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Figure 1. Our network can drape garments over bodies of different shapes in various poses. To minimize the required amount of supervision,
our draping network is trained with physics-based self-supervision and generalizes to multiple garments by being conditioned on latent
codes. These can be manipulated to edit specific features of the corresponding garments. Being fully differentiable, our pipeline makes it
possible to recover 3D models of garments and bodies from observations such as images and 3D scans.

Abstract

Recent approaches to drape garments quickly over arbi-
trary human bodies leverage self-supervision to eliminate
the need for large training sets. However, they are designed
to train one network per clothing item, which severely lim-
its their generalization abilities. In our work, we rely on
self-supervision to train a single network to drape multiple
garments. This is achieved by predicting a 3D deformation
field conditioned on the latent codes of a generative net-
work, which models garments as unsigned distance fields.

Our pipeline can generate and drape previously unseen
garments of any topology, whose shape can be edited by ma-
nipulating their latent codes. Being fully differentiable, our
formulation makes it possible to recover accurate 3D mod-
els of garments from partial observations – images or 3D
scans – via gradient descent. Our code is publicly available
at https://github.com/liren2515/DrapeNet.

∗ Equal contributions

1. Introduction

Draping digital garments over differently-shaped bod-
ies in random poses has been extensively studied due to
its many applications such as fashion design, moviemak-
ing, video gaming, virtual try-on and, nowadays, virtual and
augmented reality. Physics-based simulation (PBS) [3, 12,
26,36,37,43,44,52–54,57,66] can produce outstanding re-
sults, but at a high computational cost.

Recent years have witnessed the emergence of deep neu-
ral networks aiming to achieve the quality of PBS draping
while being much faster, easily differentiable, and offer-
ing new speed vs. accuracy tradeoffs [16, 17, 28, 40, 49,
51, 56, 59, 61]. These networks are often trained to pro-
duce garments that resemble ground-truth ones. While ef-
fective, this requires building training datasets, consisting
of ground-truth meshes obtained either from computation-
ally expensive simulations [35] or using complex 3D scan-
ning setups [42]. Moreover, to generalize to unseen gar-
ments and poses, these supervised approaches require train-
ing databases encompassing a great variety of samples de-
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picting many combinations of garments, bodies and poses.

The recent PBNS and SNUG approaches [5, 47] address
this by casting the physical models adopted in PBS into con-
straints used for self-supervision of deep learning models.
This makes it possible to train the network on a multitude
of body shapes and poses without ground-truth draped gar-
ments. Instead, the predicted garments are constrained to
obey physics-based rules. However, both PBNS and SNUG,
require training a separate network for each garment. They
rely on mesh templates for garment representation and fea-
ture one output per mesh vertex. Thus, they cannot handle
meshes with different topologies, even for the same gar-
ment. This makes them very specialized and limits their
applicability to large garment collections as a new network
must be trained for each new clothing item.

In this work, we introduce DrapeNet, an approach
that also relies on physics-based constraints to provide self-
supervision but can handle generic garments by condition-
ing a single draping network with a latent code describing
the garment to be draped. We achieve this by coupling the
draping network with a garment generative network, com-
posed of an encoder and a decoder. The encoder is trained
to compress input garments into compact latent codes that
are used as input condition for the draping network. The
decoder, instead, reconstructs a 3D garment model from its
latent code, thus allowing us to sample and edit new gar-
ments from the learned latent space.

Specifically, we model the output of the garment de-
coder as an unsigned distance function (UDF), which were
demonstrated [15] to yield better accuracy and fewer inter-
penetrations than the inflated signed distance functions of-
ten used for this purpose [10, 22]. Moreover, UDFs can
be triangulated in a differentiable way [15] to produce ex-
plicit surfaces that can easily be post-processed, making
our pipeline fully differentiable. Hence, DrapeNet can
not only drape garments over given body shapes but can
also perform gradient-based optimization to fit garments,
along with body shapes and poses, to partial observations
of clothed people, such as images or 3D scans.

Our contributions are as follows:

• We introduce a single garment draping network con-
ditioned on a latent code to handle generic garments
from a large collection (e.g. top or bottom garments);

• By exploiting physics-based self-supervision, our
pipeline only requires a few hundred garment meshes
in a canonical pose for training;

• Our framework enables the fast draping of new gar-
ments with high fidelity, as well as the sampling and
editing of new garments from the learned latent space;

• Being fully differentiable, our method can be used to
recover accurate 3D models of clothed people from im-
ages and 3D scans.

2. Related Work
Implicit Neural Representations for 3D Surfaces. Im-

plicit neural representations have emerged a few years ago
as an effective tool to represent surfaces whose topology
is not known a priori. They can be implemented using
(clipped) signed distance functions (SDF) [39] or occupan-
cies [31]. When an explicit representation is required, it can
be obtained using Marching Cubes [21] and this can be done
while preserving differentiability [1,30,46]. However, they
can only represent watertight surfaces.

Thus, to represent open surfaces, such as clothes, it is
possible to use inflated SDFs surrounding them. How-
ever, this entails a loss in accuracy and there has been a
recent push to replace SDFs by unsigned distance func-
tions (UDFs) [9, 58, 67]. One difficulty in so doing was
that Marching Cubes was not designed with UDFs in mind,
and obtaining explicit surfaces from these UDFs was there-
fore non-trivial. This has been addressed in [15] by modi-
fying the Marching Cubes algorithm to operate with UDFs.
We model garment with UDFs and use [15] to mesh them.
Other works augment signed distance fields with covariant
fields to encode open surface garments [8, 48].

Draping Garments over 3D Bodies. Two main classes
of methods coexist, physics-based algorithms [3, 24, 25, 34,
35,53] that produce high-quality drapings but at a high com-
putational cost, and data-driven approaches that are faster
but often at the cost of realism.

Among the latter, template-based approaches [5,7,19,38,
40, 47, 50, 56] are dominant. Each garment is modeled by a
specific triangulated mesh and a draping function is learned
for each one. In other words, they do not generalize. There
are however a number of exceptions. In [6, 16] the mesh
is replaced by 3D point clouds that can represent generic
garments. This enables deforming garments with arbitrary
topology and geometric complexity, by estimating the de-
formation separately for each point. [65] goes further and
allows differentiable changes in garment topology by sam-
pling a fixed number of points from the body mesh. Un-
fortunately, this point cloud representation severely limits
possible downstream applications.

