that as j decreases from i + 1 to i, the esti-

mate x̂(zj , ǫ̂θ(zj , j)) becomes more accurate. By applying

(11)-(13), the difference of the two estimates can be repre-

sented as

∆x̂θ,i = x̂(zi, ǫ̂θ(zi, i))− x̂(zi+1, ǫ̂θ(zi+1, i+ 1))

= (1 − γi+1|i)γix+ (1− γi+1|i)φiǫb,i

− φi+1|iǫb,i+1|i, (14)

where ǫb,i and ǫb,i+1|i are independent variables. Because

of the term (1 − γi+1|i)γix in (14), the difference ∆x̂θ,i

provides additional information about x in comparison to

x̂(zi, ǫ̂θ(zi, i)). As demonstrated in Fig. 1, ∆x̂θ,i can be

viewed as a noisy vector towards x at timestep i. From

a high level point of view, it provides additional gradient-

descent information that could be exploited to refine the es-

timate for x at timestep i.

3.2. LA­DDPM

In this subsection, we incorporate the additional gradi-

ent information ∆x̂θ,i of (14) into the backward update ex-

pression for zi−1 in the DDPM model. In particular, (8) is

modified to be

p(zi−1|zi:N )

≈ q(zi−1|zi,x = x̃θ,i(λi))

=N








σ2
i−1

σ2
i

αi|i−1zi+
σ2
i|i−1

σ2
i

αi−1x̃θ,i(λi)

︸ ︷︷ ︸

µ(zi−1|zi,i,zi+1,i+1)

,
σ2
i−1σ

2
i|i−1

σ2
i

︸ ︷︷ ︸

ϕi

I







,

(15)

where x̃θ,i(λi) is computed in the form of

x̃θ,i(λi)

= x̂(zi, ǫ̂θ(zi, i)) + λi∆x̂θ,i

= (1+λi)x̂(zi, ǫ̂θ(zi, i))−λix̂(ǫ̂θ(zi+1, i+ 1)), (16)

where λi ≥ 0 denotes the stepsize for incorporating the

difference ∆x̂θ,i, and λi = 0 reduces to the original up-

date procedure for DDPM. It is noted from (16) that the

new estimate x̃θ,i(λi) is obtained by conducting extrapola-

tion over the two consecutive vectors x̂(zi, ǫ̂θ(zi, i)) and

x̂(zi+1, ǫ̂θ(zi+1, i + 1)). As demonstrated in Fig. 1, the

new estimate x̃θ,i(λi) is closer to x. Conceptually speak-

ing, the extrapolation operation allows the backward pro-

cess to look ahead toward a noisy direction targetingx. This

improves the estimation accuracy for x when the parameter

λi is properly selected. See Alg. 1 for a summary of the

sampling procedure of an LA-DDPM.

3.3. LA­DDIM

It is known that DDIM extends DDPM by considering a

non-Markov forward process q(zN |x)
∏N

i=1 q(zi−1|zi,x)
while keeping the marginal distribution q(zi|x) the same

as that of DDPM. Consequently, in the backward process

of DDIM, the latent variable zi−1 can be estimated with

higher accuracy from zi than DDPM. Specially, zi−1 in

DDIM is computed in the form of

zi−1 = αi−1

(
zi−σiǫ̂θ(zi, i)

αi

)

︸ ︷︷ ︸

x̂(zi,ǫ̂θ(zi,i))

+σi−1ǫ̂θ(zi, i). (17)

It is clear from (17) that zi−1 can be viewed as a linear

combination of x̂(zi, ǫ̂θ(zi, i)) and ǫ̂θ(zi, i).



To obtain the update expression for LA-DDIM, we sim-

ply modify (17) by replacing x̂(zi, ǫ̂θ(zi, i)) with x̃θ,i(λi)
in (16), which can be represented as

zi−1 = αi−1x̃θ,i(λi) + σi−1ǫ̂θ(zi, i). (18)

3.4. LA­DPM­Solver

In this subsection, we first briefly explain how DPM-

Solver of [14] is motivated. We then consider incorporating

the difference vector ∆x̂θ,i into the update expressions of

DPM-Solver.