In recent approaches [10, 22], a space of garments is
learned with clothing items modeled as inflated SDFs and
one single shared network to predict their deformations
as a 3D displacement field. This makes deployment in
real-world scenarios easier and allows the reconstruction
of garments from images and 3D scans. However, the
inflated SDF scheme reduces realism and precludes post-
processing using standard physics-based simulators or other
cloth-specific downstream applications. Furthermore, both
models are fully supervised and require a dataset of draped
garments whose collection is extremely time-consuming.

Alleviating the need for costly ground-truth draped gar-
ments is tackled in [5, 47], by introducing physics-based
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Figure 2. Overview of our framework. Left: Garment generative network, trained to embed garments into compact latent codes and
predict their unsigned distance field (UDF) from such vectors. UDFs are then meshed using [15]. Right: Garment draping network,
conditioned on the latent codes of the generative network. It is trained in a self-supervised way to predict the displacements ∆x and ∆xref
to be applied to the vertices of given garments, before skinning them according to body shape and pose (β, θ) with the predicted blending
weights W . It includes an Intersection Solver module to prevent intersection between top and bottom garments.

losses to train draping networks in a self-supervised man-
ner. The approach of [47] relies on a mass spring model
to enforce the physical consistency of static garments de-
formed by different body poses. The method of [5] also
accounts for variable body shapes and dynamic effects; fur-
thermore, it incorporates a more realistic and expressive
material model. Both methods, however, require training
one network per garment, a limitation we remove.

3. Method

We aim to realistically deform and drape generic gar-
ments over human bodies of various shapes and poses. To
this end, we introduce the DrapeNet framework, pre-
sented in Fig. 2. It comprises a generative network shown
on the left and a draping network shown on the right. Only
the first is trained in a supervised manner, but using only
static unposed garments meshes. This is key to avoiding
having to run physics-based simulations to generate ground-
truth data. Furthermore, we condition the draping network
on latent vectors representing the input garments, which al-
lows us to use the same network for very different garments,
something that competing methods [5, 47] cannot do.

The generative network is a decoder trained using an en-
coder that turns a garment into a latent code z that can then
be decoded to an Unsigned Distance Function (UDF), from
which a triangulated mesh can be extracted in a differen-
tiable manner [15]. The UDF representation allows us to
accurately represent open surfaces and the many openings
that garments typically feature. Since the top and bottom
garments – shirts and trousers – have different patterns, we
train one generative model for each. Both networks have
the same architecture but different weights.

The resulting garment generative network is only trained
to output garments in a canonical shape, pose, and size that
fit a neutral SMPL [27] body. Draping the resulting gar-
ments to bodies in non-canonical poses is then entrusted to
a draping network, again one for the top and one for the bot-
tom. As in [5,22,47], this network predicts vertex displace-
ments w.r.t. the neutral position. The deformed garment is
then skinned onto the articulated body model. To enable
generalization to different tops and bottoms, we condition
the draping process on the garment latent codes of the gen-
erative network, shown as ztop and zbot in Fig. 2.

We use a small database of static unposed garments
loosely aligned with bodies in the canonical position to train
the two garment generating networks. This being done, we
exploit physics-based constraints to train in a fully self-
supervised manner the top and bottom draping networks
for realism, without interpenetrations with the body and be-
tween the garments themselves.

3.1. Garment Generative Network

To encode garments into latent codes that can then be
decoded into UDFs, we rely on a point cloud encoder that
embeds points sampled from the unposed garment surface
into a compact vector. This lets us obtain latent codes for
previously unseen garments in a single inference pass from
points sampled from its surface. This can be done given
any arbitrary surface triangulation. Hence, it gives us the
flexibility to operate on any given garment mesh.

We use DGCNN [62] as the encoder. It first propagates
the features of points within the same local region at mul-
tiple scales and then aggregates them into a single global
embedding by max pooling. We pair it with a decoder that
takes as input a latent vector, along with a point in 3D space,
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and returns its (unsigned) distance to the garment. The de-
coder is a multi-layer perceptron (MLP) that relies on Con-
ditional Batch Normalization [60] for conditioning on the
input latent vector.

We train the encoder and the decoder by encouraging
them to jointly predict distances that are small near the
training garments’ surface and large elsewhere. Because the
algorithm we use to compute triangulated meshes from the
predicted distances [15] relies on the gradient vectors of the
UDF field, we also want these gradients to be as accurate as
possible [2, 67]. We therefore minimize the loss

Lgarm = Ldist + λgLgrad , (1)

where Ldist encodes our distance requirements, Lgrad the
gradient ones, and λg is a weight balancing their influence.

More formally, at training time and given a mini-batch
comprising B garments, we sample a fixed number P of
points from the surface of each one. For each resulting point
cloud pi (1 ≤ i ≤ B), we use the garment encoder EG to
compute the latent code

zi = EG(pi) (2)

and use it as input to the decoder DG. It predicts an UDF
field supervised with Eq. (1), whose terms we define below.

Distance Loss. Having experimented with many differ-
ent formulations of this loss, we found the following one
both simple and effective. Given N points {xij}j≤N sam-
pled from the space surrounding the i-th garment, we pick a
distance threshold δ, clip all the ground-truth distance val-
ues {yij} to it, and linearly normalize the clipped values to
the range [0, 1]. This yields normalized ground-truth values
ȳij = min(yij , δ)/δ. Similarly, we pass the output of the fi-
nal layer of DG through a sigmoid function σ(·) to produce
a prediction in the same range for point xij

ỹij = σ(DG(xij , zi)) . (3)

Finally, we take the loss to be

Ldist = BCE
[
(ȳij)

i≤B
j≤N , (ỹij)

i≤B
j≤N

]
, (4)

where BCE[·, ·] stands for binary cross-entropy. As ob-
served in [13], the sampling strategy used for points xij
strongly impacts training effectiveness. We describe ours
in the supplementary. In our experiments, we set δ = 0.1,
being the top and bottom garments normalized respectively
into the upper and lower halves of the [−1, 1]3 cube.

Gradient Loss. Given the same sample points as before,
we take the gradient loss to be

Lgrad =
1

BN

∑
i,j

‖gij − ĝij‖22 , (5)

where gij = ∇xyij ∈ R3 is the ground-truth gradient of the
i-th garment’s UDF at xij and ĝij = ∇xDG(xij , zi) the
one of the predicted UDF, computed by backpropagation.

3.2. Garment Draping Network

We describe our approach to draping generic garments
as opposed to specific ones and our self-supervised scheme.
We assume that all garments are made of a single common
fabric material, and we drape them in a quasi-static manner.

3.2.1 Draping Generic Garments

We rely on SMPL [27] to parameterize the body in terms
of shape (β) and pose (θ) parameters. It uses Linear Blend
Skinning to deform a body template. Since garments gen-
erally follow the pose of the underlying body, we extend
the SMPL skinning procedure to the 3D volume around the
body for garment draping. Given a point x ∈ R3 in the gar-
ment space, its positionD(x, β, θ, z) after draping becomes

D(x, β, θ, z) = W (x(β,θ,z), β, θ,W(x)) , (6)
x(β,θ,z) = x + ∆x(x, β) + ∆xref(x, β, θ, z) ,

∆xref(x, β, θ, z) = B(β, θ) · M(x, z) ,

where W (·) is the SMPL skinning function, applied with
blending weights W(x), over the point displaced by
∆x(x, β) and ∆xref(x, β, θ, z). W(x) and ∆x(x, β) are
computed as in [22, 50]. However, they only give an
initial deformation for garments that roughly fits the un-
derlying body. To refine it, we introduce a new term,
∆xref(x, β, θ, z). It is a deformation field conditioned on
body parameters β and θ, and on the garment latent code z
from the generative network. Following the linear decom-
position of displacements in SMPL, it is the composition
of an embedding B(β, θ) ∈ RNB of body parameters and a
displacement matrixM(x, z) ∈ RNB×3 conditioned on z.
Being conditioned on the latent code z, ∆xref can deform
different garments differently, unlike the methods of [5,47].
The number of vertices does not need to be fixed, since dis-
placements are predicted separately for each vertex.

Since we have distinct encodings for the top and bottom
garments, for each one we train two MLPs (B,M) to pre-
dict ∆xref . The other MLPs forW(·) and ∆x(·) are shared.

3.2.2 Self-Supervised Training

We first learn the weights ofW(·) and ∆x(·) as in [22, 50],
which does not require any annotation or simulation data
but only the blending weights and shape displacements of
SMPL. We then train our deformation fields ∆xref in a fully
self-supervised fashion by minimizing the physics-based
losses introduced below. In this way, we completely elimi-
nate the huge cost that extensive simulations would entail.

Top Garments. For upper body garments – shirts, t-
shirts, vests, tank tops, etc. – the deformation field is trained
using the loss from [47], expressed as

Ltop = Lstrain + Lbend + Lgravity + Lcol , (7)
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where Lstrain is the membrane strain energy of the de-
formed garment, Lbend the bending energy caused by the
folding of adjacent faces, Lgravity the gravitational poten-
tial energy, and Lcol a penalty for collisions between body
and garment. Unlike in [47], we only consider the quasi-
static state after draping, that is, without acceleration.

Bottom Garments. Due to gravity, bottom garments,
such as trousers, would drop onto the floors if we used only
the loss terms of Eq. (7). We thus introduce an extra loss
term to constrain the deformation of vertices around the
waist and hips. The loss becomes

Lbottom = Lstrain + Lbend + Lgravity + Lcol + Lpin,

Lpin =
∑
v∈V
|∆xy|2 + λ(|∆xx|2 + |∆xz|2) , (8)

where V is the set of garment vertices whose closest body
vertices are located in the region of the waist and hips. See
supplementary material for details. The terms ∆xx, ∆xy
and ∆xz are the deformations along the X, Y and Z axes,
respectively. λ is a positive value smaller than 1 that penal-
izes deformations along the vertical direction (Y axis) and
produces natural deformations along the other directions.

Top-Bottom Intersection. To ensure that the top and
bottom garments do not intersect with each other when we
drape them on the same body, we define a loss LIS that
ensures that when the top and the bottom garments overlap,
the bottom garment vertices are closer to the body mesh
than the top ones, which prevents them from intersecting –
this is arbitrary, and the following could be formulated the
other way around. To this end, we introduce an Intersection
Solver (IS) network. It predicts a displacement correction
∆xIS , added only when draping bottom garments as

x̃(ztop,zbot) = x(zbot) + ∆xIS(x, ztop, zbot) , (9)

where we omit the dependency of x̃, x and ∆xIS on the
body parameters (β, θ) for simplicity. ztop and zbot are the
latent codes of the top and bottom garments, and x(zbot) is
the input point displaced according to Eq. (6). The skinning
function of Eq. (6) is then applied to x̃(ztop,zbot) for draping.
∆xIS(·) is implemented as a simple MLP and trained with

LIS = Lbottom + Llayer, (10)

where Llayer is a loss whose minimization requires the top
and bottom garments to be separated from each other. We
formulate it as

Llayer =
∑
vB∈C

max(dbot(vB)− γdtop(vB), 0) , (11)

where C is the set of body vertices covered by both the top
and bottom garments, dtop(·) and dbot(·) the distance to the
top and the bottom garments respectively, and γ a positive
value smaller than 1 (more details in the supplementary).
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Figure 3. Overview of DrapeNet applications. Top: New gar-
ments can be sampled from the latent spaces of the generative net-
works, and deformed by the draping networks to fit to a given
body. Center: The garment encoders and the draping networks
form a general purpose framework to drape any garment with a
single forward pass. Bottom: Being a differentiable parametric
model, our framework can reconstruct 3D garments by fitting ob-
servations such as images or 3D scans. The red boxes indicate the
parameters optimized in this process.

4. Experiments

We first describe our experimental setup and test
DrapeNet for the different purposes depicted by Fig. 3.
They include reconstructing different kinds of garments and
editing them by manipulating their latent codes. We then
gauge the draping network both qualitatively and quantita-
tively. Finally, we use DrapeNet to reconstruct garments
from images and 3D scans.