In [14], the authors attempted to solve the following

ODE derived from the forward process (1):

dzt

dt
= f(t)zt+

g2(t)

2σt
ǫ̂θ(zt, t) zT=1 ∼ N (0, σ̃I), (19)

where f(t) = d logαt

dt and g2(t) =
dσ2

t

dt − 2 d logαt

dt σ2
t . By

applying the “variation of constants” formula [2] to (19),

the exact solution zi−1 given zi can be represented as

zi−1 = e
∫ ti−1
ti

f(τ)dτ
zi

+

∫ ti−1

ti

(

e
∫ ti−1
ti

f(r)dr g
2(τ)

2στ
ǫ̂θ(zτ , τ)

)

dτ, (20)

which involves an integration over the predicted Gaussion

noise vector ǫ̂θ(zτ , τ).
The authors of [14] then propose discrete high-order so-

lutions to approximate the integration in (20). Before pre-

senting the solutions, we first introduce two functions. Let

λt = log(αt/σt) denote the logarithm of the SNR-ratio

αt/σt. λt is a monotonic decreasing function over time t.
Therefore, one can also define an inverse function from λ
to t, denoted as tλ(·) : R → R. Upon introducing the

above functions, the update expression for the 2nd order

discrete solution (referred to as DPM-Solver-2 in [14]) takes

the form of

ti− 1
2
=tλ(

λti−1 + λti

2
), (21)

zi− 1
2
=
αi− 1

2

αi
zi − σi− 1

2
(e

hi
2 − 1)ǫ̂θ(zi, i), (22)

zi−1=
αi−1

αi
zi−σi−1(e

hi−1)ǫ̂θ

(

zi− 1
2
, i−

1

2

)

, (23)

where hi = λti−1 − λti . The subscript i − 1
2 indicates

that the time ti− 1
2

is in between ti−1 and ti. The latent

variable zi− 1
2

at time ti− 1
2

is firstly estimated in preparation

for computing zi−1. By using the property that λt
i− 1

2

=

(λti−1 +λti)/2, the update expression (22) for zi− 1
2

can be

simplified to be

zi− 1
2
=αi− 1

2
x̂(zi, ǫ̂θ(zi, i))+ σi− 1

2
ǫ̂θ(zi, i), (24)

which in fact coincides with the update expression (17) for

DDIM.

We are now in a position to design LA-DPM-Solver-

2. Similarly to LA-DDIM, we modify (24) by replacing

x̂(zi, ǫ̂θ(zi, i)) with an extrapolated term:

zi− 1
2
=αi− 1

2

[

(1 + λi)x̂(zi, ǫ̂θ(zi, i))

−λix̂(zi+ 1
2
, ǫ̂θ(zi+ 1

2
, i+

1

2
))
]

+ σi− 1
2
ǫ̂θ(zi, i). (25)

Once zi− 1
2

is computed, The computation for zi−1 follows

directly from (23).

Remark 1 In [14], the authors further propose DPM-

Solver-3, the 3rd order discrete solution for approximating

(20). Correspondingly, we propose LA-DPM-Solver-3. See

Appendix C.2 for the update expressions.

3.5. Analysis of estimation accuracy for x

In this subsection, we derive the optimal setup λ∗
i for λi

under Assumption 1. Our objective is to find out under what

condition, λ∗
i is positive, indicating that the extrapolation

operation improves the estimation accuracy for x. To do so,

we minimize the expected squared error ‖x̃θ,i(λi) − x‖)2

conditioned on x in terms of λi:

λ∗
i = argmin

λi

E[‖x̃θ,i(λi)− x‖2|x]. (26)

By using (14)-(16) and the property that

{x̂θ(zj , ǫ̂θ(zj , j))} follows a Gaussian distribution

as stated in Assumption 1, (26) can be simplified to be

λ∗
i =argmin

λi

((1 + λi − λiγi+1|i)γi − 1)2‖x‖2

+ (1 + λi − λiγi+1|i)
2φ2

i + λ2
iφ

2
i+1|i. (27)

It is clear that the RHS of (27) is a quadratic function of λi.

The optimal solution λ∗
i can be derived easily and can be

expressed as

λ∗
i =

(1 − γi+1|i)(γi(1− γi)‖x‖2 − φ2
i )

(1− γi+1|i)2γ
2
i ‖x‖

2 + (1− γi+1|i)2φ
2
i + φ2

i+1|i

.

(28)

With (28), one can obtain the condition that leads to

λ∗
i > 0. We present the results in a proposition below:

Proposition 1 Suppose the conditions for

{x̂θ(zi, ǫ̂θ(zi, i))} in Assumption 1 hold. The opti-

mal setup λ∗
i is positive (i.e., λ∗

i > 0) when the noise

amplitude φi satisfies the following inequality

φ2
i < γi(1− γi)‖x‖

2. (29)



The condition (29) indicates that if the outputs of the

DNN model ǫ̂θ are not too noisy, namely {φi} are small

in comparison to ‖x‖2, then it is desirable to apply the ex-

trapolation operation for the purpose of refining the estimate

of x. In other words, if the model ǫ̂θ is well designed and

trained, one should introduce the additional connections in

the sampling procedure of a DPM model. It is noted that the

analysis above is based on approximations of Markov Gaus-

sian distributions made in Assumption 1. In practice, it is

suggested to find the optimal values of {λ∗
j}

N
j=0 by train-

ing an additional DNN instead of relying on the expression

(28). As will be demonstrated later on, it is found empiri-

cally that a constant λ value in LA-DPMs leads to signifi-

cant performance gain over traditional DPMs even though

it may not be optimal.

4. Advanced Lookahead Diffusion Models

In this section, we explain how to introduce additional

extrapolation into DEIS and S-PNDM. These methods al-

ready employ high-order polynomials of the historical esti-

mated Gaussian noises {ǫ̂θ(zi+j , i + j)|r ≥ j ≥ 0} in the

estimation of the latent variable zi−1 at iteration i.
For simplicity, we first consider extending DEIS to ob-

tain LA-DEIS. By following [23], the update expression for

zi−1 in the backward process takes the form

zi−1 =
αi−1

αi
zi +

r∑

j=0

cij ǫ̂θ(zi+j , i+ j), (30)

where the {cij}rj=0 are pre-computed hyper-parameters for

the purpose of more accurately approximating an integra-

tion of the ODE (19) for (1)-(3).

Next, we reformulate (30) into an expression similar to

(17) for DDIM:

zi−1 = αi−1

(
zi − σiǫ̃[i:i+r]

αi

)

︸ ︷︷ ︸

ẍ[i:i+r]

+σi−1ǫ̃[i:i+r], (31)

where ǫ̃[i:i+r] is given by

ǫ̃[i:i+r] =

r∑

j=0

cij ǫ̂θ(zi+j , i+ j)/

(

σi−1−
αi−1σi

αi

)

. (32)

The quantity ǫ̃[i:i+r] can be viewed as a more accurate es-

timate of the Gaussian noise than ǫ̂θ(zi, i) in DDIM. With

ǫ̃[i:i+r], we can compute an estimate ẍ[i:i+r] of the original

data sample x.

Upon obtaining (31)-(32), we can easily design LA-

DEIS by introducing an additional extrapolation into (31),

which can be represented by

zi−1 =αi−1[(1 + λi)ẍ[i:i+r] − λiẍ[i+1:i+r+1]]

+ σi−1ǫ̃[i:i+r], (33)

where the estimate ẍ[i+1:i+r+1] is from the previous

timestep i + 1. Our intention with the additional extrap-

olation is to provide a better estimate for x at timestep i.
In principle, the estimate ẍ[i:i+r] should be less noisy than

ẍ[i+1:i+r+1]. As a result, the difference of the two vectors

would approximately point towards x, thus providing addi-

tional gradient information in computing zi−1.

Similarly to the design of LA-DEIS, S-PNDM can also

be easily extended to obtain LA-S-PNDM. See Appendix D

for the details.

5. Numerical Experiments

In the 1st experiment, we used as basis variants of

DDPM and DDIM in [3] that obtain the optimal covariances

of the conditional Gaussian distributions in the backward

process by employing additional pre-trained DNN models.

We will show that the sampling quality can be significantly

improved by introducing the proposed extrapolations in the

above methods. We also conduct an ablation study for a

particular LA-DDIM that investigates how the parameters

{λi} affect the FID scores.

In the 2nd experiment, we evaluate LA-DEIS and LA-S-

PNDM and the corresponding original methods. The evalu-

ation for LA-DPM-Solvers can be found in Appendix C.3.

5.1. Evaluation of covariance­optimised DPMs

Experimental setup: In this experiment, we evaluated the

improved DPM models developed in [3], which make use

of trained neural networks to estimate the optimal covari-

ances of the conditional Gaussian distributions in the back-

ward process. Four types of improved DPM models from

[3] were tested, which are NPR-DDPM, SN-DDPM, NPR-

DDIM, and SN-DDIM, respectively. The two notations

“NPR” and “SN” refer to two different approaches for de-

signing DNN models to estimate the optimal covariances

under different conditions.

Similarly to [3], we conducted experiments over three

datasets: CIFAR10, ImageNet64, and CelebA64. For each

dataset, two pre-trained models were downloaded from the

open-source link1 provided in [3], one for the “NPR” ap-

proach and the other for the “SN” approach.

In the experiment, the strengths of the extrapolations

were set to λi = 0.1 for all i ∈ {0, 1, . . . , N − 1} in

all pre-trained models. The tested timesteps for the three

datasets were set to {10, 25, 50, 100, 200, 1000}. For each

configuration, 50K artificial images were generated for the

computation of FID score.