4.1. Settings, Datasets and Metrics

Datasets. Both our generative and draping networks
are trained with garments from CLOTH3D [4], a synthetic
dataset that contains over 7K sequences of animated 3D hu-
mans parametrized used the SMPL model and wearing dif-
ferent garments. Each sequence comprises up to 300 frames
and features garments coming from different templates. For
training, we randomly selected 600 top garments (t-shirts,
shirts, tank tops, etc.) and 300 bottom garments (both long
and short trousers). Neither for the generative nor for the
draping networks did we use the simulated deformations of
the selected garments. Instead, we trained the networks us-
ing only garment meshes on average body shapes in T-pose.
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Figure 4. Generative network: reconstruction of unseen gar-
ments in neutral pose/shape. The latent codes are obtained with
the garment encoder, then decoded into open surface meshes.

By contrast, for testing purposes, we selected random cloth-
ing items – 30 for top garments and 30 bottom ones – and
considered whole simulated sequences.

Training. We train two different models for top and bot-
tom garments, both for the generative and for the draping
parts of our framework. First, the generative models are
trained on the 600/300 neutral garments. Then, with the
generative networks weights frozen, we train the draping
networks by following [47]: body poses θ are sampled ran-
domly from the AMASS [29] dataset, and shapes β uni-
formly from [−3, 3]10 at each step. The other hyperparam-
eters are given in the supplementary material.

Metrics. We report the Euclidean distance (ED), in-
terpenetration ratio between body and garment (B2G), and
intersection between top and bottom garments (G2G). ED
is computed between corresponding vertices of the consid-
ered meshes. B2G is the area ratio between the garment
faces inside the body and the whole surface as in [22].
Since CLOTH3D exclusively features pairs of top/bottom
garments with the bottom one closer to the body, G2G is
computed by detecting faces of the bottom garment that are
outside of the top one, and taking the area ratio between
those and the overall bottom garment surface.

4.2. Garment Paramerization

We first test the encoding-decoding scheme of Sec. 3.1.
Encoding-Decoding Previously Unseen Garments.

The generative network of Fig. 2 is designed to project
garments into a latent space and to reconstruct them from
the resulting latent vectors. In Fig. 4, we visualize recon-
structed previously-unseen garments from CLOTH3D. The
reconstructions are faithful to the input garments, including
fine-grained details such as the shirt collar on the left or the
shoulder straps of the tank top.

Semantic Manipulation of Latent Codes. Our frame-
work enables us to edit a garment by manipulating its latent
code. For the resulting edits to have a semantic meaning, we
assigned binary labels corresponding to features of interest
to 100 training garments. For instance, we labeled garments
as having “short sleeves” (label = 0) or “long sleeves” (label
= 1). Then, we fit a linear logistic regressor to the garment
latent codes. After training, the regressor weights indicate
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Figure 5. Garment editing. The latent codes produced by the
garment encoder can be manipulated to edit specific features of the
corresponding garments, without altering the overall geometry.

DeePSD DIG Ours

ED-top (mm) 28.1 29.6 47.9
ED-bottom (mm) 18.3 20.0 27.3

B2G-top (%) ↓ 7.2 1.8 0.9
B2G-bottom (%) ↓ 3.4 0.8 0.3

G2G (%) ↓ 2.0 4.0 0.5

Table 1. Draping unseen garment meshes. Comparison between
DeePSD, DIG and our method, for top and bottom garments: Eu-
clidean distance (ED), intersections with the body (B2G) and be-
tween garments (G2G) as ratio of intersection areas.

which dimensions of the latent space control the feature of
interest. To this end, we first apply min-max normalization
to the absolute weight values and then zero out the ones
below a certain threshold, empirically set to 0.5. The re-
maining non-zero weights indicate which dimensions of the
latent codes should be increased or decreased to edit the
studied feature. To create Fig. 5, we applied this simple pro-
cedure to control the sleeve length and the front opening for
top garments along with the length for bottom garments. As
can be seen from the figure, our latent representations give
us the ability to edit a specific garment feature while leaving
other aspects of the garment geometry unchanged.

4.3. Garment Draping

We now turn to the evaluation of the draping network
and compare its performance to those of DeePSD [6] or
DIG [22], two fully supervised learning methods trained
on CLOTH3D. DeePSD takes the point cloud of the gar-
ment mesh as input and predicts blending weights and pose
displacements for each point; DIG drapes garments with
a learned skinning field that can be applied to generic 3D
points, but is similar for all garments. We chose those be-
cause, like DrapeNet, they both can deform garments of
arbitrary geometry and topology.

Draping Unseen Meshes. We drape previously unseen
garments on different bodies in random poses. We first en-
code the garments and use the resulting latent codes to con-
dition the draping network, whose inference takes ∼5ms.
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Figure 6. Comparison between DeePSD, DIG and our method. Ours is more realistic despite having the highest Euclidean distance
(ED) error (left), and has less intersection between garments (right). Left also shows that ∆xref is necessary for realistic deformations.
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Figure 7. Human evaluation of draping results. When shown
draping results of our method, DIG and DeePSD, evaluators se-
lected ours as the most realistic one in more than half of the cases.
None refers to the case when they had no clear preference.

We provide qualitative results in Fig. 6 and report quan-
titative ones in Tab. 1. Despite being completely self-
supervised, DrapeNet delivers the lowest ratio of body-
garment interpenetrations (B2G) for both top and bottom
garments and the least intersections between them (G2G).

However, DrapeNet also yields higher ED values,
which makes sense because there is more than one way
to satisfy the physical constraints and to achieve realism.
Hence, in the absence of explicit supervision, there is no
reason for the answer picked by DrapeNet to be exactly
the same as the one picked by the simulator. In fact, as ar-
gued in [5] and illustrated by Fig. 6, which is representative
in terms of ED, a low ED value does not necessarily corre-
spond to a realistic draping. To confirm this, we conducted
a human evaluation study by sharing a link to a website on
friends groupchats. We gave no further instructions or de-
tails besides those given on the site and reproduced in the
supplementary material. The website displays 3 drapings of
the same garment over the same posed body, one computed
using our method and the others using the other two. The
users were asked to select which one of the three seemed
more realistic and more pleasant, with a fourth potential re-
sponse being “none of them”. We obtained feedback from
187 different people. A total of 1258 individual examples
were rated and we collected 3738 user opinions. In other
words, each user expressed 20 opinions on average. The
chart in Fig. 7 shows that our method was selected more
than 50% of the times, with a large gap over the second
best, DIG [22], selected less than 30% of the time. This
result confirms that DrapeNet can drape garments with
better perceptual quality than the competing methods.