Performance comparison: The sampling qualities for the

three datasets are summarized in Table 1. It is clear that for

CIFAR10 and Celeba64, the LA-DPM models outperform

the original DPM models significantly for both small and

1https://github.com/baofff/Extended-Analytic-DPM

https://github.com/baofff/Extended-Analytic-DPM


Table 1. Comparison of FID score for CIFAR10, CelebA64, and ImageNet64. The notation “LA” stands for “lookahead”, where the

associated DPM models are obtained by introducing extrapolation accordingly. Lower is better.

Data sets CIFAR10 CelebA64 ImageNet64

Timesteps 10 25 50 100 200 1000 10 25 50 100 200 1000 10 25 50 100 200 1000

NPR-DDPM 32.64 10.48 6.18 4.46 3.70 4.04 28.32 15.51 10.70 8.28 7.01 5.26 53.22 28.41 21.05 18.26 16.75 16.30

LA-NPR-DDPM 25.59 8.48 5.28 4.07 3.47 3.90 25.08 13.92 9.58 7.43 6.32 5.01 48.71 25.42 20.27 18.16 16.83 16.27

gain (%) 21.6 19.1 14.6 8.7 6.2 3.5 11.4 10.3 10.4 10.3 9.8 4.75 8.5 10.5 3.7 0.5 -0.5 0.2

SN-DDPM 23.75 6.88 4.58 3.67 3.31 3.65 20.55 11.85 7.58 5.95 4.96 4.44 51.09 27.77 20.65 18.07 16.70 16.30

LA-SN-DDPM 19.75 5.92 4.31 3.55 3.24 3.55 17.43 10.08 6.41 5.12 4.41 4.21 46.13 24.67 19.83 17.95 16.76 16.28

gain (%) 16.8 14.0 5.9 3.3 2.1 2.7 15.2 14.9 15.4 13.9 11.1 5.2 9.7 11.2 4.0 0.7 -0.4 0.1

NPR-DDIM 13.41 5.43 3.99 3.53 3.40 3.67 14.94 9.18 6.17 4.40 3.67 3.12 97.27 28.75 19.79 17.71 17.15 17.59

LA-NPR-DDIM 10.74 4.71 3.64 3.33 3.29 3.49 14.25 8.83 5.67 3.76 2.95 2.95 71.98 25.39 19.47 18.11 17.89 18.41

gain (%) 19.9 13.3 8.8 5.7 3.2 4.9 4.6 3.8 8.1 14.5 19.61 5.4 26.0 11.7 1.6 -2.3 -4.3 -4.7

SN-DDIM 12.19 4.28 3.39 3.22 4.22 3.65 10.17 5.62 3.90 3.21 2.94 2.84 91.29 27.74 19.51 17.67 17.14 17.60

LA-SN-DDIM 8.48 3.15 2.93 2.92 3.08 3.47 8.05 4.56 2.93 2.39 2.19 2.48 69.11 25.07 19.32 18.06 17.89 18.57

gain (%) 30.4 26.4 13.6 9.3 27.0 4.9 20.8 18.9 24.9 25.5 25.5 12.7 24.3 9.6 9.7 -2.2 -4.4 -5.5

large numbers of timesteps. Roughly speaking, as the num-

ber of timesteps decreases from 1000 to 10, the performance

gain of LA-DPM increases. That is, it is more preferable to

introduce the extrapolation operations when sampling with

a limited computational budget. This might be because for

a large number of timesteps, the original DPM models are

able to maximally exploit the gradient information provided

by the DNN model ǫ̂θ and generate high quality samples

accordingly. On the other hand, with a small number of

timesteps, limited access to the DNN model makes it diffi-

cult for the original PDM models to acquire detailed struc-

tural information of the data sample x. As a result, for a

small number of timesteps, the proposed extrapolation op-

eration plays a more important role by improving the mean

estimation of the backward conditional Gaussian distribu-

tions in the sampling procedure.

Next, we consider the results obtained for ImageNet64.

As shown in Table 1, the introduction of extrapolation op-

erations leads to better performance only for a small num-

ber of steps (e.g., 10, 25, 50). When the number of steps

is large, we observe slightly degraded performance. This

is because ImageNet64 is a very large dataset that cov-

ers many classes of objects compared to CIFAR10 and

CelebA64. As a result, the estimate x̂θ(zj , ǫ̂θ(zj , j)) may

be noisier than the corresponding estimates over CIFAR10

and CelebA. In other words, the setups {λi = 0.1}N−1
i=0

are not appropriate for ImageNet64. In this case, one can

simply reduce the strengths (i.e., λi ↓) of the extrapolation

operations.

5.2. Ablation study of LA­SN­DDIM over CIFAR10

In subsection 5.1, the strengths of the extrapolations in

LA-SN-DDIM were set to {λi = λ = 0.1}N−1
i=0 , which

led to significant performance gain for small numbers of
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Figure 2. FID scores versus λ values for LA-SN-DDIM over

CIFAR10.

stepsizes in comparison to SN-DDIM. We now consider

how the FID scores change for different setups of λ ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4} over timesteps of 10 and

20, where {λi = λ}N−1
i=0 for each λ value.

Fig. 2 displays two FID curves over different λ values,

one for timestep 10 and the other for timestep 20. It is

clear that for timestep 10, FID score of around 4.65 can

be achieved when λ = 0.3. On the other hand, for timestep

20, FID score of around 3.1 can be achieved when λ = 0.2.

This suggests that the setup λ = 0.1 in the first experiment

is far from optimality for a small number of timesteps. In

other words, the FID scores in Table 1 can be improved sig-

nificantly if the λ value is tuned for different timesteps.

5.3. Evaluation of LA­DEIS and LA­S­PNDM

Experimental setup: As noted earlier, DEIS and S-PNDM

exploit high-order polynomials of the estimated Gaussian

noises per timestep in the backward process for better sam-

pling quality. In this experiment, we demonstrate that their
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Figure 3. Performance of tAB-DEIS and LA-tAB-DEIS in terms

of FID scores versus timesteps over CIFAR10. The two subplots

are for polynomials of order r = 2 and r = 3 in (30), respectively.

The setup λ = 0.1 was employed in LA-tAB-DEIS.

sampling performance can be further improved by introduc-

ing additional extrapolation on the estimates of x.

We note that the authors of [23] proposed different ver-

sions of DEIS depending on how the parameters {cij}rj=i

in (30) are computed. For our experiments, we used tAB-

DEIS and our new method LA-tAB-DEIS. Furthermore, we

also evaluated S-PNDM and LA-S-PNDM (see the update

procedure of Alg. 2 in Appendix D).

The tested pre-trained models are summarized in Table 3

in Appendix E. In particular, we evaluated LA-tAB-DEIS

by utilizing a pre-trained model of VPSDE for CIFAR10

in [21]. On the other hand, LA-S-PNDM was evaluated by

utilizing four pre-trained models over four popular datasets

in [13]. The tested timesteps for each sampling method are

within the range of [10, 40].
Performance comparison: Fig. 3 visualizes the FID scores

versus tested timesteps for tAB-DEIS and LA-tAB-DEIS.

It is clear from this figure that the introduction of additional

extrapolation on the estimates of x significantly improves

the sampling quality of tAB-DEIS for polynomials of both

order r = 2 and r = 3. Similarly to the gain in Table 1,

the performance gain in Fig. 3 is relatively large for small

timesteps, which is desirable for practical applications.

The performance of S-PNDM and LA-S-PNDM is sum-

marized in the four subplots of Fig. 4, one subplot per

dataset. It is seen that LA-S-PNDM outperforms S-PNDM

consistently over different timesteps and across different

datasets, which is consistent with the results of Table 1 in

the 1st experiment. It can also be seen from the figure that

the performance gain is more significant for CelebA64 and

LSUN church than for CIFAR10 and LSUN bedroom. This

might be because different DNN models have different fit-

ting errors when they are being trained.

The above positive results indicate that extrapolation on

the estimates of x and the high-order polynomials of the

estimated Gaussian noises are compatible. In practice, one

should incorporate both techniques in the sampling proce-
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Figure 4. Performance of S-PNDM and LA-S-PNDM over 4 differ-

ent datasets. The parameter λ in LA-S-PNDM was set to λ = 0.1 for

{CIFAR10,CelebA64,LSUN church} and λ = 0.05 for LSUN bedroom.

dure of DPMs.

Remark 2 Due to limited space, we put the experimental

results for LA-DPM-Solver-2 and LA-DPM-Solver-3 in Ap-

pendix C.3.

6. Conclusions

In this paper, we proposed a simple approach for im-

proving the estimation accuracy of the mean vectors of a

sequence of conditional Gaussian distributions in the back-

ward process of a DPM. A typical DPM model (even in-

cluding high-order ODE solvers like DEIS and PNDM) first

makes a prediction x̂ of the data sample x at each timestep

i, and then uses it in the computation of the mean vector

for zi−1. We propose to perform extrapolation on the two

most recent estimates of x obtained at times i and i + 1.

In principle, the difference vector of the two estimates ap-

proximately points towards x, thus providing certain type

of gradient information. The extrapolation makes use of the

gradient information to obtain a more accurate estimation

of x, thus improving the estimation accuracy for zi−1.