(a) (b) (c) (d)

Figure 8. Switching input latent codes of the draping network.
Draping the same shirt by conditioning the draping network with
(a) the corresponding latent code, (b) the code of an open vest, (c)
of a t-shirt and (d) of a tank top. Gray meshes in dashed boxed are
the garments corresponding to the input latent codes.

Ablation Study. In Fig. 8, we show what happens when
the draping network is conditioned with a latent code of a
garment that does not match the input one. This creates
unnatural deformations on the front when using the code
of a shirt with a front opening to deform a shirt without
an opening. Similarly, the sleeves penetrate the arms when
conditioning with the code of a short sleeves shirt. This
demonstrates that the draping network truly exploits the la-
tent codes to predict garment-dependent deformation fields.

In Fig. 6 left we show that removing our novel displace-
ment term ∆xref(·) from Eq. (6) leads to unrealistic results.

We also ablate the influence of our Intersection Solver
and observe that G2G increases from 0.5% to 1.1% without
it. This demonstrates the effectiveness of this component at
reducing collisions between top and bottom garments.

4.4. Fitting Observations

Since our method is end-to-end differentiable, it can be
used to reconstruct 3D models of people and their garments
from partial observations, such as 2D images and 3D scans.

Fitting Images. Given an image of a clothed person, we
use the algorithm of [63, 64] to get initial estimates for the
body parameters (β, θ) and a segmentation mask S. Then,
starting with the mean of the learned codes z, we recon-
struct a mesh for the body and its garments by minimizing

L(β, θ, z) = LIoU(R(D(G, β, θ, z),SMPL(β, θ)), S) ,

G = MeshUDF(DG(z)) ,
(12)

w.r.t. z, β and θ, where LIoU is the IoU loss [23] in pixel
space penalizing discrepancies between 2D masks, R(·) is
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Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

Figure 9. Recovering garments and bodies from images. From
left to right we show the input image and the 3D models recovered
with our method (without and with post-refinement), and competi-
tors methods: SMPLicit [10], ClothWild [33], DIG [22].

a differentiable mesh renderer [45], and G is the set of ver-
tices of the garment mesh reconstructed with our garment
decoder using z. D(·) and SMPL(·) are the garment and
body skinning functions defined in Eq. (6) and in [27], re-
spectively. To ensure pose plausibility, θ is constrained by
an adversarial pose prior [11].

For the sake of simplicity, Eq. (12) formulates the recon-
struction of a single garment G. In practice, we extend this
formulation to both the top and the bottom garments shown
in the target image. Fig. 9 depicts the results of minimizing
this loss. It outperforms the state-of-the-art methods SM-
PLicit [10], ClothWild [33] and DIG [22]. The garments
we recover follow the ones in the input image with higher
fidelity and visual quality, without interpenetration between
the body and the garments or between the two garments.

After this optimization, we can further refine the result
by minimizing the physics-based objectives of Eq. (7) w.r.t.
the per-vertex displacements of the reconstructed garments,
as opposed to w.r.t. the latent vectors. We describe this
procedure in the supplementary material. As shown in the
third column of Fig. 9, this further boosts the realism of the
reconstructed garments. Note that this refinement is feasible
thanks to the open surface representation allowed by our
UDF model. Applying these physically inspired losses to
an inflated garment, as produced by SMPLicit, ClothWild
and DIG, yields poor results with many self-intersections,
as shown in the supplementary material.

Fitting 3D scans. Given a 3D scan of a clothed person
and segmentation information, we apply a strategy similar
to the one presented above and minimize

L(β, θ, z) = d(D(G, β, θ, z), SG) + ~d(SMPL(β, θ), SB), (13)

3D Scan Raw Post Refinement

Figure 10. Recovering garments and bodies from 3D scans.
We show 3D models recovered with our method from scans of
the SIZER dataset [56]. Raw indicates the model recovered with
Eq. (13) from the 3D scan. Post Refinement refers to the models
further refined with the physics-based losses.

w.r.t. z, β and θ, where SG and SB denote the segmented
garment and body scan points, and d(a, b) and ~d(a, b) are
the bidirectional and the one-directional Chamfer distance
from b to a. Similarly to Eq. (12), we apply Eq. (13) to
recover both the top and bottom garments. Fig. 10 shows
our fitting results for some scans of the SIZER dataset [56].
The recovered 3D models closely match the input scans.
Moreover, we can also apply a post-refinement procedure
similar to the one described above, by minimizing both the
physics-based losses from Eq. (7) and the Chamfer distance
to the input scan w.r.t. the 3D coordinates of the vertices of
the reconstructed models. This leads to even more realistic
results, with fine wrinkles aligning to the input scans.

5. Conclusion
We have shown that physics-based self-supervision can

be leveraged to learn a single parameterization for many dif-
ferent garments to be draped on human bodies in arbitrary
poses. Our approach relies on UDFs to represent garment
surfaces and on a displacement field to drape them, which
enables us to handle a continuous manifold of garments
without restrictions on their topology. Our whole pipeline
is differentiable, which makes it suitable for solving inverse
problems and for modeling clothed people from image data.

Future work will focus on modeling dynamic poses in-
stead of only static ones. This is of particular relevance
for loose clothes, where our reliance on the SMPL skinning
prior should be relaxed. Moreover, we will investigate re-
placing our current global latent code by a set of local ones
to yield finer-grained control both for garment editing and
draping.
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Supplementary Material

In this appendix we first provide more details about our
networks and their architectures in Sec. 6.

In Sec. 7 we expand on the choice and formulations of
some loss terms we use. Importantly, in Sec. 7.4 we explain
the physics-based refinement procedure used in the main
paper, and show that modelling garments as open surfaces
is necessary for it.

Then in Sec. 8 we report additional quantitative and qual-
itative results of our pipeline and the runtime of its compo-
nents. Finally, in Sec. 9 we describe how human ratings
were collected.

6. Network Architectures and Training

6.1. Garment Generative Network

6.1.1 Garment Encoder

To encode a given garment into a compact latent code, we
first sample P points from its surface and then we feed them
to a DGCNN [62] encoder, detailed in Fig. 11. The input
point cloud is processed by four edge convolution layers,
which project the input 3D points into features with increas-
ing dimensionality – i.e., 64, 64, 128 and finally 256.

Each edge convolution layer works as follows. For each
input point, the features from itsK neighbours are collected
and used to prepare a matrix with K rows. Each row is
the concatenation of two vectors: fi − f0 and f0, fi and f0
being respectively the feature vector of the i-th neighbour
and the feature vector of the considered point. Each row
of the resulting matrix is then transformed independently
to the desired output dimension. The output feature vector
for the considered point is finally obtained by applying max
pooling along the rows of the produced matrix.

The original DGCNN implementation recomputes the
neighborhoods in each edge convolution layer, using the
distance between the feature vectors as metric. This can be
explained by the original purposes of DGCNN, i.e., point
cloud classification and part segmentation. Since we are in-
terested in encoding the geometric details of the input point
cloud, we compute neighborhoods only once based on the
euclidean distance of the points in the 3D space and reuse
this information in every edge convolution layer. We set
K = 16 in our experiments.

The feature vectors from the four edge convolutions are
then concatenated to form a single vector with 512 ele-
ments, that is fed to a final linear layer paired with batch
normalization and leaky ReLU. Such layer projects the 512
sized vectors into the final desired dimension, which is 32 in
our case. The final latent code is obtained by compressing
the feature matrix with shape P × 32 along the first dimen-
sion with max pooling.

6.1.2 Garment Decoder

The garment generative network features an implicit de-
coder that can predict the unsigned distance field of a gar-
ment starting from its latent code. More specifically, the
decoder is a coordinate-based MLP that takes as inputs the
garment latent code and a 3D query. Using the latent code as
condition, the decoder predicts the unsigned distance from
the query to the garment surface.

Our UDF decoder, shown in Fig. 12, is inspired by [31].
The input 3D query is first mapped to a higher dimensional
space (R63) with the positional encoding proposed in [32],
which is known to improve the capability of the network to
approximate high frequency functions. The encoded query
is then mapped with a linear layer to R512 and then goes
through 5 residual blocks. The output of each block is com-
puted as fout = fin + ∆f , where fin is the input vector and
∆f is a residual term predicted by two consecutive linear
layers starting from fin. The size of the feature vector is
512 across the whole sequence of residual blocks. The out-
put of the last block is mapped to the scalar output out ∈ R
with a final linear layer.

All the linear layers but the output one are paired with
Conditional Batch Normalization (CBN) [60] and ReLU ac-
tivation function. CBN is used to condition the MLP with
the input latent code z. In more details, each CBN mod-
ule applies standard batch normalization [18] to the input
vectors, with the difference that the parameters of the fi-
nal affine transformation are not learned during the training
but are instead predicted at each inference step by dedicated
linear layers starting from z.

Finally, recall that our generative network is trained with
the binary cross-entropy loss. Thus, the output of the de-
coder must be converted to the corresponding UDF value
by first applying the sigmoid function and then scaling the
result with the UDF clipping distance δ, which we set to 0.1
in our experiments. Such procedure is indeed the dual of the
one applied on the UDF ground-truth labels during training
to normalize them in the range [0, 1].

6.1.3 Surface Sampling

We sample supervision points with a probability inversely
proportional to the distance to the surface: 30% of the points
are sampled directly on the input surface, 30% are sampled
by adding gaussian noise with ε variance to surface points,
30% are obtained with gaussian noise with 3ε variance, and
the remaining ones are gathered by sampling uniformly the
bounding box in which the garment is contained. Since
in our experiments, the top and bottom garments are nor-
malized respectively into the upper and lower halves of the
[−1, 1]3 cube, we set ε = 0.003.
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Figure 12. UDF decoder. Given a 3D query and a garment latent code, the decoder of our garment generative network is trained to predict
the UDF of the input query w.r.t. the surface of the garment. The latent code is used to condition the prediction by the means of Conditional
Batch Normalization (CBN) [60]. Since we trained the decoder with the binary cross-entropy loss, its outputs need to be converted to UDF
values by applying the sigmoid function and then scaling the result with the UDF clipping distance δ.
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6.2. Draping Network

The networks W(x) ∈ R24 and ∆x(x, β) ∈ R3 that
predict blending weights and coarse displacements are im-
plemented by a 9-layer multilayer perceptron (MLP) with
a skip connection from the input layer to the middle.
Each layer has 256 nodes except the middle and the last
ones. ReLU is used as the activation function. The body-
parameter-embedding module B(β, θ) ∈ R128 and the
displacement-matrix moduleM(x, z) ∈ R128×3 for ∆xref
are implemented by a 5-layer MLP with LeakyReLU acti-
vation in-between. Each layer has 512 nodes except the last
one. ∆xIS uses the same architecture as ∆xref.

6.3. Training Hyperparameters

The generative models (top/bottom ones) are trained on
the 600/300 neutral garments for 4000 epochs, using mini-
batches of size B = 4. Each item of the mini-batch con-
tains an input point cloud with P = 10, 000 points and
N = 20, 000 random UDF 3D queries. The dimension of
the latent codes is set to 32 for both top and bottom gar-
ments, and we set λg = 0.1 in

Lgarm = Ldist + λgLgrad . (14)

The draping networks are trained for 250K iterations
with mini-batches of size 18, where each item is composed
of the vertices of one garment paired with one body shape
and pose. We set λ = 0.1 for Lpin and γ = 0.5 for Llayer.

Both the generative and the draping networks are trained
with Adam optimizer [20] and learning rates set to 0.0001
and 0.001 respectively.

7. Loss Terms and Ablation Studies
7.1. Lgarm for Garment Reconstruction

We report here an ablation study that we conducted to
determine the best formulation for Lgarm, the loss function
presented in Eq. (1) of the main paper, that we use to train
our garment generative network.