Extensive experiments showed that the extrapolation

operation improves the sampling qualities of variants of

DDPM and DDIM, DEIS, S-PNDM, and high-order DPM

solvers. It was found that the performance gain is gener-

ally more significant for a small number of timesteps. This

makes the new technique particularly attractive for settings

with limited computational resources.
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A. Investigation of Computational Overhead

In addition to the evaluation of sampling qualities, we also examined the computational overhead introduced by the

extrapolation operations in LA-DPMs. The minibatch size in the sampling procedure was set to 500, and the running time

was measured over a windows machine with a 1080ti GPU. Table 2 displays the time complexities of different generative

models over CIFAR10. It is clear from the table that the computational overhead of the extrapolation operations in LA-DPMs

is negligible. This is because the extrapolation operations are linear and no additional DNN models are introduced to assist

the operations.

Table 2. Comparison of computational costs (measured in units of seconds per minibatch) for CIFAR10.

Timesteps 10 25 50 100 200 1000

NPR-DDPM 14.9 36.4 70.9 139.6 278.1 1388.5

LA-NPR-DDPM 15.3 36.9 71.6 139.8 279.9 1389.9

SN-DDPM 14.9 36.5 71.0 140.1 278.0 1387.9

LA-SN-DDPM 15.3 37.5 71.9 140.8 278.4 1390.7

NPR-DDIM 14.9 36.2 70.7 139.7 270.2 1385.4

LA-NPR-DDIM 15.4 36.3 71.5 140.3 271.1 1388.5

SN-DDIM 15.4 36.6 71.1 136.2 279.1 1386.2

LA-SN-DDIM 15.6 37.0 71.3 139.3 280.9 1391.3

B. Additional Ablation Study of LA-DPMs

We have conducted additional ablation studies for LA-DPMs over both CIFAR10 and ImageNet64. Our main objective is

to show that the optimal setup for the parameter λ is different for different timesteps.
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(b) LA-SN-DDIM over CIFAR10(a) LA-SN-DDPM over CIFAR10

Figure 5. FID scores versus λ values for LA-SN-DDPM and LA-SN-DDIM over CIFAR10. When λ = 0, LA-SN-DDPM reduces to SN-DDPM and

LA-SN-DDIM reduces to SN-DDIM.

It is seen from both Fig. 5 and 6 that as λ increases, the FID score first decreases then increases. That is, it is preferable to

select a proper nonzero λ to achieve small FID scores. Furthermore, as the timestep increases from 10 to 20, the optimal value

for λ decreases. In other words, large λ values are preferable when the timestep for sampling is small. This also explains

why the setup λ = 0.1 leads to higher FID scores for ImageNet64 for large timesteps (e.g., 200, 1000) in Table 1.
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Figure 6. FID scores versus λ values for LA-SN-DDIM over ImageNet64. When λ = 0, LA-SN-DDIM reduces to SN-DDIM.

C. Lookahead High-Order DPM Solvers and Performance Comparison

C.1. LA­DPM­Solver­2

The update expression for DPM-Solver-2 takes the form of (see [14])







ti− 1
2
= tλ(

λti−1
+λti

2 )

zi− 1
2
=

α
i− 1

2

αi
zi − σi− 1

2
(e

hi
2 − 1)ǫ̂θ(zi, i)

zi−1=
αi−1

αi
zi−σi−1(e

hi−1)ǫ̂θ (zi, i)−σi−1(e
hi−1)

[

ǫ̂θ

(

zi− 1
2
, i− 1

2

)

−ǫ̂θ (zi, i)
]

, (34)

where λt = log(αt/σt) is a strictly decreasing function and tλ(·) is the reverse function of λt, and hi = λti−1 − λti . The

expression for zi− 1
2

in (34) can be simplified to be

zi− 1
2
=

αi− 1
2

αi
zi − σi− 1

2
(e

hi
2 − 1)ǫ̂θ(zi, i)

[

λt
i− 1

2

=
λti−1 + λti

2
,which is obtained from definition of ti− 1

2
in (34)

]

=
αi− 1

2

αi
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2

(

e

(

λt
i− 1

2

−λti

)

− 1

)

ǫ̂θ(zi, i)

[

λt
i− 1

2

=
λti−1 + λti

2
= log(αi− 1

2
/σi− 1

2
), λti = log(αi/σi)

]

=
αi− 1

2

αi
zi − σi− 1

2

(
αi− 1

2

σi− 1
2

σi

αi
− 1

)

ǫ̂θ(zi, i)

= αi− 1
2

(
zi

αi
−

σi

αi
ǫ̂θ(zi, i)

)

︸ ︷︷ ︸

x̂(zi,ǫ̂θ(zi,i))

+σi− 1
2
ǫ̂θ(zi, i)

[

For variance preserving process: σi− 1
2
=
√

1− α2
i− 1

2

]

= αi− 1
2
x̂(zi, ǫ̂θ(zi, i)) +

√

1− α2
i− 1

2

ǫ̂θ(zi, i). (35)



LA-DPM-Solver-2 is designed by simply replacing x̂(zi, ǫ̂θ(zi, i)) in (35) with an extrapolation, given by

zi−1 = αi− 1
2

[

(1 + λi)x̂(zi, ǫ̂θ(zi, i))− λix̂

(

zi+ 1
2
, ǫ̂θ

(

zi+ 1
2
, i+

1

2

))]

+
√

1− α2
i− 1

2

ǫ̂θ(zi, i). (36)

The other quantities in LA-DPM-Solver-2 are computed in the same manner as DPM-Solver-2.