In particular, we consider three variants for Ldist, the
term of the supervision signal that guides the network to
predict accurate values for the garments UDF. In addition to
the binary cross-entropy loss (BCE) presented in Eq. (4) of
the main paper, we study the possibility of using more tradi-
tional regression losses, such as L1 and L2 losses. Adopting
the notation introduced in Sec. 3.1 of the main paper, the L1
loss is defined as 1

BN

∑
i,j |min(yij , δ)− ỹij |, while the L2

loss is computed as 1
BN

∑
i,j(min(yij , δ)− ỹij)2.

On top of the three variants for Ldist, we also consider
for each one the possibility of removing the gradients su-
pervision from Lgarm, i.e., setting λg = 0.

We trained our generative network for 48 hours with the
resulting six loss function variants and then compared the

quality of the garments reconstructed with the garment de-
coder. Fig. 13 presents a significant example of what we
observed on the test set. Without gradients supervision (top
row of the figure), none of the considered loss functions
(BCE, L1 or L2) can guide the network to predict smooth
surfaces without artifacts or holes. Adding the gradients su-
pervision (bottom row) induces a strong regularization on
the predicted distance fields, helping the network to predict
surfaces without holes in most of the cases. However, us-
ing the L1 loss leads to rough surfaces, as one can observe
in the center column of the bottom row of the figure. The
BCE and the L2 losses (first and third columns of the bot-
tom row), instead, produce smooth surfaces that are pleas-
ant to see. We finally opted for the BCE loss over the L2
loss, since the network trained with the latter occasionally
predicts surfaces with small holes, as in the example shown
in the figure.

7.2. Lpin for Bottom Garments

To determine V , the set of bottom garment vertices that
need to be constrained by Lpin, we first find the closest
body vertex vB for each bottom garment vertex v. If vB
locates in the body trunk (cyan region as shown in Fig. 14),
v is added to V .

In Fig. 15, we show the draping results of bottom gar-
ments by using different values for λ in Lpin. When λ
equals 0 or 1, the deformations along the X and Z axes are
not natural because no constraints or too strong constraints
are applied, while it is not the case when λ = 0.1, which is
our setting.

7.3. Llayer for Top-bottom Intersection

To determine C, the set of body vertices covered by
both the top and bottom garments, we first subdivide the
SMPL body mesh for a higher resolution, and then we com-
pute Ctop the set of closest body vertices for the given top
garment, and Cbottom the set of closest body vertices for
the bottom. C is derived as the intersection of Ctop and
Cbottom.

In Fig. 16 we compare the results of models trained with-
out and with Llayer. We can observe that without Llayer,
the top tank can intersect with the bottom trousers, while it
is not the case when using Llayer. This indicates the effi-
cacy of Llayer to avoid intersections between garments.

7.4. Physics-based Refinement

After recovering the draped garment GD from images
by the optimization of Eq. (12) of the main paper, we can
apply the physics-based objectives of Eq. (7) (main paper)
to increase its level of realism

L(∆G) =Lstrain(GD + ∆G) + Lbend(GD + ∆G)

+ Lgravity(GD + ∆G) + Lcol(GD + ∆G) ,
(15)
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Figure 13. Comparison between different loss functions for the garment generative network. We present the same garment recon-
structed by our generative network after being trained for 48 hours with six different alternatives of loss functions.

Figure 14. Body region (marked in cyan) used to compute Lpin.

where ∆G is the per-vertex-displacement initialized to zero.
For the recovery from 3D scans, we apply the following op-
timization which minimizes both the above physics-based
objectives and the Chamfer Distance d(·) to the input scan
SG

L(∆G) =Lstrain(GD + ∆G) + Lbend(GD + ∆G)

+ Lgravity(GD + ∆G) + Lcol(GD + ∆G)

+ d(GD + ∆G, SG) .

(16)

This refinement procedure is only applicable to open sur-
face meshes, and our UDF model is thus key to enabling
it. Applying Eq. (15) or Eq. (16) to an inflated garment (as
recovered by SMPLicit [10], ClothWild [33] and DIG [22])
indeed yields poor results with many self-intersections as il-
lustrated in Fig. 17. This is because inflated garments mod-
elled as SDFs have a non-zero thickness, with distinct inner
and outer surfaces whose interactions are not taken into ac-
count in this fabric model. The physics model we apply

𝜆 = 0 𝜆 = 0.1𝜆 = 1

Figure 15. Comparison between different values for λ of Lpin.
To restrict the deformation mainly along the vertical direction (Y
axis) and produce natural deformations along other directions, λ
has to be a positive value smaller than 1. We use λ = 0.1 for our
training.

on garment meshes indeed considers collisions of the gar-
ment with the body, but not with itself, which is what hap-
pens with the inner and outer surfaces in Fig. 17. Adding a
physics term to prevent self intersections would not be triv-
ial, and is related to the complex task of untangling layered
garments [8, 48]

Note that this is also the case for most garment draping
softwares [16,34,35,41,55] to expect single layer garments.
Modeling garment with UDFs is thus a key feature of our
pipeline for its integration in downstream tasks.
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w/o ℒ𝑙𝑎𝑦𝑒𝑟 w/ ℒ𝑙𝑎𝑦𝑒𝑟

Figure 16. Comparison: draping without and with Llayer .
Without it, the top and bottom garments intersect with each other.

Both the optimizations of Eqs. (12) and (13) of the main
paper and Eqs. (15) and (16) are done with Adam [14] but
with different learning rates set to 0.01 and 0.001 respec-
tively.

The watertight mesh
reconstructed by SDF.

The mesh refined by 
physics-based objectives.

Figure 17. Applying post-refinement procedure to watertight
mesh. Left: the watertight mesh reconstructed by DIG [22].
Right: the same mesh after being refined with physics-based ob-
jectives (Eq. (15)). Physics-based refinement is not compatible
with inflated garment meshes, and leads to many self-intersections.

8. Additional Results

8.1. Garment Encoder/Decoder

8.1.1 Additional Qualitative Results

Fig. 18 and Fig. 19 show the encoding-decoding capabil-
ities of our garment generative network for top and bot-
tom test garments, respectively. The ground-truth garments
are passed through the garment encoder, which produces a
compact latent code for each clothing item. Then, our gar-
ment decoder reconstructs the input garments surface from
the latent codes. It is possible to notice how the output gar-

ments closely match the input ones, both in terms of geom-
etry and topology.