C.2. LA­DPM­Solver­3

We first present the update expressions for DPM-Solver-3 from [14].







ti− 1
3
= tλ(

λti−1
+2λti

3 )

ti− 2
3
= tλ(

2λti−1
+λti

3 )

zi− 1
3
=

α
i− 1

3

αi
zi − σi− 1

3
(e

hi
3 − 1)ǫ̂θ(zi, i)

ri− 1
3
= ǫ̂θ(zi− 1

3
, i− 1

3 )− ǫ̂θ(zi, i)

zi− 2
3
=

α
i− 2

3

αi
zi − σi− 2

3
(e

2hi
3 − 1)ǫ̂θ(zi, i)− 2σi− 2

3

(
e2hi/3−1
(2hi)/3

− 1
)

ri− 1
3

ri− 2
3
= ǫ̂θ(zi− 2

3
, i− 2

3 )− ǫ̂θ(zi, i)

zi−1=
αi−1

αi
zi − σi−1(e

hi − 1)ǫ̂θ(zi, i)−
3σi−1

2

(
ehi−1
hi

− 1
)

ri− 2
3
,

(37)

where λt = log(αt/σt) is a strictly decreasing function and tλ(·) is the reverse function of λt, and hi = λti−1 − λti . The

two timestep ti− 1
3

and ti− 2
3

are in between ti and ti−1. It clear from (37) that the computation of zi−1 involves a linear

combination of ǫ̂θ(zi, i) and the difference vector ri− 2
3
= ǫ̂θ(zi− 2

3
, i− 2

3 )− ǫ̂θ(zi, i) .

Next, we study the update expression for zi− 1
3

in (37), which can be reformulated as

zi− 1
3
=

αi− 1
3

αi
zi − σi− 1

3
(e

hi
3 − 1)ǫ̂θ(zi, i)

[

λt
i− 1

3

=
λti−1 + 2λti

3
,which is obtained from definition of ti− 1

3
in (37)

]

=
αi− 1

3

αi
zi − σi− 1

3

(

e

(

λt
i− 1

3

−λti

)

− 1

)

ǫ̂θ(zi, i)

[

λt
i− 1

3

=
λti−1 + 2λti

3
= log(αi− 1

3
/σi− 1

3
), λti = log(αi/σi)

]

=
αi− 1

3

αi
zi − σi− 1

3

(
αi− 1

3

σi− 1
3

σi

αi
− 1

)

ǫ̂θ(zi, i)

= αi− 1
3

(
zi

αi
−

σi

αi
ǫ̂θ(zi, i)

)

︸ ︷︷ ︸

x̂(zi,ǫ̂θ(zi,i))

+σi− 1
3
ǫ̂θ(zi, i)

[

For variance preserving process: σi− 1
3
=
√

1− α2
i− 1

3

]

= αi− 1
3
x̂(zi, ǫ̂θ(zi, i)) +

√

1− α2
i− 1

3

ǫ̂θ(zi, i). (38)

To obtain the update expressions of LA-PDM-Solver-3, we modify (38) to be

zi− 1
3
= αi− 1

3

[

(1 + λi)x̂(zi, ǫ̂θ(zi, i))− λix̂(zi+ 1
3
, ǫ̂θ(zi+ 1

3
, i+

1

3
))

]

+
√

1− α2
i− 1

3

ǫ̂θ(zi, i). (39)

The computation for other quantities in LA-DPM-Solver-3 is the same as in DPM-Solver-3.



C.3. Evaluation of lookahead high­order DPM­Solvers

Experimental setups: In this experiment, we took two high-order DPM-solvers from [14] as two reference methods, which

are DPM-Solver-2 and DPM-Solver-3. The two solvers essentially conduct extrapolation on the predicted Gaussian noises

to improve the sampling quality. Our objective is to find out if their sampling quality can be further improved by performing

additional extrapolation on the estimates of x.

We utilized the same pre-trained model over CIFAR10 for evaluating tAB-DEIS and LA-tAB-DEIS in Subsection 5.3 (see

Table 3). It is noted that the two high-order solvers in [14] were designed to work under a small number of timesteps (below

50 in the experiment of [14]). Therefore, in our experiment, the tested sampling steps are in the range of [10, 40]. In our

improved methods, the strengths of the extrapolations were set to λi = 0.1, i < N .