8.1.2 Latent Space Optimization (LSO).

After training the garment generative network, we obtain a
latent space that allows us to sample a garment latent code
and to feed it to the implicit decoder to reconstruct the ex-
plicit surface. We study here the possibility of exploring
the garment latent space by the means of LSO. To do that,
given a target 2D silhouette or a sparse 3D point cloud of a
garment, we optimize with gradient descent a latent code –
initialized to the training codes average – so that the frozen
decoder conditioned on it can produce a garment which fits
the target image or point cloud.

Given the silhouette S of a target garment, we can re-
trieve its latent code z by minimizing

L(z) = LIoU(R(G),S) ,

G = MeshUDF(DG(·, z)) ,
(17)

where LIoU is the IoU loss [23] in pixel space measuring the
difference between 2D silhouettes , R(·) is a differentiable
silhouette renderer for meshes [45], and G is the garment
mesh reconstructed with our garment decoder using z.

In the case of a target garment provided as a point cloud
P , the garment latent code z can be obtained by minimizing

L(z) = d(ps(G),P) ,

G = MeshUDF(DG(·, z)) ,
(18)

where d(a, b) is the Chamfer distance [14] between point
clouds a and b, and ps(·) represents a differentiable proce-
dure to sample points from a given mesh [45].

In both cases, we run the optimization for 1000 steps,
with Adam optimizer [20] and learning rate set to 0.01.

In Fig. 20 and Fig. 21 we present some results of the LSO
procedures here described, showing that the latent space
learned by the garment generative network can be explored
effectively with gradient descent to recover the codes asso-
ciated with the target garments.

8.2. Draping Network

8.2.1 Additional Qualitative Results

In Fig. 22 we show additional qualitative results of gar-
ment draping produced by our method, where the garment
meshes are generated by our UDF model. It can be seen that
our method can realistically drape garments with different
topologies over bodies of various shapes and poses.

8.2.2 Euclidean Distance is not a Good Metric

In Fig. 23, we show an example of bottom garment where
our result is more realistic than the competitors DeePSD [6]
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Figure 18. Generative network: reconstruction of unseen garments in neutral pose/shape (top garments). Latent codes for unseen
garments can be obtained with our garment encoder. These codes are then used by the garment decoder to reconstruct open surface meshes.
Input garments are colored in purple, while the reconstructed meshes are colored in gray.

Figure 19. Generative network: reconstruction of unseen garments in neutral pose/shape (bottom garments). Latent codes for
unseen garments can be obtained with our garment encoder. These codes are then used by the garment decoder to reconstruct open surface
meshes. Input garments are colored in dark gray, while the reconstructed meshes are colored in light gray.

and DIG [22] despite having the highest Euclidean distance.
This demonstrates again that Euclidean distance is not able
to measure the draping quality, as discussed in the main pa-

per.
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Figure 20. Generative network: latent space optimization (top garments). After training, we can explore the latent space learned by
the garment generative network with gradient descent, to recover target garments from 2D silhouettes (top) or 3D point clouds (bottom).

Figure 21. Generative network: latent space optimization (bottom garments). After training, we can explore the latent space learned
by the garment generative network with gradient descent, to recover garments from 2D silhouettes (top) or 3D point clouds (bottom).
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Figure 22. Additional results: draping garments of different topologies over bodies in various shapes and poses with our method.

Top Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 7.22 0.01 0.98 8.21

DIG 6.32 0.01 1.05 7.38

Ours 0.43 0.01 1.05 1.81

Bottom Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 8.46 0.02 0.90 9.38

DIG 7.48 0.01 0.90 8.39

Ours 0.41 0.01 0.86 1.28

Table 2. Draping unseen garment meshes. Quantitative comparison in physics-based energy between DeePSD, DIG and our method.
“Strain”, “Bending” and “Gravity“ denote the membrane strain energy, the bending energy and the gravitational potential energy, respec-
tively.

Ours
ED=56.1mm

DIG
ED=12.9mm

DeePSD
ED=20.2mm

GT

Figure 23. Comparison between DeePSD, DIG and our
method. Our result is more realistic than the others despite having
the highest Euclidean distance (ED) error.

8.2.3 Quantitative Evaluation in Physics-based Energy

In Tab. 2, we report the physics-based energy of Strain,
Bending and Gravity as proposed by [47] on test garment
meshes when draped by DeePSD, DIG and our method.
These energy terms are used as training losses for our gar-
ment network (Eqs. (7) and (8) of the main paper). For the
gravitational potential energy, we choose the lowest body
vertex as the 0 level. Generally, our results have the low-
est energies, especially for the Strain component. Since
DeePSD and DIG do not apply constraints on mesh faces,
their results exhibit much higher Strain energy. This indi-
cates that our method can produce results that have more
realistic physical properties.
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8.3. Inference Times

We report inference times for the components of our
framework, computed on an NVIDIA Tesla V100 GPU.
The garment encoder, which needs to be run only once for
each garment, takes ∼25 milliseconds. The decoder takes
∼2 seconds to reconstruct an explicit garment mesh from a
given latent code, including the modified Marching Cubes
from [15] at resolution 2563.

The draping network takes ∼5 ms to deform a garment
mesh composed of 5K vertices. Since it is formulated in an
implicit manner and is queried at each vertex, its inference
time increases to ∼8 ms for a mesh with 8K vertices, or
∼53 ms with 100K vertices.

8.4. Fitting SMPLicit [10] to 3D Scans

Figure 24. Recovered garments of SMPLicit from 3D scans.
Figures are extracted from [10].

In Fig. 24 we show results of fitting the concur-
rent approach SMPLicit [10] to 3D scans of the SIZER
dataset [56]. We can observe that they are not as realistic
as ours shown in Fig. 10 of the main paper. Since we have
no access to their code and not enough information for a re-
implementation, we directly extract this figure from [10].

9. Human Evaluation
In Fig. 25 we show the interface and instructions that

were presented to the 187 respondents of our survey. These
evaluators were volunteers with various backgrounds from
the authors respective social circles, which were purposely
not given any further detail or instruction. We collected col-
lected 3738 user opinions in total, each user expressing 20
opinions on average.

20



Figure 25. Interface of our qualitative survey. The garment is draped with our method, DIG, and DeePSD, in a random order.
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