Performance comparison: Fig. 7 summarises the FID scores versus timesteps. It is clear that even for high-order DPM-

Solvers, the additional extrapolation on estimates of x helps to achieve lower FID scores. We can also conclude from the

figure that DPM-Solver-3 outperforms DPM-Solver-2. This might be because DPM-Solver-3 manages to approximate the

integration of the ODE (19) more accurately than DPM-Solver-2.

We note that Fig. 7 and Fig. 3 are based on the same pre-trained model for CIFAR10. By inspection of the FID scores

in the two figures, it is clear that tAB-DEIS (order 3) performs better than DPM-Solver-3 for this particular pre-trained

model. It is interesting from Fig. 3 that LA-tAB-DEIS outperforms tAB-DEIS significantly while performance gain of LA-

DPM-Solver-3 over DPM-Solver-3 is moderate. The above results demonstrate that the performance gain of our lookahead

technique depends on the original sampling method.
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Figure 7. Performance of DPM-Solvers and LA-DPM-Solvers for CIFAR10.

D. Design of LA-S-PNDM

We summarize the sampling procedure of LA-S-PNDM in Alg. 2. The only difference between LA-S-PNDM and S-

PNDM is the computation of zi−1 for i = N − 1, . . . , 1. It is seen from Alg. 2 that an additional extrapolation is introduced

in terms of the estimates x̂[i:i+1] and x̃[i+1:i+2] of the original data sample x. The strengths of the extrapolations are

parameterized by {λi}
N−1
i=1 . When λi = 0 for all i, LA-S-PNDM reduces to S-PNDM.

From Alg. 2, we observe that the method S-PNDM or LA-S-PNDM exploits 2nd order polynomial of the estimated Gaus-

sian noises {ǫ̂θ(zi+j , i + j)}1j=0 in estimation of zi−1 at timestep i. The polynomial coefficients are computed differently

for i = N and i < N .



Algorithm 2 Sampling of LA-S-PNDM

Input: zN ∼ N (0, I), {1 > λi ≥ 0}N−1
i=1

for i = N do

(a)







zi−1=
αi−1

αi

(

zi−
√

1− α2
i ǫ̂θ(zi, i)

)

+
√

1− α2
i−1ǫ̂θ(zi, i)

ǫ̂[i−1:i] =
1
2 (ǫ̂θ(zi, i) + ǫ̂θ(zi−1, i− 1))

x̂i = (zi −
√

1− α2
i ǫ̂[i−1:i])/αi

zi−1= αi−1x̂i +
√

1− α2
i−1ǫ̂[i−1:i]

end for

Denote x̃[N :N+1] = x̂N

for i = N − 1, . . . , 1 do

(b)



















ǫ̃[i:i+1] =
1
2
(3ǫ̂θ(zi, i)− ǫ̂θ(zi+1, i+ 1))

x̂[i:i+1] = (zi −
√

1− α2
i ǫ̃[i:i+1])/αi

zi−1= αi−1

(

(1 + λi)x̂[i:i+1] − λix̃[i+1:i+2]

)

+
√

1− α2
i−1ǫ̃[i:i+1]

x̃[i : i+ 1] = (1 + λi)x̂[i:i+1] − λix̃[i+1:i+2]

end for

output: z0

* The update for zN−1 in (a) is referred to as pseudo improved Euler step in [13].

* The update for zi−1 in (b) is referred to as pseudo linear multi step in [13].

* LA-S-PNDM reduces to S-PNDM when {λi = 0}1i=N−1.

E. Tested Pre-trained Models in Experiments

Table 3. sampling methods and the corresponding pre-trained models

sampling methods model name

Fig. 3 for tAB-DEIS and LA-tAB-DEIS

Fig. 7 for DPM-Solvers and LA-DPM-Solvers

cifar10 ddpmpp deep continuous/checkpoint 8.pth

(from https://github.com/yang-song/score sde)

Fig. 4 for S-PNDM and LA-S-PNDM

1.ddim cifar10.ckpt

2.ddim celeba.ckpt

3.ddim lsun bedroom.ckpt

4.ddim lsun church.ckpt

(from https://github.com/luping-liu/PNDM)

https://github.com/luping-liu/PNDM


(a) LA-tAB-DEIS (order 3) on CIFAR10 (timestep 10) (b) LA-S-PNDM on CelebA64 (timestep 5)

Figure 8. Generated images with LA-tAB-DEIS and LA-S-PNDM

(a) LA-S-PNDM on bedroom (timestep 10) (b) LA-S-PNDM on church (timestep 10)

Figure 9. Generated images with LA-S-PNDM
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